(新课标)二轮专题复习课件-导数及其应用
- 格式:ppt
- 大小:11.77 MB
- 文档页数:7
《导数及其应用》全章复习与巩固【学习目标】1. 导数概念通过具体情境,感受在现实实际和实际生活中存在着大量的变化率问题,体会平均变化率、瞬时变化率和导数的实际意义,理解导数的几何意义2. 导数运算(1)会用导数定义计算一些简单函数的导数;(2)会利用导数公式表求出给定函数的导数;(3)掌握求导的四则运算法则,掌握求复合函数的导数,并会利用导数的运算法则求出函数的导函数3. 体会研究函数的意义(1 )认识导数对于研究函数的变化规律的作用;(2)会用导数的符号来判断函数的单调性;(3)会利用导数研究函数的极值点和最值点.4•导数在实际问题中的应用(1)进一步体会函数是描述世界变化规律的基本数学模型;(2)联系实际生活和其他学科,进一步体会导数的意义;(3)从实际生活抽象出一些基本的用导数刻画的问题,并加以解决【知识网络】【要点梳理】要点一:导数的概念及几何意义导数的概念:函数y=f(x)在x0点的导数,通常用符号f ‘X。
)表示,定乂为:一山y 「 f (Xo +^X)—f (Xo )f(x0尸lim ——=lim ------- ----------- ----- ---瘵T0也X 2°氐X要点诠释:(1)丄[_^= _j—X L,它表示当自变量x从x°变X i,函数值从 f x°变到 f X1时,.X X—X°. X函数值关于X的平均变化率•当X趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在X°点的导数.(2)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率•如瞬时速度即是位移在这一时刻的瞬间变化率.(3)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S从时间1到t2的平均变化率即为t i到t2这段时间的平均速度.要点诠释:求曲线的切线方程时,抓住切点是解决问题的关键,有切点直接求,无切点则设切点,布列方程组.导数的物理意义:在物理学中,如果物体运动的规律是s=s t ,那么该物体在时刻t0的瞬时速度v就是s=s t在t=t0时的导数,即v=s' t。