八年级数学上册 第13章《全等三角形》单元综合测试3(新版)华东师大版.doc
- 格式:doc
- 大小:227.50 KB
- 文档页数:6
第13章全等三角形一、选择题1.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH 其中,正确的结论有()A.1个B.2个C.3个D.4个2.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题3.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=.4.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F 分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF=.5.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是.6.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG=cm.7.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的序号).三、解答题8.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D 作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.9.如图,∠1=∠2,∠3=∠4,求证:AC=AD.10.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.11.如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB∥EF,AB=EF.求证:BC=FD.12.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE ⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.13.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.14.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.15.如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.16.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N 分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.17.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.18.我们把两组邻边相等的四边形叫做“筝形".如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.第13章全等三角形参考答案与试题解析一、选择题1.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.2.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD;求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确.根据tan∠ABE=tan ∠EAG=,得到AG=BG,GE=AG,于是得到BG=4EG,故②正确;根据AD∥BC,求出S△BDE=S△CDE,推出S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;由∠AHD=∠CHD,得到邻补角和对顶角相等得到∠AHB=∠EHD,故④正确;【解答】证明:∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,在△BAE和△CDE中∵,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,∵在△ADH和△CDH中,,∴△ADH≌△CDH(SAS),∴∠HAD=∠HCD,∵∠ABE=∠DCE∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°﹣90°=90°,∴AG⊥BE,故①正确;∵tan∠ABE=tan∠EAG=,∴AG=BG,GE=AG,∴BG=4EG,故②正确;∵AD∥BC,∴S△BDE=S△CDE,∴S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故④正确;故选:D.【点评】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直;②四个内角相等,都是90度;③对角线相等,相互垂直,且平分一组对角.二、填空题3.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3.【考点】全等三角形的判定与性质.【分析】由已知条件易证△ABE≌△ACD,再根据全等三角形的性质得出结论.【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.【点评】本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.4.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F 分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF 时,AE+AF=.【考点】全等三角形的判定与性质;矩形的性质;解直角三角形.【专题】压轴题.【分析】过点F作FG⊥AC于点G,证明△BCE≌△GCF,得到CG=CB=2,根据勾股定理得AC=4,所以AG=4﹣2,易证△AGF∽△CBA,求出AF、FG,再求出AE,得出AE+AF的值.【解答】解:过点F作FG⊥AC于点G,如图所示,在△BCE和△GCF中,,∴△BCE≌△GCF(AAS),∴CG=BC=2,∵AC==4,∴AG=4﹣2,∵△AGF∽△CBA∴,∴AF==,FG==,∴AE=2﹣=,∴AE+AF=+=.故答案为:.【点评】本题主要考查了三角形全等的判定和性质以及三角形相似的判定与性质,有一定的综合性,难易适中.5.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是90°.【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据全等三角形的判定与性质,可得∠ODA与∠BAE的关系,根据余角的性质,可得∠ODA与∠OAD的关系,根据直角三角形的判定,可得答案.【解答】解:由ABCD是正方形,得AD=AB,∠DAB=∠B=90°.在△ABE和△DAF中,∴△ABE≌△DAF,∴∠BAE=∠ADF.∵∠BAE+∠EAD=90°,∴∠OAD+∠ADO=90°,∴∠AOD=90°,故答案为:90°.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.6.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG=4cm.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】如图,作MD⊥BC于D,延长DE交BG的延长线于E,构建等腰△BDM、全等三角形△BED和△MHD,利用等腰三角形的性质和全等三角形的对应边相等得到:BE=MH,所以BG=MH=4.【解答】解:如图,作MD⊥BC于D,延长MD交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22。
第13章 全等三角形(90分钟 100分)一、选择题(每小题3分,共24分)1.△ABC中,AB=AC=2,∠B=60°,则BC=( )A.2B.3C.4D.52.(2024·泉州期末)下列命题的逆命题是真命题的是( )A.全等三角形的对应角相等B.对顶角相等C.若x>y,则x-y>0D.若C是线段AB的中点,则AC=BC3.(2024·南通质检)如图,已知△ABC≌△DEC,∠ACB=100°,∠D=35°,则∠E=( )A.35°B.45°C.55°D.无法计算4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )5.(2023·台州中考)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连结BE,CD.下列命题中,假命题是( )A.若CD=BE,则∠DCB=∠EBCB.若∠DCB=∠EBC,则CD=BEC.若BD=CE,则∠DCB=∠EBCD.若∠DCB=∠EBC,则BD=CE6.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若以A,B,C为顶点的三角形与以A,P,Q为顶点的三角形全等,则AP的值为( )A.8 cmB.12 cmC.12 cm或6 cmD.12 cm或8 cm7.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D,C,BD,AC都经过点E,则图中全等的三角形共有对( )A.3B.4C.5D.68.(2024·天津期中)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④连结OC,OC平分∠AOE;⑤∠AOB=60°.恒成立的结论有( )A.①⑤B.①②⑤C.①②③⑤D.①②③④⑤二、填空题(每小题4分,共24分)9.定理“直角三角形的两个锐角互余”的逆定理是.10.检测房梁是否水平,可以采用下面的方法:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的顶点,则可以判断房梁是水平的.这样做的根据是:.11.如图,D在BC边上,△ABC≌△ADE,∠EAC=44°,则∠B的度数为.12.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是.13.(2023·重庆中考A卷)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连结AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为.14.如图,∠BOC=60°,A是BO的延长线上一点,OA=10 cm,动点P从点A出发,沿AB 以3 cm/s的速度移动,动点Q从点O出发沿OC以2 cm/s的速度移动,若点P,Q 同时出发,当△OPQ是等腰三角形时,移动的时间是.三、解答题(共52分)15.(6分)(2023·云南中考)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.16.(8分)(2024·北京期中)下面是“过直线上一点作已知直线的垂线”的尺规作图过程:已知:如图,点P在直线l上.求作:直线PQ,使PQ⊥l.作法:①以点P为圆心,任意长为半径画弧,交直线l于A,B两点,AB长为半径画弧,两弧在直线l上方交于点Q,②分别以A,B为圆心,大于12③作直线PQ.直线PQ即为所求的垂线.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.()(填推理的依据)17.(8分)如图,在长方形纸片ABCD中,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE,DE分别交AB于点G,F,且GF=GP.(1)求证:△GEF≌△GBP;(2)若PC=2,求BF的长.18.(8分)(2023·苏州中考)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连结DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.19.(10分)已知,如图,AD为△ABC的角平分线,且AD=AC,E为AD延长线上的一点,AE=AB.(1)求证:△ABD≌△AEC;(2)求证:BE=EC.20.(12分)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,则线段AD与CE的数量关系是;(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【附加题】(10分)(1)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和△BCE.①连结AE,CD,如图1,求证:∠BCD=∠AEB;②若AB⊥BC,延长AB交DE于点M,求证:点M为DE的中点;(2)如图3,HE⊥CE于点E,∠BEH=30°,点G在EH上运动,以BG为边作等边△BGF,当BF的长最小时,求∠FBE的度数.第13章 全等三角形(90分钟 100分)一、选择题(每小题3分,共24分)1.△ABC中,AB=AC=2,∠B=60°,则BC=(A)A.2B.3C.4D.52.(2024·泉州期末)下列命题的逆命题是真命题的是(C)A.全等三角形的对应角相等B.对顶角相等C.若x>y,则x-y>0D.若C是线段AB的中点,则AC=BC3.(2024·南通质检)如图,已知△ABC≌△DEC,∠ACB=100°,∠D=35°,则∠E=(B)A.35°B.45°C.55°D.无法计算4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是(B)5.(2023·台州中考)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连结BE,CD.下列命题中,假命题是(A)A.若CD=BE,则∠DCB=∠EBCB.若∠DCB=∠EBC,则CD=BEC.若BD=CE,则∠DCB=∠EBCD.若∠DCB=∠EBC,则BD=CE6.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若以A,B,C为顶点的三角形与以A,P,Q为顶点的三角形全等,则AP的值为(C)A.8 cmB.12 cmC.12 cm或6 cmD.12 cm或8 cm7.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D,C,BD,AC都经过点E,则图中全等的三角形共有 对(B)A.3B.4C.5D.68.(2024·天津期中)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④连结OC,OC平分∠AOE;⑤∠AOB=60°.恒成立的结论有(D)A.①⑤B.①②⑤C.①②③⑤D.①②③④⑤二、填空题(每小题4分,共24分)9.定理“直角三角形的两个锐角互余”的逆定理是 有两个角互余的三角形是直角三角形 .10.检测房梁是否水平,可以采用下面的方法:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的顶点,则可以判断房梁是水平的.这样做的根据是: 等腰三角形的底边上的中线、底边上的高重合 .11.如图,D在BC边上,△ABC≌△ADE,∠EAC=44°,则∠B的度数为 68° .12.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是 85° .13.(2023·重庆中考A卷)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连结AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE =4,CF =1,则EF 的长度为 3 .14.如图,∠BOC =60°,A 是BO 的延长线上一点,OA =10 cm,动点P 从点A 出发,沿AB 以3 cm/s 的速度移动,动点Q 从点O 出发沿OC 以2 cm/s 的速度移动,若点P ,Q 同时出发,当△OPQ 是等腰三角形时,移动的时间是 2 s 或10 s .三、解答题(共52分)15.(6分)(2023·云南中考)如图,C 是BD 的中点,AB =ED ,AC =EC.求证:△ABC ≌△EDC.【解析】∵C 是BD 的中点,∴BC =DC ,在△ABC 和△EDC 中,AB =ED AC =EC BC =DC,∴△ABC ≌△EDC (S.S.S.).16.(8分)(2024·北京期中)下面是“过直线上一点作已知直线的垂线”的尺规作图过程:已知:如图,点P 在直线l 上.求作:直线PQ ,使PQ ⊥l.作法:①以点P 为圆心,任意长为半径画弧,交直线l 于A ,B 两点,②分别以A ,B 为圆心,大于12AB 长为半径画弧,两弧在直线l 上方交于点Q ,③作直线PQ.直线PQ即为所求的垂线.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.(等腰三角形底边上的中线与底边上的高重合)(填推理的依据)【解析】(1)补全的图形如图所示:【解析】(2)连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.(等腰三角形底边上的中线与底边上的高重合)17.(8分)如图,在长方形纸片ABCD中,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE,DE分别交AB于点G,F,且GF=GP.(1)求证:△GEF≌△GBP;【解析】(1)∵纸片ABCD为长方形,∴∠B=∠C=90°,由折叠的性质得,∠E=∠C,∴∠E=∠B,在△GEF 和△GBP 中,∠E =∠B ∠EGF =∠BGP GF =GP,∴△GEF ≌△GBP (A.A.S.);(2)若PC =2,求BF 的长.【解析】(2)由△GEF ≌△GBP 得GE =GB ,∵GF =GP ,∴BF =GB +GF =GE +GP =PE ,由折叠的性质得,PE =PC =2,∴BF =2.18.(8分)(2023·苏州中考)如图,在△ABC 中,AB =AC ,AD 为△ABC 的角平分线.以点A 为圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连结DE ,DF.(1)求证:△ADE ≌△ADF ;【解析】(1)∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD.由作图知:AE =AF.在△ADE 和△ADF 中,AE =AF ∠BAD =∠CAD AD =AD,∴△ADE ≌△ADF (S.A.S.);(2)若∠BAC =80°,求∠BDE 的度数.【解析】(2)∵∠BAC =80°,AD 为△ABC 的角平分线,∴∠EAD =12∠BAC =40°,由作图知:AE =AD ,∴∠AED =∠ADE ,∴∠ADE =12×(180°-40°)=70°,∵AB =AC ,AD 为△ABC 的角平分线,∴AD ⊥BC ,∴∠BDE =90°-∠ADE =20°.19.(10分)已知,如图,AD 为△ABC 的角平分线,且AD =AC ,E 为AD 延长线上的一点,AE =AB.(1)求证:△ABD≌△AEC;【证明】(1)∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD与△AEC中,AB=AE∠BAD=∠EAC AD=AC,∴△ABD≌△AEC(S.A.S.); (2)求证:BE=EC.【证明】(2)∵AD=AC,AE=AB,∴∠ACD=∠ADC=180°-∠DAC2,∠ABE=∠AEB=180°-∠BAD2,∴∠ACD=∠ADC=∠ABE=∠AEB,∵∠BDE=∠ADC,∴∠BDE=∠BED,∴BD=BE,∵△ABD≌△AEC,∴BD=EC,∴BE=EC.20.(12分)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,则线段AD与CE的数量关系是AD=CE;【解析】(1)AD=CE,理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC=BC.∵点D为AC的中点,∴∠DBC=30°,AD=DC,∵BD=DE,∴∠E=∠DBC=30°,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE,又∵AD=DC,∴AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)【解析】(2)AD=CE,理由如下:如图,过点D作DF∥BC,交AB于点F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°-60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∠FDB=∠E∠BFD=∠DCE BD=DE,∴△BFD≌△DCE(A.A.S.),∴DF=EC,又∵AD=DF,∴AD=CE;(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【解析】(3)结论仍成立,理由如下:如图,过点D作DP∥BC,交AB的延长线于点P,则∠ABC=∠APD=60°,∠ACB=∠ADP=60°,∵∠A=60°,∴△APD是等边三角形,∴AP=PD=AD,∴∠DCE=∠ACB=∠P,∵DP∥BC,∴∠PDB=∠CBD,∵DB=DE,∴∠DBC=∠DEC,∴∠PDB=∠DEC,在△BPD和△DCE中,∠PDB=∠CED ∠P=∠DCE BD=DE,∴△BPD≌△DCE(A.A.S.),∴PD=CE,又∵AD=PD,∴AD=CE.【附加题】(10分)(1)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和△BCE.①连结AE,CD,如图1,求证:∠BCD=∠AEB;②若AB⊥BC,延长AB交DE于点M,求证:点M为DE的中点;【解析】(1)①∵△ABD和△BCE是等边三角形,∴BD=BA,BC=BE,∠DBA=∠EBC=60°,∴∠DBA+∠ABC=∠EBC+∠ABC,即∠DBC=∠ABE,在△DBC和△ABE中,BD=BA∠DBC=∠ABE BC=BE,∴△DBC≌△ABE(S.A.S.),∴∠BCD=∠AEB;②如图,过点E作AD的平行线,交AM的延长线于点F,∵AD∥EF,∴∠DAM=∠AFE=60°,∵AB⊥BC,∴∠EBF=180°-∠ABC-∠CBE=30°,∴∠BEF=90°,在△ABC与△FEB中,∠BAC=∠EFB ∠ABC=∠FEB BC=EB,∴△ABC≌△FEB(A.A.S.),∴AB=EF=AD,在△MAD与△MFE中,∠AMD=∠FME ∠DAM=∠EFM AD=FE,∴△MAD≌△MFE(A.A.S.),∴DM=EM,即点M为DE的中点;(2)如图3,HE⊥CE于点E,∠BEH=30°,点G在EH上运动,以BG为边作等边△BGF,当BF的长最小时,求∠FBE的度数.【解析】(2)当BF的长最小时,即BG最小,则BG⊥HE,当以BG为边在BG左侧作等边△BGF时,如图所示:可得∠GBE=180°-∠BEH-∠BGE=60°,∵△FBG为等边三角形,∴∠FBG=60°,∴∠FBE=∠FBG+∠GBE=120°;当以BG为边在BG右侧作等边△BGF时,如图所示:此时点F在BE上,∴∠FBE=0°,综上所述,∠FBE=0°或120°.。
第13章全等三角形单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 下列命题是真命题的是()A.在同一平面内,两条直线的位置只有平行和垂直两种B.两直线平行,同旁内角相等C.过一点有且只有一条直线与已知直线平行D.平行于同一条直线的两直线平行2. 如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE.若AC=5,BC=3,则BD的长为()A.1B.1.5C.2D.2.53. 甲、乙、丙3人从图书馆各借了一本书,他们相约在每个星期天相互交换读完的书.经过数次交换后,他们都读完了这3本书.若乙读的第三本书是丙读的第二本书,则乙读的第一本书是甲读的()A.第一本书B.第二本书C.第三本书D.不能确定4. 一个角是60∘的等腰三角形是()A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确5. 已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有()个(1)DA平分∠EDF;(2)△EBD≅△FCD;(3)△AED≅△AFD;(4)AD垂直BC.A.1个B.2个C.3个D.4个6. 角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是()A.SSSB.ASAC.SASD.AAS7. 已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为()A.2cmB.3cmC.5cmD.8cmBC的长为半径8. 如图,在Rt△ABC中,∠ACB=90∘,分别以点B和点C为圆心,大于12作弧,两弧相交于D,E两点,作直线DE交AB于点F,交BC于点G,连接CF.若AC= 2,∠FCG=30∘,则△BCF的面积为( ).A.√3B.√3C.2D.2√32二、填空题(本题共计10 小题,每题3 分,共计30分,)9. 如图,在△ABC中,∠C=90∘,DE垂直平分AB,∠CBE:∠A=1:2,则∠AED=________∘.10. 如图是标准跷跷板的示意图.横板AB的中点过支撑点O,且绕点O只能上下转动.如果∠OCA=90∘,∠CAO=25∘,则小孩玩耍时,跷跷板可以转动的最大角度为________.11. 如图所示的是一个尺规作图,已知∠AOB=35∘,根据作图痕迹可知∠A′O′B′的度数为________.12. 如果两个直角三角形,满足斜边和一条直角边相等,那么这两个直角三角形________(填“是”或“不是”)全等三角形.13. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80∘,则它的特征值k=________.14. 如图,在△ABC中,AB=AC,∠BAC=90∘,AE是过A点的一条直线,CE⊥AE于E,BD⊥AE于D,DE=4cm,CE=2cm,则BD=________.15. 如图,为等边三角形,,,,且。
第十三章测试卷 全等三角形一、选择题(每小题3分,共30分)1.判断命题“如果 n <1,那么 n²−1<0"是假命题,只需举出一个反例,反例中的n 可以为 ( )A.−2B.−12 C.0 D.122.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧 △ABC 一定全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.若一个等腰三角形的两边长分别为2,4,则第三边的长为 ( ) A.2 B.3 C.4 D.2 或44.如图,DE 是. △ABC 的边AB 的垂直平分线,点 D 为垂足,DE 交AC 于点 E,且 AC =8,BC =5,则 △BEC 的周长是 ( )A.12B.13C.14D.155.如图,在 △ABC 中, ∠C =90∘,AC =8,DC =13AD,BD 平分 ∠ABC,则点 D 到AB 的距离等于( ) A.4 B.3 C.2 D.16.三个等边三角形的摆放位置如图,若 ∠1+∠2=120°,则 ∠3的度数为( ) A.90° B.60° C.45° D.30°7.如图,∠C=∠D=90°,补充下列条件后不能判定△ABC≌△BAD 的是( ) A.∠1=∠2 B.∠3 =∠4 C. AC=BD D. AD=BC8.下列选项所给条件能画出唯一△ABC 的是 ( ) A. AC=3,AB=4,BC=8 B.∠A=50°,∠B=30°,AB=2C.∠C=90°,AB=90D. AC=4,AB=5,∠B=60°9.如图,在△ABC 和△A'B'C 中,△ABC≌△A'B'C,AA'∥BC,∠ACB =α,∠BCB'=β,则αβ满足关系 ( )A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°10. 如图,∠C =90°,AD 平分∠BAC,DE⊥AB 于点 E,有下列结论:①CD=ED;②AC + BE = AB;③DA 平分∠CDE;④∠BDE = ∠BAC;⑤S ABD:S ACD=AB:AC,其中正确的结论有( )A.5个B.4个C.3个D.2个二、填空题(每小题3分,共15分)11.把命题“对顶角相等”改写成“如果⋯⋯,那么⋯⋯”的形式:12. 如图,在△ABC 中,AD⊥BC 于点 D,要使△ABD≌△ACD,若根据“H. L.”判定,还需要加条件.13.如图,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,则△ABC的面积是 .14.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC 的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为 .15.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 .三、解答题(本大题共9个小题,满分75 分)16.(7分)如图,已知△ABC中,点 D 为BC 边上一点,∠B=∠4,∠1=∠2=∠3.求证:BC=DE.17.(7分)如图,小明站在堤岸的点A处,正对他的点S处停有一艘游艇.他想知道这艘游艇距离他有多远,于是他沿堤岸走到电线杆B旁,接着再往前走相同的距离,到达点 C.然后他向左直行,当看到电线杆与游艇在一条直线上时停下来,此时他位于点 D 处.那么C、D两点间的距离就是在点 A处小明与游艇的距离,你知道这是为什么吗?18.(7 分)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,,AB的垂直平分线交 BC于点M,交AB 于点 E,AC 的垂直平分线交 BC 于点 N,交AC于点 F,则MN的长为多少?19.(7 分)如图,已知∠ABC,求作:(1)∠ABC的平分线BD(写出作法,并保留作图痕迹);(2)在BD上任取一点 P,作直线PQ,使PQ⊥AB (不写作法,保留作图痕迹).20.(8分)如图,已知AB=AC,AD=AE, BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.21.(9分)如图,在△ABC中,AB=AC,点 D、E、F 分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=44°时,求∠DEF的度数.22.(9分)已知:如图,点 D 是等边三角形 ABC 的边 BC 延长线上的一点,∠EBC=∠DAC,CE‖AB.(1)求∠AHB的度数;(2)求证:△CFG是等边三角形.23.(10分)如图1,AB=7cm,AC⊥AB,BD⊥AB,,垂足分别为点A、点B,AC=5cm .点 P 在线段AB上以2cm/s的速度由点 A 向点B运动,同时点Q在射线BD上运动.它们运动的时间为ts (当点P运动结束时,点Q运动随之结束).(1)若点 Q 的运动速度与点P 的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段 PC 和线段 PQ 的位置关系,请分别说明理由;(2)如图2,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA",点 Q 的运动速度为xcm/s,,其他条件不变,当点 P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.24.(11分)已知等边△ABC和点 P,设点 P 到△ABC三边 AB、AC、BC 的距离分别为ℎ₁、ℎ₂、ℎ₃,△ABC的高为h.(1)若点 P 在一边 BC 上(如图1),此时ℎ₃=0,求证:ℎ₁+ℎ₂+ℎ₃=ℎ;(2)当点 P 在△ABC内(如图2),以及点 P 在△ABC外(如图3)这两种情况时,上述结论是否成立? 若成立,请予以证明;若不成立,ℎ₁、ℎ₂、ℎ₃与h之间又有怎样的关系,请说出你的猜想,并说明理由.第十三章测试卷 全等三角形1. A2. B3. C4. B5. C6. B7. B8. B9. C 10. A 11.如果两个角是对顶角,那么这两个角相等 12. AB=AC 13.2014.2a+3b 15.69°或21°16.证明:∵∠ADC=∠ADE+∠3=∠1+∠B,∠1=∠3,∴∠ADE=∠B.∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE.∵∠B=∠4,∴AB=AD.在△ABC 和△ADE 中, {∠BAC =∠DAEAB =AD,∠B =∠ADE,∴△ABC≌△ADE(A. S.A.),∴BC=DE.17.解:在△ABS 与△CBD 中, {∠A =∠C =90∘,AB =CB,∠ABS =∠CBD,∴ △ABS≌△CBD(A. S. A.),∴ AS =CD,即C 、D 两点间的距离就是在点A 处小明与游艇的距离.18.解:如图,连结AM ,AN.根据线段垂直平分线的性质,得 BM = AM,CN = AN,∴ ∠MAB = ∠B,∠CAN =∠C.∵ ∠BAC=120°,AB=AC,∴ ∠B=∠C =30°,∴∠AMN=∠ANM=60°,∴△AMN 是等边三角形,∴AM = AN = MN,∴ BM = MN = NC.∵ BC =6 cm,∴MN=2cm.19.解:(1)作法:①以点B 为圆心,任意长为半径画弧,分别交 BA 、BC 于点 M 、N;②再分别以点 M 、N 为圆心,以大于线段MN 长的一半为半径画弧,两弧在∠ABC 内相交于点 D,作射线BD,BD 为所作. (2)如图,PQ 为所作.20.(1)证明:∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS).(2)解:△BOC 是等腰三角形.理由如下:∵ △ABD≌△ACE,∴∠ABD = ∠ACE.∵AB=AC,∴∠ABC = ∠ACB,∴ ∠ABC --∠ABD = ∠ACB --∠ACE,∴ ∠OBC =∠OCB,∴BO=CO,∴△BOC 是等腰三角形.21.(1)证明:∵ AB=AC,∴∠B=∠C.在△DBE 和△ECF 中, {BD =CE,∠B =∠C,BE =CF,∴△DBE≌△ECF(SAS),∴DE=EF,∴△DEF 是等腰三角形.(2)解∵ ∠A =44∘,∠B =∠C,∴∠B =∠C =12(180∘−∠A )=12×(180∘−44∘)=68∘. 由(1)知△DBE≌△ECF,∴∠BDE=∠CEF.∵ ∠DEC =∠BDE+∠B,∴∠CEF + ∠DEF=∠BDE+∠B,∴∠BDE+∠DEF=∠BDE+∠B,∴∠DEF=∠B=68°.22.(1)解:∵ △ABC 是等边三角形,∴∠ACB=60°.在△BCF 和△AHF 中,∵∠EBC=∠DAC,∠BFC=∠HFA,∴∠AHB=∠ACB=60°,(2)证明:∵△ABC 是等边三角形,∴BC=AC,∠ABC=∠ACB=60°.∵CE∥AB,∴∠ECD=∠ABC=60°,∴∠ACG=180°-∠ACB -∠ECD=60°.在△BCF 和△ACG 中, {∠EBC =∠DAC,BC =AC,∠BCF =∠ACG,∴△BCF≌△ACG(A. S. A.),∴FC=GC.∵∠ACG=60°,∴△CFG 是等边三角形.23.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°.∵AP=BQ=2×1=2( c m),AB=7cm,AC=5cm,∴BP=5cm=AC.在△ACP 和△BPQ 中,AC=BP,∠A =∠B,AP = BQ,∴△ACP≌△BPQ (S. A. S.),∴ ∠C =∠BPQ,又∵∠C+∠APC=90°,∴∠BPQ+∠APC=90°,∴∠CPQ=90°,∴PC⊥PQ. (2)∵ ∠CAB = ∠DBA,∴ 要使△ACP 与△BPQ 全等,必须△ACP≌△BPQ 或△ACP≌△BQP.①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得5=7-2t,2t= xt,解得x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得5= xt,2t=7-2t,解得x=207,t=74.综上所述,当△ACP与△BPQ全等时,x的值为2 或207.24.解:(1)如图1,连结AP,则S ABC=S ABP+S ACP.∴12BC⋅AM=12AB⋅PD+12AC.PE,即-12BC⋅ℎ=12AB⋅ℎ1+12AC⋅ℎ2.又∵ △ABC 是等边三角形,∴BC =AB =AC,∴.ℎ=ℎ₁+ℎ₂.又∵ℎ₃=0,∴ℎ=ℎ₁+ℎ₂+ℎ₃.(2)当点 P 在△ABC 内时,ℎ=ℎ₁+ℎ₂+ℎ₃.理由如下:如图2,连结AP、BP、CP,则S ABC=S ABP+S ACP+S BcP::12BC⋅AM=12AB⋅PD+12AC⋅PE+12BC⋅PF,即12BC⋅ℎ=12AB⋅ℎ1+12AC⋅ℎ2+12BC⋅ℎ3.又∵△ABC是等边三角形,∴BC=AB=AC.∴ℎ=ℎ₁+ℎ₂+ℎ₃.当点P在△ABC外时,ℎ=ℎ₁+ℎ₂−ℎ₃.理由如下:如图3,连结AP、BP、CP,则S ABC=ΔABP+S ACP−S BcP,∴12BC⋅AM=12AB⋅PD+12AC⋅PE−12BC⋅PF I12BC⋅ℎ=12AB⋅ℎ1+12AC⋅ℎ2−12BC⋅ℎ3.∵ABC是等边三角形,∴BC=AB=AC,∴ℎ=ℎ₁+ℎ₂−ℎ₃.。
2020年~2021年最新第13章全等三角形一、选择题1.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个2.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE =S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题3.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .4.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF= .5.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是.6.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG 与BC相交于点H.若MH=8cm,则BG= cm.7.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的序号).三、解答题8.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.9.如图,∠1=∠2,∠3=∠4,求证:AC=AD.10.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.11.如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB∥EF,AB=EF.求证:BC=FD.12.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.13.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.14.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.15.如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.16.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.17.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.18.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.第13章全等三角形参考答案与试题解析一、选择题1.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.2.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE =S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】首先根据正方形的性质证得△BAE ≌△CDE ,推出∠ABE=∠DCE ,再证△ADH ≌△CDH ,求得∠HAD=∠HCD ,推出∠ABE=∠HAD ;求出∠ABE+∠BAG=90°;最后在△AGE 中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确.根据tan ∠ABE=tan ∠EAG=,得到AG=BG ,GE=AG ,于是得到BG=4EG ,故②正确;根据AD ∥BC ,求出S △BDE =S △CDE ,推出S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确;由∠AHD=∠CHD ,得到邻补角和对顶角相等得到∠AHB=∠EHD ,故④正确; 【解答】证明:∵四边形ABCD 是正方形,E 是AD 边上的中点, ∴AE=DE ,AB=CD ,∠BAD=∠CDA=90°, 在△BAE 和△CDE 中 ∵,∴△BAE ≌△CDE (SAS ), ∴∠ABE=∠DCE , ∵四边形ABCD 是正方形, ∴AD=DC ,∠ADB=∠CDB=45°, ∵在△ADH 和△CDH 中,,∴△ADH ≌△CDH (SAS ), ∴∠HAD=∠HCD , ∵∠ABE=∠DCE ∴∠ABE=∠HAD ,∵∠BAD=∠BAH+∠DAH=90°, ∴∠ABE+∠BAH=90°, ∴∠AGB=180°﹣90°=90°, ∴AG ⊥BE ,故①正确; ∵tan ∠ABE=tan ∠EAG=, ∴AG=BG ,GE=AG , ∴BG=4EG ,故②正确; ∵AD ∥BC ,∴S △BDE =S △CDE ,∴S △BDE ﹣S △DEH =S △CDE ﹣S △DEH , 即;S △BHE =S △CHD ,故③正确; ∵△ADH ≌△CDH , ∴∠AHD=∠CHD , ∴∠AHB=∠CHB , ∵∠BHC=∠DHE ,∴∠AHB=∠EHD ,故④正确; 故选:D .【点评】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直; ②四个内角相等,都是90度; ③对角线相等,相互垂直,且平分一组对角. 二、填空题3.如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE= 3 .【考点】全等三角形的判定与性质.【分析】由已知条件易证△ABE ≌△ACD ,再根据全等三角形的性质得出结论. 【解答】解:△ABE 和△ACD 中,,∴△ABE ≌△ACD (AAS ),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.【点评】本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.4.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF= .【考点】全等三角形的判定与性质;矩形的性质;解直角三角形.【专题】压轴题.【分析】过点F作FG⊥AC于点G,证明△BCE≌△GCF,得到CG=CB=2,根据勾股定理得AC=4,所以AG=4﹣2,易证△AGF∽△CBA,求出AF、FG,再求出AE,得出AE+AF的值.【解答】解:过点F作FG⊥AC于点G,如图所示,在△BCE和△GCF中,,∴△BCE≌△GCF(AAS),∴CG=BC=2,∵AC==4,∴AG=4﹣2,∵△AGF∽△CBA∴,∴AF==,FG==,∴AE=2﹣=,∴AE+AF=+=.故答案为:.【点评】本题主要考查了三角形全等的判定和性质以及三角形相似的判定与性质,有一定的综合性,难易适中.5.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是90°.【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据全等三角形的判定与性质,可得∠ODA与∠BAE的关系,根据余角的性质,可得∠ODA 与∠OAD的关系,根据直角三角形的判定,可得答案.【解答】解:由ABCD是正方形,得AD=AB,∠DAB=∠B=90°.在△ABE和△DAF中,∴△ABE≌△DAF,∴∠BAE=∠ADF.∵∠BAE+∠EAD=90°,∴∠OAD+∠ADO=90°,∴∠AOD=90°,故答案为:90°.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.6.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG 与BC相交于点H.若MH=8cm,则BG= 4 cm.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】如图,作MD⊥BC于D,延长DE交BG的延长线于E,构建等腰△BDM、全等三角形△BED和△MHD,利用等腰三角形的性质和全等三角形的对应边相等得到:BE=MH,所以BG=MH=4.【解答】解:如图,作MD⊥BC于D,延长MD交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22.5°,∵BG⊥MG,∴∠BGM=90°,∴∠GBM=90°﹣22.5°=67.5°,∴∠GBH=∠EBM﹣∠ABC=22.5°.∵MD∥AC,∴∠BMD=∠A=45°,∴△BDM为等腰直角三角形∴BD=DM,而∠GBH=22.5°,∴GM平分∠BMD,而BG⊥MG,∴BG=EG,即BG=BE,∵∠MHD+∠HMD=∠E+∠HMD=90°,∴∠MHD=∠E,∵∠GBD=90°﹣∠E,∠HMD=90°﹣∠E,∴∠GBD=∠HMD,∴在△BED和△MHD中,,∴△BED≌△MHD(AAS),∴BE=MH,∴BG=MH=4.故答案是:4.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.7.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是①②.(请写出正确结论的序号).【考点】全等三角形的判定与性质;等边三角形的性质;平行四边形的判定;正方形的判定.【专题】压轴题.【分析】由三角形ABE与三角形BCF都为等边三角形,利用等边三角形的性质得到两对边相等,∠ABE=∠CBF=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EBF与三角形DFC全等,利用全等三角形对应边相等得到EF=AC,再由三角形ADC为等边三角形得到三边相等,等量代换得到EF=AD,AE=DF,利用对边相等的四边形为平行四边形得到AEFD为平行四边形,若AB=AC,∠BAC=120°,只能得到AEFD为菱形,不能为正方形,即可得到正确的选项.【解答】解:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,,∴△ABC≌△EBF(SAS),∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD=DC,同理可得△ABC≌△DFC,∴DF=AB=AE=DF,∴四边形AEFD是平行四边形,选项②正确;∴∠FEA=∠ADF,∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,在△FEB和△CDF中,.∴△FEB≌△CDF(SAS),选项①正确;若AB=AC,∠BAC=120°,则有AE=AD,∠EAD=120°,此时AEFD为菱形,选项③错误,故答案为:①②.【点评】此题考查了全等三角形的判定与性质,等边三角形的性质,平行四边形的判定,以及正方形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题8.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.【考点】全等三角形的判定与性质;含30度角的直角三角形;矩形的性质;弧长的计算.【分析】(1)由矩形的性质得出∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,得出∠EAD=∠AFB,由AAS 证明△ADE≌△FAB,得出对应边相等即可;(2)连接DF,先证明△DCF≌△ABF,得出DF=AF,再证明△ADF是等边三角形,得出∠DAE=60°,∠ADE=30°,由AE=BF=1,根据三角函数得出DE,由弧长公式即可求出的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中,,∴△ADE≌△FAB(AAS),∴DE=AB;(2)解:连接DF,如图所示:在△DCF和△ABF中,,∴△DCF≌△ABF(SAS),∴DF=AF,∵AF=AD,∴DF=AF=AD,∴△ADF是等边三角形,∴∠DAE=60°,∵DE⊥AF,∴∠AED=90°,∴∠ADE=30°,∵△ADE≌△FAB,∴AE=BF=1,∴DE=AE=,∴的长==.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等边三角形的判定与性质、三角函数以及弧长公式;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.9.如图,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.10.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ACB=∠DCE,再由SAS证明△ABC≌△DEC,得出对应角相等即可.【解答】证明:∵∠ACD=∠BCE,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.11.如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB∥EF,AB=EF.求证:BC=FD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据已知条件得出△ACB≌△DEF,即可得出BC=DF.【解答】证明:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中∴△ABC≌△EFD(SAS)∴BC=FD.【点评】本题考查了平行线的性质和三角形全等的判定方法,难度适中.12.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形的性质,可得AB=AD,∠DAB=∠ABC=90°,根据余角的性质,可得∠ADE=∠BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案.【解答】解:线段AF、BF、EF三者之间的数量关系AF=BF+EF,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°.∵DE⊥AG于E,BF∥DE交AG于F,∴∠AED=∠DEF=∠AFB=90°,∴∠ADE+∠DAE=90°,∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△ABF和△DAE中,∴△ABF≌△DAE (AAS),∴BF=AE.∵AF=AE+EF,AF=BF+EF.【点评】本题考查了全等三角形的判定与性质,利用了正方形的性质,余角的性质,全等三角形的判定与性质,等量代换.13.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.【考点】全等三角形的判定与性质;三角形中位线定理.【专题】证明题.【分析】(1)根据三角形中位线,可得DF与CE的关系,DB与DC的关系,根据SAS,可得答案;(2)根据三角形的中位线,可得DF与AE的关系,根据平行四边形的判定与性质,可得答案.【解答】证明:(1)∵DE、DF是△ABC的中位线,∴DF=CE,DF∥CE,DB=DC.∵DF∥CE,∴∠C=∠BDF.在△CDE和△DBF中,∴△CDE≌△DBF (SAS);(2)∵DE、DF是△ABC的中位线,∴DF=AE,DF∥AE,∴四边形DEAF是平行四边形,∵EF与AD交于O点,∴AO=OD【点评】本题考查了全等三角形的判定与性质,(1)利用了三角形中位线的性质,全等三角形的判定;(2)利用了三角形中位线的性质,平行四边的性的判定与性质.14.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.【考点】全等三角形的判定与性质.【专题】压轴题.【分析】(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.【解答】解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.【点评】此题考查了全等三角形的判定与性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.15.如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.【考点】全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等证明即可.【解答】证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=AF.【点评】本题考查了正方形的性质,全等三角形的判定与性质,以及垂直的定义,求出两三角形全等,从而得到BE=AF是解题的关键.16.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先根据等腰三角形的性质得到AD是顶角的平分线,再利用全等三角形进行证明即可.【解答】证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AB=AC,AD平分∠BAC,∴∠MAD=∠NAD,在△AMD与△AND中,,∴△AMD≌△AND(SAS),∴DM=DN.【点评】本题考查了全等三角形的判定和性质,关键是根据等腰三角形的性质进行证明.17.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.【考点】全等三角形的判定与性质;平行四边形的性质;翻折变换(折叠问题).【专题】证明题.【分析】由在平行四边形ABCD中,将△BCD沿BD对折,使点C落在E处,即可求得∠DBE=∠ADB,得出OB=OD,再由∠A=∠C,证明三角形全等,利用全等三角形的性质证明即可.【解答】证明:平行四边形ABCD中,将△BCD沿BD对折,使点C落在E处,可得∠DBE=∠ADB,∠A=∠C,∴OB=OD,在△AOB和△EOD中,,∴△AOB≌△EOD(AAS),∴OA=OE.【点评】此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.18.们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【考点】全等三角形的判定与性质.【专题】证明题;新定义.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.。
第13章 全等三角形一、选择题(本大题共7小题,每小题4分,共28分)1.已知△ABC ≌△FED ,若∠E =37°,∠C =100°,则∠A 的度数是( ) A .100° B .80° C .43° D .37°2.若等腰三角形有一个角为45°,则这个三角形是( ) A .锐角三角形 B .钝角三角形 C .等边三角形D .锐角三角形或等腰直角三角形3.如图3-Z -1,∠AOB =50°,OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,则∠MAB 等于( )图3-Z -1A .50°B .40°C .25°D .20°4.如图3-Z -2,在△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )图3-Z-2A.65° B.60° C.55° D.45°5.如图3-Z-3,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED 的周长为( )图3-Z-3A.2 B.3 C.4 D.56.同学们都玩过跷跷板游戏,图3-Z-4是一个跷跷板的示意图,立柱OC与地面垂直,OA=OB,当跷跷板的一头A着地时,∠OAC=25°;则当跷跷板的另一头B着地时,∠AOA′等于( )图3-Z-4A.25° B.50° C.60° D.130°图3-Z-57.如图3-Z -5,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连结DE ,动点P 从点B 出发,以每秒2个单位的速度沿折线BCDA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为多少时,△ABP 和△DCE 全等( )A .1B .1或3C .1或7D .3或7二、填空题(本大题共5小题,每小题4分,共20分)8.如图3-Z -6,已知△ABC 中,AB =AC ,点D ,E 在BC 上,要使△ABD ≌△ACE ,则需要添加的一个适当的条件是________(只填一个即可).图3-Z -69.如图3-Z -7,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB =6,AC =9,则△ABD 的周长是________.图3-Z -710.如图3-Z -8,在四边形ABCD 中,AD ∥BC ,以点A 为圆心,以任意长为半径画弧,交AB 于点E ,交AD 于点F ,分别以点E 和点F 为圆心,以大于12EF 的长为半径画弧,两弧交于点G ,作射线AG ,交BC 于点H ,由作图过程可得到△ABH 的形状是________.图3-Z-811.如图3-Z-9,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=________cm.图3-Z-912.如图3-Z-10,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF,FG,GH,…,且OE=EF=FG=GH=…,在OA,OB足够长的情况下,最多能添加这样的钢管的根数为________.图3-Z-10三、解答题(本大题共4小题,共52分)13.(10分)如图3-Z-11,点A,F,C,D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF.求证:AB=DE.图3-Z-1114.(12分)如图3-Z-12,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于点M,PN⊥CD于点N.求证:PM=PN.图3-Z-1215.(14分)如图3-Z-13,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连结BE,过点C作CF⊥BE,,请加以证明.图3-Z-1316.(16分)阅读下面的题目及分析过程,并按要求进行证明.已知:如图3-Z-14,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们所在的两个三角形也不全等.因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下两种添加辅助线的方法,请对原题进行证明.(1)如图3-Z-15①,延长DE到点F,使得EF=DE.(2)如图②,作CG⊥DE于G,BF⊥DE,交DE的延长线于F.图3-Z-14图3-Z-15详解详析1.C 2.D3.[解析] C ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB ,∴∠OMA =∠OMB =12∠AMB .∵∠OMA =90°-25°=65°,∴∠OMA =∠OMB =65°,∴∠AMB =130°, ∴∠MAB =12×(180°-130°)=25°.故选C.4.[解析] A 由题意可得MN 是AC 的垂直平分线, 则AD =DC ,故∠C =∠DAC . ∵∠C =30°, ∴∠DAC =30°. ∵∠B =55°, ∴∠BAC =95°,∴∠BAD =∠BAC -∠DAC =65°. 故选A.5.[解析] C ∵BD 平分∠ABC , ∴∠ABD =∠CBD .∵ED ∥BC ,∴∠CBD =∠BDE ,∴∠ABD=∠BDE,∴BE=DE,∴△AED的周长=AE+DE+AD=AE+BE+AD=AB+AD.∵AB=3,AD=1,∴△AED C.6.B7.[解析] C 分两种情况进行讨论:①若点P在BC边上,此时BP=CE=2,又因为∠ABP =∠DCE=90°,AB=CD,根据“S.A.S.”可证得△ABP≌△DCE,由题意得BP=2t=2,所以t=1;②若点P在AD边上,此时AP=CE=2,根据“S.A.S.”可证得△BAP≌△DCE,由题意得AP=16-2t=2,解得t,当t的值为1或7时,△ABP和△DCE全等.故选C.8.答案不唯一,如BD=CE或∠BAD=∠CAE等9.[答案] 15[解析] ∵DE是BC的垂直平分线,∴DB=DC,∴△ABD的周长是AB+DB+DA=AB+DC +DA=AB+AC=6+9=15.10.等腰三角形11.[答案] 3[解析] ∵CD⊥AB,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠A+∠B=90°,∴∠B=∠ACD.∵EF⊥AC,∴∠FEC=∠ACB=90°.又∵BC=CE,∴△ACB≌△FEC,∴EF=AC.∵BC=2 cm,EF=5 cm,∴AE=AC-EC=EF-BC=5-2=3(cm).12.[答案] 8[解析] ∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…,从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个等腰三角形的底角是20°,第三个等腰三角形的底角是30°,第四个等腰三角形的底角是40°,第五个等腰三角形的底角是50°,第六个等腰三角形的底角是60°,第七个等腰三角形的底角是70°,第八个等腰三角形的底角是80°,第九个等腰三角形的底角是90°就不存在了.所以一共可添加8根钢管.13.证明:∵BC∥EF,∴∠ACB=∠DFE.∵AF=DC,∴AF+FC=DC+FC,即AC=DF.在△ABC与△DEF中,∵∠A=∠D,AC=DF,∠ACB=∠DFE,∴△ABC≌△DEF,∴AB=DE.14.证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD.在△ABD和△CBD中,∵AB=CB,∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD(S.A.S.),∴∠ADB=∠CDB.∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.15.[解析] 由题意可得BE=BC,∠AEB=∠FBC,易证明Rt△ABE与Rt△FCB全等,即可得BF=AE.解:猜想:BF=AE.证明:∵CF⊥BE,∴∠BFC=90°.又∵AD∥BC,∴∠AEB=∠FBC.∵E,C在以点B为圆心,BC长为半径的弧上,∴BE=BC.在△ABE与△FCB中,∵∠AEB=∠FBC,∠BAE=∠CFB=90°,BE=BC,∴△ABE≌△FCB(A.A.S.),∴BF=AE.16.证明:(1)在△DEC和△FEB中,word∵DE=FE,∠DEC=∠FEB,BE=CE,∴△DEC≌△FEB,∴∠D=∠F,DC=FB.∵∠BAE=∠D,∴∠BAE=∠F,∴AB=FB,∴AB=CD.(2)∵CG⊥DE,BF⊥DE,∴∠CGE=∠BFE=90°.在△CGE和△BFE中,∵∠CGE=∠BFE,∠CEG=∠BEF,BE=CE,∴△CGE≌△BFE,∴BF=CG.在△ABF和△DCG中,∵∠BAF=∠CDG,∠BFA=∠CGD=90°,BF=CG,∴△ABF≌△DCG,∴AB=CD.11 / 11。
第13章全等三角形一、选择题(此题共计9小题,每题3分,共计27分,)1以下画图语句中,正确的选项是(D.连接A 、B 两点 2以下四个命题中,真命题有(② 三角形的一个外角大于任何一个内角;③ 如果匕1和匕2是对顶角,那么Z1 = Z2;④ 假设 a 2=b 2,那么 a=b.3. A 、B 、C.。
、E 五支球队进行单循环比赛(每两支球队间都要进行一场比赛),当比赛进行到一定阶段 时,统计A 、B 、C 、。
四个球队己赛过的场数,依次为A 队4场,B 队3场,。
队2场,。
队1场,这 时,E 队已赛过的场数是() 4 己知△ ABCMDEF, £4 = 80° , ZE=40° ,那么 NF 等于(5下面是黑板上出示的尺规作图题,需要答复符号代表的内容(如图,己知ZAOB,求作:ZDEF,使ZDEF= ZAOB作法:(1)以D 为圆心,任意长为半径画弧,分别交00、OB 于点P 、Q ;(2)作射线EG,并以点E 为圆心©长为半径画孤交EG 于点。
(3)以点。
为圆心③长为半径画弧交(2)步中所画弧于点F ;(4)作ZDEF 即为所求作的角.BA.画射线O P=3cmB.画出A 、B 两点的距离C.延长射线OA①两条直线被第三条直线所截, 内错角相等;A. 1个B. 2个C. 3个D. 4个A. 1B. 2C. 3D. 4 A. 80B. 40°C. 120°D. 60°A. D 表示点EB. ©表示PQC.③表示OQD. ® 表示射线EF6,如图,ZABC= ZABD,还应补充一个条件,才能推出左ABC^^XABD,补充以下其中一个条件后,不一定能推出△ ABC^AABD 的是( )第一步:以B 为圆心,以。
为半径画弧,分别交射线酗,BC 于点、D, E ;第二步:分别以。
,E 为圆心,以人为半径画弧,两弧在ZABC 内部交于点P ;第三步:画射线BP,射线BP 即为所求.以下表达不正确的选项是()A. 。
八年级上册数学单元测试卷-第13章全等三角形-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC是等边三角形,分别延长CA,AB,BC到A′,B′,C′,使AA′=BB′=CC′=AC,若△ABC的面积为1,则△A′B′C′的面积=()A.5B.6C.7D.无法确定2、如图:在不等边△ABC中,PM⊥AB,垂足为M,PN⊥AC,垂足为N,且PM=PN,Q在AC 上,PQ=QA,下列结论:①AN=AM,②QP∥AM,③△BMP≌△QNP,其中正确的是()A.①②③B.①②C.②③D.①3、如图,在中,,分别以B,C为圆心,大于BC的一半为半径作弧,两弧相交于D,E,作直线DE交AB,BC于点F,G,连接CF,若,则的长为()A.3.5B.3C.2.5D.24、已知下列结论:①若,则互为相反数;②若,则且;③;④绝对值小于10的所有整数之和等于0;⑤3与-5是同类项.其中正确的结论有()个.A.2B.3C.4D.55、下面判断不正确的是()A.两边对应相等的两个直角三角形全等B.两个锐角对应相等的两个直角三角形全等C.一个锐角和一条边对应相等的两个直角三角形全等D.一个角和两条边对应相等的两个直角三角形全等6、在Rt△ABC中,∠ACB=90°,D,E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,则BD的长为()A.5cmB.6cmC.7 cmD.8 cm7、如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80°B.60°C.40°D.20°8、如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.55°B.65°C.85°D.75°9、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为 ( )A.4cmB.5cmC.6cmD.10cm10、如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为()A.5cmB.10cmC.15cmD.17.5cm11、下列命题中的真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边和一组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.两条对角线相等的四边形是平行四边形12、如图,AD是的角平分线,且= ,则与的面积之比为( )A. B. C. D.13、AD是△ABC的高,AC=2 ,AD=4,把△ADC沿着直线AD对折,点C落在点E的位置,如果△ABE是等腰三角形,那么线段BE的长度为()A.2B.2 或5C.2D.514、等腰三角形的两边长是6cm和3cm,那么它的周长是()A.9cmB.12 cmC.12 cm或15 cmD.15 cm15、下列说法中正确的是()A.两腰对应相等的两个等腰三角形全等B.面积相等的两个等腰三角形全等C.能够完全重合的两个三角形全等D.两个锐角对应相等的两个直角三角形全等二、填空题(共10题,共计30分)16、如图,在中,,,点在边上,以,为边作,则的度数是________.17、一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为________.18、如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是________19、如图,已知AC平分∠DAB,CE⊥AB于点E,AB=AD+2BE,则下列结论:①AB+AD= 2AE;②∠DAB+∠DCB=180°;③CD=CB;④S ACE﹣S BCE=S ACD.其中正确的是________.20、阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作∠A′O′B′=∠AOB已知:∠AOB求作:∠A′O′B′=∠AOB小米的作法如下:①作射线O′A′②以O为圆心,任意长为半径作弧,交OA于点C,交OB于点D③以O′为圆心,OC为半径作弧C′E′,交O′A′于点C,④以C′为圆心,CD为半径作弧,交C′E′于点D′⑤过点D′做射线O′B′所以∠A′O′B′就是所求的角如图:请回答:小米的作图依据是________.21、如图,OP平分∠AOB,PB⊥OB,PB=2cm,则点P到OA的距离是________cm.22、如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是________.23、如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=________.24、如图,点A1, A2, A3…,A n在x轴正半轴上,点C1, C2, C3,…,在y 轴正半轴上,点B1, B2, B3,…,B n在第一象限角平分线OM上,OB1=B1B2=B1B3=…=B n﹣1B n=a,A1B1⊥B1C1, A2B2⊥B2C2, A3B3⊥B3C3,…,,…,则第n个四边形的面积是________.25、如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交于点,连接.若,,则的长为________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF,证明:CF=EB.28、如图,梯形ABCD中,AD∥BC,点M是BC的中点,且MA=MD.求证:四边形ABCD是等腰梯形.29、如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.30、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E. △ABC的面积为70,AB=16,BC=12. 求DE的长。
八年级数学华师版全等三角形章节测试学校(满分 100分,考试时间班级60分钟)姓名一、选择题(每题 3 分,共 21 分)1. 如图,在△ ABC 和△ BDE 中,点 C 在边 BD 上,边 AC 交边 BE 于点 F .若AC=BD ,AB=ED ,BC=BE ,则∠ ACB=( )A .∠ EDBB .∠ BEDC . 1AFBD .2∠ABF2AEAAFCPBC DODBBDC第 1 题图第 2 题图第 4 题图2. 尺规作图作∠ AOB 的均分线的方法以下:以点 O 为圆心,随意长为半径画弧,交 OA , OB 于点 C ,D ,再分别以点 C , D 为圆心,大于 1 CD 长为2 半径画弧,两弧在∠ AOB 的内部交于点≌△ ODP 的依据是( )A .SASB .ASAP ,作射线C . AASOP .由以上作法得△D .SSSOCP3. 以下命题是假命题的是()A .角均分线上的点到角两边的距离相等B .有两个角和此中一个角的均分线对应相等的两个三角形全等C .有两条边和此中一条边上的中线对应相等的两个三角形全等D .有两条边和此中一条边上的高对应相等的两个三角形全等4. 如图,在△ ABC 中, AB=AC ,D 为 BC 中点,∠ BAD=35 °,则∠ C 的度数为()A .35 °B .45 °C . 55 °D .60 °5. 如图,在△ PBC 中,D 为 PB 上一点, PD=PC ,延B长 PC 到点 A ,使得 PA=PB ,连结 AD 交 BC 于点 DO ,连结 PO ,则图中的全等三角形共有( )OA .1 对B . 2 对C . 3 对D . 4 对PCA6. 如图,在四边形 ABCD 中, AB=CD ,BA 和 CD 的延伸线交于E点 E ,若点 P 使得 S △ PAB△PCD ,则知足此条件的点 P ( )S AA .有且只有 1 个 DB .有且只有 2 个C .构成∠ E 的角均分线D .构成∠E 的角均分线所在的直线( E 点除外) B C7. 已知△ ABC 的三边长分别为 3,4,5,△DEF 的三边长分别为 3,3x- 2,2x+1,若这两个三角形全等,则 x 的值为( )A .2B . 2或7C .7或3D . 2或 7或33323 2二、填空题(每题4 分,共 28 分)8. 如图, B , C ,F ,E 在同向来线上,∠ 1=∠2,BF=EC ,若加上一个条件,则△ ABC ≌△ DEF ,原因是 .AAB1FEC2DBDC第 8 题图 第 9 题图9. 如图,在△ ABC 中, AB=AC ,∠ BAC 的均分线交 BC 于点 D ,BD=3,则 BC的长为.10. 如图,直线 a ,b ,c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地点有个.cAAEFbEDPaBDC CB第 10 题图第 11 题图第 12 题图11. 如图,在等边三角形 ABC 中,点 D ,E 分别在边 BC , AC 上,且 BD=CE ,AD 与 BE 订交于点 P ,则∠ APE 的度数为 .12. 如图,在 Rt △ABC 中,∠ ACB=90 °,BC=3cm ,CD ⊥AB ,在AC 上取一点 E 使EC=BC ,过点 E 作 EF ⊥AC 交 CD 的延伸线于点F .若 EF=5cm ,则 AE=.13.如图为正方形 ABCD,若在正方形的边上找一点 P 使△ ABP 为等腰三角形,则知足条件的点P 共有个.AA DE PFBC B CD第 13 题图第 14 题图14.如图,在等腰△ ABC 中, AB=AC,点 D 是 BC 的中点,连结 AD,点 P 在 AD上,过点 D 作 DE⊥ BP, DF⊥ CP,则以上结论中:① BD=CD;②△ ABD≌△ACD;③△ BPC 是等腰三角形;④ DE=DF .正确的有.三、解答题(本大题共 5 小题,满分51 分)15.(6 分)已知线段 a 和 b,∠α,尺规作图(保存作图印迹):作一个△ ABC,使 AB=a,BC=b,∠ ABC=2∠α.abα16.(6 分)如图,A,B两个建筑物分别位于河的两岸,要测得它们之间的距离,能够从 B 出发,沿河岸画一条射线 BF,在 BF 上截取 BC=CD ,过 D 作DE∥ AB ,使A,C,E 位于同向来线上,则 DE 的长就是 A,B 之间的距离.请你说明其中道理.AB C D FE17.(12 分)如图,点 C 为线段 AB 上一点,△ ACM,△ CBN 是等边三角形,连结 AN 交 CM 于点 E,连结 BM 交 CN 于点 F.求证:( 1)△ CAN≌△ CMB;(2)△ CEN≌△ CFB.NMFEA C B18.(12 分)如图,在△ ABC 中,点 E 在 AB 边上, AE=AC,连结 CE,G 为 CE的中点,连结AG 并延伸,交BC 于点D,连结DE,过点E 作EF∥BC,交AC 于点 F .求证: EC 均分∠ DEF.AE FGB D C19.(15 分)如图 1,已知四边形 ABCD 中, AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠ MBN=60°,∠ MBN 绕 B 点旋转,它的两边分别交AD, DC (或它们的延伸线)于点E, F.(1)当∠ MBN 绕 B 点旋转到AE=CF 时,求证: AE+CF=EF.(2)如图 2,当∠ MBN 绕 B 点旋转到 AE≠CF 时,上述结论: AE+CF=EF 是否建立?若建立,请赐予证明;若不建立,线段AE,CF,EF 又有如何的数量关系?请写出你的猜想并证明.(3)当∠ MBN 绕 B 点旋转到如图 3 所示的地点时,请直接写出线段AE,CF, EF 之间的数目关系.AE MBDC N F图 1ABE MC F DN图 2ABF DCNEM图 3。
第13章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共24分)1.下列长度的三条线段,能组成等腰三角形的是( C)A.1,1,2 B.2,2,5 C.3,3,5 D.3,4,52.如图,△ABD≌△CDB,下面四个结论中不正确的是( C)A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC错误!,第3题图)3.如图,将两根等长钢条AA′,BB′的中点O连在一起,使AA′,BB′可以绕着点O 自由转动,就做成了一个测量工件,则AB的长等于容器内径A′B′,那么判定△OAB≌△OA′B′的理由是( B)A.边边边 B.边角边 C.角边角 D.角角边4.已知下列命题:①若x=a,则x2-(a+b)x+ab=0;②若a>b,则a2>b2;③如果两个角是直角,那么它们相等.其中原命题与逆命题均为真命题的有( A) A.0个 B.1个 C.2个 D.3个5.(2017春·市北区月考)已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC 和△DBC的周长分别是60 cm和38 cm,则△ABC的腰和底边长分别为( D) A.24 cm和12 cm B.16 cm和22 cm C.20 cm和16 cm D.22 cm和16 cm6.(2017·某某一模)如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1,l2∠ABC=67°,则∠1=( B)A.23° B.46° C.67° D.78°,第6题图) ,第7题图) ,第8题图)7.如图,在△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分别交AB,BC于点M,N.若M在PA的垂直平分线上,N在PC的垂直平分线上,则∠APC的度数为( C) A.100° B.105° C.115° D.无法确定8.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块如图被剪掉正三角形纸板边长的12)后,得到图③,④,…,记第n(n ≥3)块纸板的周长为P n ,则P n -P n -1的值为( C )A .(14)n -1B .(14)nC .(12)n -1D .(12)n 二、填空题(每小题3分,共24分)9.命题“若x(1-x)=0,则x =0”是__假__命题(填“真”或“假”),证明时可举出的反例是__x =1__.10.(某某中考)如图,AB ∥CE ,BF 交CE 于点D ,DE =DF ,∠F =20°,则∠B 的度数为__40°__.,第10题图) ,第11题图) ,第12题图) ,第13题图)11.如图,OA =OB ,点C 在OA 上,点D 在OB 上,OC =OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有__4__对.12.如图,AB +AC =7,D 是AB 上一点,若点D 在BC 的垂直平分线上,则△ACD 的周长为__7__.13a +b __.14.如图,在△ABC 中,∠ACB =90°,∠BAC =40°,在直线AC 上找一点P ,使△ABP 是等腰三角形,则∠APB 的度数为__20°或40°或70°或100°__.,第14题图) ,第15题图),第16题图)15.如图,△ABC 的三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC ,若∠BAC =80°,则∠BOD 的度数为__100°__.16.如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,∠ABC 的平分线BE 交AD 于点F ,AG 平分∠DAC.给出下列结论:①∠BAD =∠C ;②AE =AF ;③∠EBC =∠C ;④FG ∥AC ;⑤①②④__.(填序号)三、解答题(共72分)17.(6分)(1)判断命题“若∠AOB =2∠AOC ,则OC 是∠AOB 的平分线”是真命题还是假命题,若是假命题,举出一个反例加以证明;(2)写出命题“有一个角是60°的三角形是等边三角形”的逆命题,并判断其逆命题是真命题还是假命题,若是假命题,请举出一个反例加以证明.解:(1)若∠AOB =2∠AOC ,则OC 是∠AOB 的平分线是假命题,如OC 在∠AOB 的外面,∠AOB =2∠AOC ,则OC 不是∠AOB 的平分线 (2)等边三角形有一个角是60°,真命题18.(6分)(某某中考)如图,AD ,BC 相交于点O ,AD =BC ,∠C =∠D =90°.求证:△ACB ≌△BDA.解:∵∠D =∠C =90°,∴△ABC 和△BAD 都是直角三角形,在Rt △ABC 和Rt △BAD 中,⎩⎪⎨⎪⎧AD =BC ,AB =BA ,∴Rt △ABC ≌Rt △BAD (H.L.)19.(6分)(2017·贵港一模)如图,在△ABC 中,请按下列要求用尺规作图(保留作图痕迹,不写作法及证明):(1)作AB 边的垂直平分线l ,垂足为点D ;(2)在(1)中所得直线l 上,求作一点M ,使点M 到BC 边所在直线的距离等于MD.解:(1)作图略 (2)作图略20.(6分)雨伞的中截图如图所示,伞背AB =AC ,支撑杆OE =OF ,AE =14AB ,AF =14AC ,当O 沿AD 滑动时,雨伞开闭;问雨伞开闭过程中,∠BEO 与∠CFO 有何关系?说明理由.解:∠BEO =∠CFO.理由:∵AB =AC ,AE =14AB ,AF =14AC ,∴AE =AF ,易证△AEO ≌△AFO (S.S.S.),∴∠AEO =∠AFO ,∴∠BEO =∠CFO21.(8分)如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°,∠DAB =45°.(1)求∠DAC 的度数;(2)请说明:AB =CD.解:(1)∵AB =AC ,∴∠B =∠C =30°,∵∠C +∠BAC +∠B =180°,∴∠BAC =180°-30°-30°=120°,∵∠DAB =45°,∴∠DAC =∠BAC -∠DAB =120°-45°=75°(2)∵∠DAB =45°,∴∠ADC =∠B +∠DAB =75°,∴∠DAC =∠ADC ,∴DC =AC ,∴DC =AB22.(8分)如图,在△ABC 中,BE ,CF 分别是AC ,AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连结AD ,AG.(1)求证:AD =AG ;(2)AD 与AG 的位置关系如何?并说明理由.解:(1)∵BE ,CF 分别是AC ,AB 两边上的高,∴∠AFC =∠BFC =∠BEC =∠BEA =90°,∴∠BAC +∠ACF =90°,∠BAC +∠ABE =90°,∠G +∠GAF =90°,∴∠ABE =∠ACF.易证△ABD ≌△GCA (S.A.S.),∴AD =AG (2)结论:AG ⊥AD.理由:∵△ABD ≌△GCA ,∴∠BAD =∠G ,∴∠BAD +∠GAF =90°,∴AG ⊥AD23.(10分)如图,过等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,且PA =CQ ,连结PQ 交AC 边于D.(1)求证:PD =DQ ;(2)若△ABC 的边长为1,求DE 的长.解:(1)过点P 做PF ∥BC 交AC 于点F ,∴∠AFP =∠ACB ,∠FPD =∠Q ,∠PFD =∠QCD ,∵△ABC 为等边三角形,∴∠A =∠ACB =60°,∴∠A =∠AFP =60°,∴△APF 是等边三角形.∵AP =PF ,AP =CQ ,∴PF =CQ ,∴△PFD ≌△QCD (A.S.A.),∴PD =DQ (2)∵△APF 是等边三角形,PE ⊥AC ,∴AE =EF ,∵△PFD ≌△QCD ,∴CD =DF ,DE =EF +DF =12AC ,∵AC =1,∴DE =1224.(10分)已知Rt △ABC ≌Rt △ADE ,其中∠ACB =∠AED =90°.(1)将这两个三角形按图①方式摆放,使点E 落在AB 上,DE 的延长线交BC 于点F.求证:BF +EF =DE ;(2)改变△ADE 的位置,使DE 交BC 的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF ,EF 与DE 之间的等量关系,并说明理由.解:(1)如图①,连结AF ,∵Rt △ABC ≌Rt △ADE ,∴AC =AE ,BC =DE ,∵∠ACB =∠AEF =90°,AF =AF ,∴Rt △ACF ≌Rt △AEF (H.L.),∴CF =EF ,∴BF +EF =BF +CF =BC ,∴BF +EF =DE(2)如图②,(1)中的结论不成立,有DE =BF -EF ,理由:连结AF ,∵Rt △ABC ≌Rt △ADE ,∴AC =AE ,BC =DE ,∵∠E =∠ACF =90°,AF =AF ,∴Rt △ACF ≌Rt △AEF ,∴CF =EF ,∴DE =BC =BF -FC =BF -EF ,即DE =BF -EF25.(12分)(1)问题背景:如图①:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E ,F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G.使DG =BE.连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是____________________;(2)探索延伸:如图②,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.解:(1)EF =BE +DF.证明:在△ABE 和△ADG 中,⎩⎪⎨⎪⎧DG =BE ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG (S.A.S.),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△AGF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF (S.A.S.),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为 EF =BE +DF (2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G.使DG =BE.连结AG ,如图2,在△ABE 和△ADG 中,⎩⎪⎨⎪⎧DG =BE ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG (S.A.S.),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF ,∴∠EAF =∠GAF ,易证△AEF ≌△AGF (S.A.S.),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF (3)如图3,连结EF ,延长AE ,BF 相交于点C ,∵∠AOB =30°+90°+(90°-70°)=140°,∠EOF =70°,∴∠EOF =12∠AOB ,又∵OA =OB ,∠OAC +∠OBC =(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,即EF =2×(45+60)=210(海里).答:此时两舰艇之间的距离是210海里。
第13章 全等三角形一、填空题(每题2分,共20分)1,所谓尺规作图中的尺规是指:___.2,命题“垂直于同一条直线的两直线平行”的题设是_______,命题“平行于同一条直线的两直线平行”的结论是_________.3,定理“如果直角三角形两直角边分别是a 、b ,斜边是c ,那么a 2+b 2=c 2.即直角三角形的两直角平方和等于斜边的平方”的逆定理是___.4,如图1,根据SAS ,如果AB =AC , = ,即可判定ΔABD ≌ΔACE .5,如图2,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,PE =3cm ,则P 点到直线AB 的距离是___.6,如图3,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于D ,若AB =10,则△BDE 的周长等于____.7,如图4,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 .8,如图5,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌ ,理由是 ,△ABE ≌△ ,理由是 .9,若△ABC ≌△DEF ,其中A 、B 分别与D 、E 分别是对应的顶点,AB <AC <BC ,则在△DEF 中,________<_______<________.10,如图6,AD ⊥BC ,DE ⊥AB ,DF ⊥AC ,D 、E 、F 是垂足,BD =CD ,那么图中的全等三角形有_______.图2 ECDPA B图3EDCBA图5图1 EDCBA图6AF(8)CEBD二、选择题(每题2分,共20分)11,只用无刻度的直尺就能作出的图形是( )A.延长线段AB 至C ,使BC =ABB.过直线L 上一点A 作L 的垂线C.作已知角的平分线D.从点O 再经过点P 作射线OP 12,下列命题中,真命题是( )A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有具只有一条直线13,如图7所示,若△ABE ≌△A CF ,且AB =5,AE =2,则EC 的长为( ) A.2 B.3 C.5 D.2.514,已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是( )A.6cmB.7cmC.8cmD.9cm15,如图8所示,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则还须补充的一个条件是( ) A.AB =DE B.∠ACE =∠DFB C.BF =EC D.∠ABC =∠DEF16,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是( )A.SASB.ASAC.AASD.SSS17,如图9,△ABC 是不等边三角形,DE =BC ,以D 使所画的三角形与△ABC A.2个 B.4个 C.6个图7FECBA 图8ABCD图918,如图10,△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是( ) A.△ABD ≌△ACDB.∠B =∠CC.AD 是 BAC 的平分线D.△ABC 是等边三角形19,如图11,∠1=∠2,∠C =∠D ,AC 、BD 交于E 点,下列结论中不正确的是( ) A.∠DAE =∠CBE B.CE =DEC.△DEA 不全等于△CBED.△EAB 是等腰三角形20,如图12,在△ABC 中,AB >AC ,AC 的垂直平分线交AB 于点D ,交AC 于点E ,AB =10,△BCD 的周长为18,则BC 的长为( )△ABC ,使∠(2)有两个角是锐角的三角形是锐角三角形.23,如图14,BP 、CP 是△ABC 的外角平分线,则点P 必在∠BAC 的平分线上,你能说出其中的道理吗?APBCB图11 2(12)CBA1EDA图1224,如图15,已知∠1=∠2,∠3=∠4,EC =AD ,求证:AB =BE .25,如图16,工人师傅制作了一个正方形窗架,把窗架立在墙上之前,在上面钉了两块等长的木条GF 与GE ,E 、F 分别是AD 、BC 的中点.(1)G 点一定是AB 的中点吗?说明理由; (2)钉这两块木条的作用是什么?26,如图17,已知点A 、E 、F 、D 在同一条直线上,AE =DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF =CE ,试说明AB 与CD 的位置关系. 四、综合题(共20分)27,如图18,已知当物体AB 距凸透镜为2倍焦距,即AO =2f 时,成倒立的等大的像A ′B ′.求像距OA ′与f 的关系.28,阅读下题及其证明过程:已知:如图19,D 是△ABC 中BC 边上一点,EB =EC ,∠ABE =∠ACE ,试说明∠BAE 与∠CAE 相等的理由.理由:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB 所以△AEB ≌△AEC (第一步) 所以∠BAE =∠CAE (第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.29,如图20,在四边形ABCD 中,AD ∥BC ,∠ABC =∠DCB ,AB =DC ,AE =DF . (1)试说明BF =CE 的理由.(2)当E 、F 相向运动,形成如图21时,BF 和CE 还相等吗?请说明你的结论和理由.图19G FE DCBA图16AOBB 'A '图18 图17AF CE B DABCDEFAB DE FHG五、拓展题(共20分)30,已知:如图22,AB =AC ,DB =DC ,(1)若E 、F 、G 、H 分别是各边的中点,求证:EF =FG .(2)若连结AD 、BC 交于点P ,问AD 、BC 有何关系?证明你的结论.31,如图23,在△AFD 和△BEC 中,点A 、E 、F 、C 在同一条直线上,有下面四个论断:(A )AD =CB ,(B )AE =CF ,(C )∠B =∠D ,(D )AD ∥BC .请用其中三个作为条件,余下一个作为结论,遍一道数学题,并写出解答过程.32,我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等? (1)阅读与说理:对于这两个三角形均为直角三角形,显然它们全等. 对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:如图24,△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C l ,∠C =∠C l .试说明△ABC ≌△A 1B 1C 1的理由.(请你将下列说理过程补充完整).理由:分别过点B ,B 1作BD ⊥CA 于D ,B 1 D 1⊥C 1 A 1于D 1.则∠BDC =∠B 1D 1C 1=90°, 因为BC =B 1C 1,∠C =∠C 1,△BCD ≌△B 1C 1D 1,BD =B 1D 1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.A DB C EFA (E )D (F )B C图21图20图24参考答案一、1,没有刻度的直尺和圆规;2,两条直线垂直于同一条直线、两直线平行;3,如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形就是直角三角形;4,AD=AE;5,3cm;6,10;7,∠DBE、CA;8,△ACE、SAS、△ACD、ASA(或SAS);9,DE、DF、EF;10,△ABD≌△ACD,△ADE≌△ADF,△BDE≌△CDF.二、11,D;12,D;13,B;14,A;15,D;16,D;17,B;18,D;19,C;20,A.三、21,略;22,(1)真命题,(2)假命题.例如:若在△ABC中,∠A=20°,∠B=30°,∠C=130°,则△ABC是钝角三角形;23,可过点P向三角形的三边引垂线,利用角平分线的性质即得;24,用AAS说明△ABD≌△EBC;25,(1)是.由HL知,AG=GB;(2)利用三角形的稳定性,使窗架稳定;26,AB∥CD.因为∠DBC=∠ACB,∠ABO=∠DCO,所以∠DBC+∠ABO=∠ACB+∠DCO,即∠ABC=∠DCB,又∠ACB=∠DBC,BC=CB,所以△ACB≌△DBC,所以AB=DC.因为∠ABO=∠DCO,∠AOB=∠DOC,所以△ABO≌△DCO,所以OA=OD.四、27,在△AOB和△A′OB′中,因为AB=A′B′,∠BAO=∠B′A′O,∠BOA=∠B′OA′,所以△AOB≌△A′OB′,所以OA′=OA,因为OA=2f,所以OA′=2f;28,不正确,第一步就错.正确应该由EB=EC得到∠EBC=∠ECB,再由∠ABE=∠ACE,得∠ABC=∠ACB,即AB=AC,最后在△ABE和△ACE中,利用SAS得到△ABE≌△ACE即可说明∠BAE与∠CAE相等;29,(1)利用SAS说明△ABF≌△DCE,(2)相等.说明方法同(1).五、30,(1)在△ABD和△ACD中,AB=AC,BD=CD,AD是公共边,所以△ABD≌△ACD(SSS),所以∠ABD=∠ACD,又BE=12AB,CF=12AC,所以BE=CF,同理BH=CG,所以△BEH≌△CFG(SAS),所以EH=FG,(2)因为△ABD≌△ACD,所以∠BAD=∠CAD,因为AB=AC,所以AB垂直平分BC,即AD垂直平分BC;31,答案不惟一.如:已知:AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.等等;32,(1)又因为AB=A1B1,∠ADB=∠A1D1B1=90°.所以△ADB≌△A1D1B1,所以∠A=∠A1,又∠C=∠C1,BC=B1C1,所以△ABC≌△A1B1C1.(2)由题设和(1)我们可以得到下列结论:若△ABC、△A1B1C1均为锐角三角形或均为直角三角形或均为钝角三角形,AB=A1B1,BC=B1C1,∠C=∠C1,则△ABC≌△A1B1C1.。