CHC连环少齿差减速器
- 格式:doc
- 大小:105.00 KB
- 文档页数:2
设计计算说明书在少齿差内啮合传动中,由于内齿轮和外齿轮的齿数差少,在切削和装配时会产生种种干涉,以致造成产品的报废。
因此,在设计减速器内齿轮副参数的时候,需要对一些参数进行合理的限制,以保证内啮合传动的强度和正确的啮合。
同时要对一些主要零件进行强度校核计算。
2.1 减速器结构型式的确定选用卧式电机直接驱动,因传动比53.153=总i ,传动i =153.53>100时,少齿差行星齿轮减速器有两种设计方案可供选择。
第一种是采用二级或多级的N 型少齿差行星齿轮减速器;第二种是采用内齿轮输出的NN 型少齿差行星齿轮减速器。
以下分别阐述其特点:图2-1图2-1为典型二级N 型少齿差齿轮减速器的传动原理简图,传动原理如下: 当电动机带动偏心轴H 转动时,由于内齿轮K 与机壳固定不动,迫使行星齿轮绕内齿轮做行星运动;又由于行星轮与内齿轮的齿数差很少,所以行星轮绕偏心轴的中心所做的运动为反向低速运动。
利用输出机构V 将行星轮的自转运动传递给输出轴,达到减速目的。
减速后的动力通过输出轴传递给中心轮1,而行星轮2绕中心轮1和3做行星反向低速运动,从而达到第二次减速。
此类减速器的优点是:2K-H(负号机构)这种传动机构制造方便、轴向尺寸小, K-H-V 型的机构效率较高,承载能力大,两者串联可实现大的传动比。
缺点是:因转速很高,行星轮将产生很大的离心力作用于轴承上,此机构设计计算复杂,销孔精度要求高,制造成本高,转臂轴承载荷大。
图1-3为典型的内齿轮输出的NN 型少齿差行星齿轮减速器,这种结构的减速器优点是:内齿轮输出的N 型少齿差行星减速器的结构简单,用齿轮传力,无需加工精度较高的传输机构;零件少,容易制造,成本低于上种型式;可实现很大或极大的传动比。
缺点是:传动比越大则效率也越低,为了减少振动需添加配重。
基于经济性方面因素考虑,采用第二种方案作为本次课题的设计方案。
2.2 确定齿数差和齿轮的齿数由《渐开线少齿差行星传动》表4-17可知,如齿数差增大,减速器的径向尺寸虽增大一些,但转臂轴承上的载荷可降低很多;并且由于齿轮直径的增大,从而可使轴承的寿命得到显著提高;此外,对减速器的效率、散热条件等也有了一定的改善。
少齿差行星减速器设计说明书1 导言1.1 设计目的减速器是指原动机与工作机之间独立的闭式传动装置,为各行业成套装备及生产线配套的大功率和中小功率变速箱。
行星齿轮减速器是齿轮减速器中应用较多的一种,它具有许多优点,在各种车辆、机械设备和其它传动系中得到广泛使用。
随着近代工业技术的高速发展,对行星齿轮传动的承载能力、可靠性、效率、圆周速度、体积及质量等技术和经济指标提出了愈来愈高的要求。
与此同时,优化其结构设计也被提到十分重要的地位上。
行星齿轮传动较普通齿轮传动具有许多独特的优点,它不仅用于民用机械上,而且广泛用于军事机械传动装置,其主要特点如下:结构紧凑,承载能力大;只要适当选择机构的形式,便可以用较少的齿轮获得很大的传动比,甚至其传动比能达到好几千倍,虽然传动比很大但是仍然结构紧凑、重量轻;传动效率较高,其值可达0.8,0.9以上;由于行星轮均匀分布于中心轮的四周,因而惯性力平衡,机构运[1]转平稳,抗冲击和抗震动能力强。
1.2 减速器的生产现状当今世界各国减速器及齿轮技术发展总趋势是向六高、二低、二化方面发展。
六高就是指高承载能力、高齿面硬度、高精度、高速度、高可靠性和高传动效率;二低,是指低噪声和低成本;二化是标准化和多样化。
国内的减速箱将逐渐淘汰软齿面,向硬齿面(50,60HRC)、高精度(4级)、高可靠度软启动、运行监控、运行状态记录、低噪声、高的功率与体积比和高的功率与重量比的方向发展。
中小功率变速箱为适应机电一体化成套装备自动控制、自动1调速、多种控制与通讯功能的接口需要,产品的结构与外型在相应改变。
矢量变频代替直流伺服驱动,已成为近年中小功率变速箱产品(如摆轮针轮传动、谐波齿轮传动等)追求的目标。
近十几年来,计算机技术、信息技术、自动化技术机械制造中的广泛应用,改变了制造业的传统观念和产品组织方式。
一些先进的齿轮生产企业已经采用精益产、敏捷制造、智能制造等先进技术,形成了高精度、高效率的智能化齿轮生产线和计[2]算机网络化管理。
常见减速器的分类和润滑方法常见减速器的分类和润滑方法在工业和机械领域中,减速器是一种广泛应用的设备,用于将高速运动的输入轴减速并传递给输出轴。
减速器的主要功能是降低转速并提高驱动力,以适应不同的工作需求。
不同类型的减速器具有不同的结构和特点,可以根据其应用和设计原理进行分类。
一、常见减速器的分类1. 齿轮减速器:齿轮减速器是最常见和广泛应用的减速器之一。
它通过不同大小和结构的齿轮组合来实现减速。
齿轮减速器根据齿轮的布置方式可以分为平行轴齿轮减速器和垂直轴齿轮减速器。
平行轴齿轮减速器适用于传输功率较小的场合,而垂直轴齿轮减速器适用于传输功率较大且空间有限的场合。
2. 行星齿轮减速器:行星齿轮减速器由一个太阳齿轮、一组行星齿轮和一个内环齿轮组成。
它的特点是结构紧凑、承载能力强和传递效率高。
行星齿轮减速器常用于需要大扭矩输出和减速比较大的场合,例如汽车变速箱和船舶推进系统。
3. 锥齿轮减速器:锥齿轮减速器是通过一对相互啮合的锥齿轮来实现减速的。
它的特点是传动平稳、工作可靠,并且适用于变速调整。
锥齿轮减速器常用于汽车后桥传动以及冶金、采矿和建筑等行业。
4. 螺旋推力减速器:螺旋推力减速器是通过螺旋齿轮的螺旋线性贯穿整个齿轮面而实现减速。
它的特点是平稳运行、噪音低和传动效率高。
螺旋推力减速器常用于需要大扭矩和高速比的场合,例如搅拌设备和矿山输送机。
5. 摆线针轮减速器:摆线针轮减速器使用摆线针轮和挡齿针轮的啮合来实现减速效果。
它的特点是输送平稳、紧凑结构和高传动效率。
摆线针轮减速器常用于需要大传动比和高精度的场合,例如数控机床和机器人。
二、润滑方法减速器在工作过程中需要注入适当的润滑剂,以降低摩擦和磨损,延长使用寿命,并提高工作效率。
常见的润滑方法包括以下几种:1. 油浸润滑:这是最常用的润滑方式之一。
通过在减速器内部注入适量的润滑油,形成油膜来减小齿轮的摩擦和磨损。
需要定期检查润滑油的质量和油位,并及时更换。
减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动、齿轮-蜗杆传动所组成的独立部件,常用作原动件与工作机之间的减速传动装置。
根据不同的分类方式,减速器有多种类
型。
1. 按照传动类型,减速器可分为齿轮减速器、蜗杆减速器和行星齿轮减速器。
2. 按照传动级数,减速器可分为单级和多级减速器。
3. 按照齿轮形状,减速器可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器。
4. 按照传动的布置形式,减速器可分为展开式、分流式和同轴式减速器。
此外,根据使用场合和用途的不同,还有一些特殊的减速器类型,例如谐波减速器、RV减速器、摆线针轮行星减速器和精密行星减速器等。
这些减速器在精密机械、医疗器械、数控机床等领域有广泛的应用。
总之,减速器的分类方式多种多样,具体分类方式需结合实际应用场景和需求来确定。
摘要对少齿差行星齿轮减速器国内外的发展现状、优缺点、结构型式和其传动原理进行了一定的阐述。
在设计过程当中,对内啮合传动产生的各种干涉进行了详细验算;从如何提高转臂轴承的寿命为出发点,来计算选择减速器齿轮的模数,进行少齿差内齿轮副的设计计算,最终合理设计减速器的整体结构。
关键词:少齿差行星传动;行星齿轮减速器;内齿轮副AbstractHaving expounded the planetary gear reducer of a few-tooth differenceabout its development of the status quo at home and abroad, the advantages and disadvantages, structural type and principle of its transmission. Among the process of designing, having checked detailedly about the interference which generated by internal mesh transmission. From how to improve the life of bearing arms to the starting point, choosing and calculating the modulus of the gear reducer for designing the internal gear pair of a few-tooth difference and the final overall structure of the reducer.Key words:Small tooth number difference planet transmission; Planetary gear reducer; Annular gear目 录摘要 ................................................................................................................................. Ⅰ ABSTRACT . (Ⅱ)1 绪论 (1)1.1 概述 (1)1.2 少齿差行星减速器的结构型式 (2)1.2.1 N 型少齿差行星减速器 (2)1.2.2 NN 型少齿差行星减速器 (3)1.3 国内外研究状况 (5)1.4 发展趋势 (6)1.5 本课题的意义与设计任务 (7)1.5.1 本课题的设计意义 (7)1.5.2 设计任务 .................................................................................................... 7 2 减速器结构型式的确定 .. (8)2.1 减速器结构型式的确定 ......................................................................................... 8 3 减速器的内齿和外齿轮参数的确定 .. (10)3.1齿轮齿数确定 (10)3.2主要零件的材质和齿轮精度 (10)3.3 啮合角、变位系数确定 (10)3.3.1 确定啮合角和外齿轮变位系数c x 及内齿轮变位系数b x (10)3.3.2 计算四个导数 (11)3.3.3 计算(1)(1),c bx x 及相应的'α .......................................................................... 12 4 几何尺寸计算及主要限制条件检查 .. (14)4.1 切削内齿轮插齿刀的选用 (14)4.1.1 径向切齿干涉 (14)4.1.2 插齿啮合角'0b α .........................................................................................15 4.2 切削内齿轮的其他限制条件检查 (15)4.2.1 展成顶切干涉 (15)4.2.2 齿顶必须式渐开线 (15)4.3 切削外齿轮的限制条件检查 (16)4.4 内齿轮其他限制条件检查 (16)4.4.1 渐开线干涉 (16)4.4.2 外齿轮齿顶与内齿轮啮合线过渡曲线干涉 (16)4.4.3 内齿轮齿顶与外齿轮齿根过渡曲线干涉 (16)4.4.4 顶隙检查 (17)5 强度计算 (19)5.1 转臂轴承寿命计算 (19)5.2 销轴受力 (19)5.3 销轴的弯曲应力 (19)6 轴的设计 (20)6.1 轴的材料选择 (20)6.2 轴的机构设计 (21)6.2.1 输入偏心轴的结构设计 (21)6.2.2 输出轴的机构设计 (22)6.3 强度计算 (23)6.3.1 输入轴上受力分析 (23)6.3.2 输入轴支反力分析 (23)6.3.3 轴的强度校核 (24)7 浮动盘式输出机构设计及强度计算 (26)7.1 机构形式 (26)7.2几何尺寸的确定 (26)7.3 销轴与浮动盘平面的接触应力 (26)8 效率计算 (27)8.1 啮合效率 (27)8.1.1 一对内啮合齿轮的效率 (27)8.1.2 行星结构的啮合效率 (27)8.2 输出机构的效率 (27)8.2.1 用浮动盘输出机构 (27)8.2.2 行星机构 (28)8.3 转臂轴承效率 (28)8.4 总效率 (28)9 箱体与附件的设计 (29)9.1 减速器箱体的基本知识简介 (29)9.2 减速器箱体材料和尺寸的确定 (31)9.3 减速器附件的设计 (31)9.3.1 配重的设计 (31)9.3.2减速器附件设计 (32)10 工作条件 (34)总结 (35)参考文献 (36)致谢 (37)1 绪论1.1 概述随着现代工业的高速发展,机械化和自动化水平的不断提高,各工业部门需要大量的减速器,并要求减速器体积小,重量轻,传动比范围大,效率高,承载能力大,运转可靠以及寿命长等。
减速器原理图
减速器是一种用来减少机械设备运动速度并增加扭矩的装置。
它通常由齿轮传动系统组成,通过不同大小的齿轮组合来实现速度的减小和扭矩的增加。
下面我们将详细介绍减速器的原理图及其工作原理。
首先,我们来看一下减速器的结构。
减速器通常由输入轴、输出轴、齿轮组、外壳等部分组成。
输入轴连接到驱动装置,输出轴连接到被驱动装置,齿轮组则是实现速度减小和扭矩增加的关键部件。
外壳则起到保护和支撑齿轮组的作用。
接下来,我们来看一下减速器的工作原理。
当输入轴带动第一个齿轮转动时,它会通过啮合传动的方式带动第二个齿轮转动,第二个齿轮的大小通常比第一个齿轮大,因此它的转速会减小,但扭矩会增加。
同理,第二个齿轮再带动第三个齿轮转动,以此类推,最终输出轴的转速会比输入轴的转速小,但扭矩会比输入轴大。
减速器的原理图如下所示:
(在此插入减速器原理图)。
从原理图中可以看出,输入轴和输出轴之间通过齿轮组连接,而齿轮组的大小决定了最终的速度和扭矩。
减速器的工作原理就是通过这种齿轮传动的方式来实现速度和扭矩的转换。
除了常见的齿轮传动方式,减速器还可以采用带传动、链传动等方式来实现速度和扭矩的转换。
不同的传动方式在原理上略有差异,但都是通过改变传动比来实现速度和扭矩的转换。
总的来说,减速器是一种常见的机械传动装置,通过齿轮组等传动方式来实现速度和扭矩的转换。
它在各种机械设备中都有广泛的应用,如汽车、风力发电机、工业机械等领域。
希望通过本文的介绍,您对减速器的原理图和工作原理有了更深入的了解。
目录目录 (I)摘要 (I)Abstract (II)1绪论 (1)1.1电梯的发展状况 (1)1.2电梯的结构组成 (3)1.3电梯的驱动装置和制动系统 (3)1.3.1驱动装置 (3)1.3.2制动系统 (3)1.3.3少齿差齿轮传动的基本原理、特点和应用 (3)2电梯驱动系统的设计 (5)2.1电梯用电动机的选择设计 (5)2.1.1电梯常用电机类型 (5)2.1.2 电动机的选择计算 (5)2.2 制动器的设计 (6)2.2.1 制动器的工作原理和基本要求 (6)2.2.2 常见电磁制动器的类型: (7)2.2.3电磁制动器的尺寸设计 (7)3少齿差传动减速器的设计 (9)3.1 少齿差传动传动机构的结构分析 (9)3.2 少齿差传动的几何尺寸计算和运动参数设计 (9)3.2.1 类型选择及齿轮齿数确定 (9)3.2.2 基本参数的选择 (10)3.2.3 齿顶厚 (12)3.2.4 两个主要限制条件的验算 (15)3.2.5 渐开线少齿差行星传动的强度计算 (16)3.3 轴的设计计算 (21)3.3.1 输入轴 (21)3.3.2 输出轴 (27)3.4 轴承的选择设计 (29)3.4.1 轴承1、4的设计计算 (29)3.5 减速器的箱体设计 (34)结论 (36)参考文献 (37)致谢 (38)摘要电梯产品作为机电一体化的特种设备,是机械装置、电力驱动和计算机控制的集中体现。
节能技术、控制技术、安全技术以及新技术材料在电梯上的应用带动整个行业的技术进步。
少齿差行星齿轮传动是专指渐开线少齿差行星齿轮传动而言的。
渐开线少齿差行星齿轮传动以其适用于一切功率、速度范围和一切T 作条件,受到了世界各国的广泛关注。
成为世界各国在机械传动方面的重点研究方向之一。
关键词:少齿差;齿轮传动;AbstractElevator products as electromechanical integration of special equipment,is a mechanical device, electric drive and computer control of the concentrated.Energy saving technology, control technology, security technology and new materials technology application in elevators along the entire line.Planetary gear drive with small teeth difference is to point to the involute planetary gear drive with small teeth difference character.Involute planetary gear drive with small teeth difference with its applicable to all power, speed range and all T conditions, got the wide attention of the world. Become the world in the mechanical transmission is one of the key research direction.Key words: Elevator; few teeth difference; gear transmission;电梯少齿差传动减速器的设计1绪论1.1电梯的发展状况电梯的雏形是公元前1115年至1079年间我国劳动人民发明辘轳。
车用减速器的分类
车用减速器的分类主要依据其工作原理和用途。
以下是几种常见的车用减速器分类:
1. 蜗轮蜗杆减速器:这种减速器具有反向自锁功能,可以提供较大的减速比。
输入轴和输出轴不在同一轴线上,也不在同一平面上。
2. 行星减速器:这种减速器的结构比较紧凑,回程间隙小,精度较高,且使用寿命很长,额定输出扭矩可以做得很大。
3. 谐波减速器:利用柔性元件可控的弹性变形来传递运动和动力,体积不大且精度很高。
然而,它的缺点是柔轮寿命有限、不耐冲击,且刚性与金属件相比较差。
此外,根据减速器的用途,还可以分为用于驱动桥、转向系统和发动机冷却系统的减速器等。
以上信息仅供参考,如需了解更多信息,建议查阅专业汽车书籍或咨询专业人士。
少齿差⾏星齿轮减速器计算说明书⼀设计计算说明书在少齿差内啮合传动中,由于内齿轮和外齿轮的齿数差少,在切削和装配时会产⽣种种⼲涉,以致造成产品的报废。
因此,在设计减速器内齿轮副参数的时候,需要对⼀些参数进⾏合理的限制,以保证内啮合传动的强度和正确的啮合。
同时要对⼀些主要零件进⾏强度校核计算。
2.1 减速器结构型式的确定选⽤卧式电机直接驱动,因传动⽐53i,传动i=153.53>100时,少=153.总齿差⾏星齿轮减速器有两种设计⽅案可供选择。
第⼀种是采⽤⼆级或多级的N 型少齿差⾏星齿轮减速器;第⼆种是采⽤内齿轮输出的NN型少齿差⾏星齿轮减速器。
以下分别阐述其特点:图2-1图2-1为典型⼆级N型少齿差齿轮减速器的传动原理简图,传动原理如下:当电动机带动偏⼼轴H转动时,由于内齿轮K与机壳固定不动,迫使⾏星齿轮绕内齿轮做⾏星运动;⼜由于⾏星轮与内齿轮的齿数差很少,所以⾏星轮绕偏⼼轴的中⼼所做的运动为反向低速运动。
利⽤输出机构V将⾏星轮的⾃转运动传递给输出轴,达到减速⽬的。
减速后的动⼒通过输出轴传递给中⼼轮1,⽽⾏星轮2绕中⼼轮1和3做⾏星反向低速运动,从⽽达到第⼆次减速。
此类减速器的优点是:2K-H(负号机构)这种传动机构制造⽅便、轴向尺⼨⼩, K-H-V 型的机构效率较⾼,承载能⼒⼤,两者串联可实现⼤的传动⽐。
的结构简单,⽤齿轮传⼒,⽆需加⼯精度较⾼的传输机构;零件少,容易制造,成本低于上种型式;可实现很⼤或极⼤的传动⽐。
缺点是:传动⽐越⼤则效率也越低,为了减少振动需添加配重。
基于经济性⽅⾯因素考虑,采⽤第⼆种⽅案作为本次课题的设计⽅案。
2.2 确定齿数差和齿轮的齿数由《渐开线少齿差⾏星传动》表4-17可知,如齿数差增⼤,减速器的径向尺⼨虽增⼤⼀些,但转臂轴承上的载荷可降低很多;并且由于齿轮直径的增⼤,从⽽可使轴承的寿命得到显著提⾼;此外,对减速器的效率、散热条件等也有了⼀定的改善。
因减速器传递的功率不⼤,决定采⽤三齿差。
常用减速器的类型
1. 齿轮减速器:利用两个或多个啮合的齿轮来传递扭矩和减速的一种机械传动装置。
2. 行星减速器:由行星齿轮和太阳齿轮组成,可实现三级减速。
3. 摆线针轮减速器:有高传动效率和低噪音的特点,适用于高速、高扭矩传动。
4. 蜗杆减速机:用带斜齿的蜗杆和轮齿相啮合来实现减速,于大负荷下工作稳定。
5. 圆锥齿轮减速机:具有高精度、低噪音、大承载力、结构紧凑等优点。
6. 隔离式减速机:将电机与减速器隔离,并由联轴器连接,减少振动和噪音。
7. 变速器:通过变换齿轮的数目和孔径大小来实现不同的速度和扭矩输出,适用于需要频繁调节转速的场合。
减速器的基本构造减速器主要由传动零件(齿轮或蜗杆)、轴、轴承、箱体及其附件所组成。
下图为单级圆柱齿轮减速器的结构图,其基本结构有三大部分:1)齿轮、轴及轴承组合;2)箱体;3)减速器附件。
减速器的基本结构1-箱座2-箱盖3-上下箱联接螺栓4-通气器5-检查孔盖板6-吊环螺钉7-定位销8-油标尺9-放油螺塞10-平键11-油封12-齿轮轴13-挡油盘14-轴承15-轴承端盖16-轴17-齿轮18-轴套齿轮、轴及轴承组合小齿轮与轴制成一体,称齿轮轴,这种结构用于齿轮直径与轴的直径相关不大的情况下,如果轴的直径为d,齿轮齿根圆的直径为d f,则当d f-d≤6~7m n时,应采用这种结构。
而当d f-d>6~7m n时,采用齿轮与轴分开为两个零件的结构,如低速轴与大齿轮。
此时齿轮与轴的周向固定平键联接,轴上零件利用轴肩、轴套和轴承盖作轴向固定。
两轴均采用了深沟球轴承。
这种组合,用于承受径向载荷和不大的轴向载荷的情况。
当轴向载荷较大时,应采用角接触球轴承、圆锥滚子轴承或深沟球轴承与推力轴承的组合结构。
图中,轴承是利用齿轮旋转时溅起的稀油,进行润滑。
箱座中油池的润滑油,被旋转的齿轮溅起飞溅到箱盖的内壁上,沿内壁流到分箱面坡口后,通过导油槽流入轴承。
当浸油齿轮圆周速度υ≤2m/s时,应采用润滑脂润滑轴承,为避免可能溅起的稀油冲掉润滑脂,可采用挡油环将其分开。
为防止润滑油流失和外界灰尘进入箱内,在轴承端盖和外伸轴之间装有密封元件。
箱体箱体是减速器的重要组成部件。
它是传动零件的基座,应具有足够的强度和刚度。
箱体通常用灰铸铁制造,对于重载或有冲击载荷的减速器也可以采用铸钢箱体。
单体生产的减速器,为了简化工艺、降低成本,可采用钢板焊接的箱体。
上图中的箱体是由灰铸铁制造的。
灰铸铁具有很好的铸造性能和减振性能。
为了便于轴系部件的安装和拆卸,箱体制成沿轴心线水平剖分式。
上箱盖和下箱体用螺栓联接成一体。
轴承座的联接螺栓应尽量靠近轴承座孔,而轴承座旁的凸台,应具有足够的承托面,以便放置联接螺栓,并保证旋紧螺栓时需要的扳手空间。
少齿差行星齿轮传动原理1.1 少齿差行星齿轮传动原理少齿差行星齿轮传动是行星齿轮传动中的一种。
由一个外齿轮与一个内齿轮组成一对内啮合齿轮副(它采用的是渐开线齿形,内外齿轮的齿数相差很小,简称为少齿差传动。
一般所讲的少齿差行星齿轮传动是专指渐开线少齿差行星齿轮传动而言的。
渐开线少齿差行星齿轮传动以其适用于一切功率、速度范围和一切T 作条件,受到了世界各国的广泛关注(成为世界各国在机械传动方面的重点研究方向之一。
1.1 2少齿差传动1.2 行星齿轮传动是动轴齿轮传动的一种主要方式,其最基本的形式是2K—H 型(即两个中心轮 a,b和个转臂 H),如图 l所示,传动比为 iaH=1+Zh/Zn.它演变出两种典型的少齿差行星齿轮传动形式 (如图 2所示:K—H—V行星齿轮传动如图2(a)所示 (基本构件为中心轮 b、转臂H和构件V,当中心轮 b固定,转臂H主动,构件V从动时,传动比为iHg= - Zg/(Zb-Zg).。
把构件V 固定(转臂H主动,中心轮 b输出(如图2(b)所示,其传动比iHb=Zb/(Zb-Zg)。
为少齿差行星齿轮传动机构实质是一个由平面四连杆机构和内啮合齿轮副组成的齿轮连杆机构。
通过对不同构件作不同限制,可以设计出多种少齿差行星齿轮传动结构形式。
1.1.3 少齿差行星齿轮传动的特点少齿差行星齿轮传动具有以下优点:(I)加工方便、制造成本较低渐开线少齿差传动的特点是用普通的渐开线齿轮刀具和齿轮机床就可以加工齿轮,不需要特殊的刀具与专用设备,材料也可采用普通齿轮材料料。
(2)传动比范围大,单级传动比为 10,1000以上。
(3)结构形式多样,应用范围广,由于其输入轴与输出轴可在同一轴线上,也可以不在同一轴线上,所以能适应各种机械的需要。
(4) 结构紧凑、体积小、重量轻,由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少1/3,2,3。
减速器工作原理及各部分结构减速器是工业中常用的一种传动机构,它可以将高速旋转的输入轴转速减小,并通过输出轴输出。
减速器主要由输入轴、输出轴、齿轮传动系统、壳体和润滑系统等部分组成。
减速器的工作原理是通过齿轮的传动来实现转速的减小。
输入轴通过齿轮传动系统输入动力,齿轮传动系统由一组齿轮组成,其中有驱动齿轮和被动齿轮。
输入轴上的驱动齿轮通过齿轮传动带动被动齿轮。
由于驱动齿轮的齿数较多,被动齿轮的齿数较少,所以被动齿轮转动的速度较慢,从而实现了输入轴转速的减小。
输出轴与被动齿轮相连接,通过输出轴输出。
减速器的各部分结构主要包括输入轴、输出轴、齿轮传动系统、壳体和润滑系统等。
输入轴是减速器的动力输入端,它通过连接外部动力源来提供动力。
输入轴需要具有足够的强度和刚性来承受输入动力的载荷,并且要保证与齿轮传动系统的连接可靠。
输出轴是减速器的动力输出端,它通过连接外部工作机来实现输出功效。
输出轴需要具有足够的强度和刚性来承受输出动力的载荷,并且要保证与齿轮传动系统的连接可靠。
齿轮传动系统是减速器的核心部分,它由一组齿轮组成。
齿轮分为驱动齿轮和被动齿轮,驱动齿轮通过齿轮传动带动被动齿轮,从而实现输入轴转速的减小。
齿轮的齿数、齿轮轴的布局和齿轮的材料等都会影响减速器的传动比和传动效率。
壳体是减速器的外壳,用于固定各部分结构,并起到保护和支撑的作用。
壳体需要具有足够的刚性和密封性,以保证减速器的正常工作。
润滑系统是用于保证减速器各齿轮和轴承的润滑和冷却的系统。
润滑系统通常由油泵、油箱、滤清器和冷却装置等组成。
润滑油需要具有良好的抗磨性和抗氧化性,以延长减速器的使用寿命。
总之,减速器通过齿轮传动来实现输入轴转速的减小,主要由输入轴、输出轴、齿轮传动系统、壳体和润滑系统等部分组成。
其中齿轮传动系统是减速器的核心部分,通过驱动齿轮和被动齿轮的配合来实现输入轴转速的减小。
壳体用于保护和支撑各部分结构,润滑系统用于保证减速器的正常工作。
基于AutoCAD的CHC型少齿差减速器参数化CAD系统陈满意;黄忠敏;石永科
【期刊名称】《机械传动》
【年(卷),期】2012(36)7
【摘要】以Visual Basic 6.0为开发工具,对AutoCAD进行二次开发,研制CHC 型少齿差减速器CAD系统。
该系统主要包括两大功能模块:设计计算子系统和参数化绘图系统,两者之间通过产品数据库实现有效连接。
参数化绘图系统采用ActiveX技术从外部操作AutoCAD的对象,利用开发的底层函数读取零件库中的零件参数,实行零件图的绘制。
结合ObjectDBX技术和对象的扩展词典技术实现装配图的绘制,最终实现设计计算和参数化绘图一体化。
【总页数】5页(P47-51)
【关键词】AutoCAD;CHC型少齿差传动;参数化设计;CAD
【作者】陈满意;黄忠敏;石永科
【作者单位】武汉理工大学机电工程学院
【正文语种】中文
【中图分类】TH132.46
【相关文献】
1.涡轮钻具用渐开线少齿差行星齿轮减速器的CAD [J], 许彦玲;姜义忠
2.少齿差环式行星减速器CAD/CAE系统 [J], 谢丽娟;岐世峰;王勋卿
3.基于UG偏曲轴少齿差行星减速器内齿轮副参数化建模的研究 [J], 李东辉;徐强;
陈超超
4.用AutoCAD参数化绘制渐开线少齿差内齿轮副轮齿啮合图 [J], 李爱军;沈慧芬
5.渐开线少齿差行星减速器的改进—X—Y型减速器 [J], 王瑞
因版权原因,仅展示原文概要,查看原文内容请购买。
产品名称:CHC系列齿轮连环少齿差减速器
产品类别:减速机系列
产品性质:推荐
点击次数:1265
产品单价:---元
资料下载:点击下载
产品详细介绍
减速机系列
CHC型齿轮连环少齿差减速器是我公司自主设计开发的新一代减速传动装置,该产品已获两项国家专利,专利号为:ZL 95 2 01831.4、ZL 200720084515.X 减速器由两部分组成:渐开线圆柱齿轮传动的高速轻载部分和连环少齿差传动低速重载部分,动力从高速轻载渐开线圆柱齿轮传动系统输入,通过中间过渡齿轮分流减速到连环少齿差传动系统中的两偏心支撑轴,两偏心支撑轴同时输入相同相位的动力,带动连环内齿板作往复平面运动。
与连环内齿板內齿圈相啮合的是多齿同时进入啮合区的少齿差低速输出外齿轮,通过少齿差传动原理,又将动力汇集合流至输出外齿轮,从而实现高速轻载到低速重载的目的。
在少齿差内啮合齿轮传动中存在多齿同时啮合现象,使齿轮总载荷有各齿对同时分担,轮齿所承受的实际载荷会有大幅度降低。
齿轮齿数越多,载荷集度越大,则同时进入啮合的齿数就越多。
该传动装置与传统的减速器相比,其显著特点在于输出齿轮副的多齿。