反比例函数面积不变性与模型
- 格式:doc
- 大小:225.50 KB
- 文档页数:4
反比例函数实际应用的六种题型题型一:在面积中的应用 一:面积不变性(k 的几何意义)如图,设点P (a ,b )是反比例函数y=xk上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO和三角形PBO 的面积都是k 21;面积是正数,所以k 要加绝对值) S 矩形PBOA =k ; S 三角形PAO =S 三角形PBO =k 21注意: (1)面积与P 的位置无关,即(0)ky k x=≠的面积不变性(2)当k 符号不确定的情况下须分类讨论S △ABC =︱K ︱; S ABCD =2︱K ︱二、曲直结合(一次函数与反比例函数)典型例题例1 如图,点P 是反比例函数xy 2=图象上的一点,PD ⊥x 轴于D.则△POD 的面积为 .例2 如图,已知,A,B 是双曲线)0(>=k xk y 上的两点,(1)若A(2,3),求K 的值;(2)在(1)的条件下,若点B 的横坐标为3,连接OA,OB,AB ,求△OAB 的面积。
(3)若A,B 两点的横坐标分别为a,2a ,线段AB 的延长线交X 轴于点C ,若6=∆AOC S ,求K 的值变式1 在双曲线)0(>=x xk y 上任一点分别作x 轴、y 轴的垂线段,与x 轴y 轴围成矩形面积为12,求函数解析式__________。
变式2 如图,在反比例函数2y x=(0x >)的图象上,有点1P ,2P ,3P ,4P 它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,求123S S S ++.S 3S 2S 11 2 3 4y=2xP 4P 3P 2xyO P 1变式3 如图,点P,Q是反比例函数y= 图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1________S2.(填“>”或“<”或“=”)变式4 已知A B C D E,,,,是反比例函数16yx=()0x>图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形,则这五个橄榄形的面积总和是__________(用含π的代数式表示)变式5 如图正方形OABC的面积为4,点O为坐标原点,点B在函数kyx=(0,0)k x<<的图象上,点P(m,n)是函数kyx=(0,0)k x<<的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为S l,判断S l与点P的位置是否有关(不必说理由).(2)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2,写出S2与m的函数关系,并标明m的取值范围.(8分)总结:一个性质:反比例函数的面积不变性AB COyxy=16xEDCBAyx O两种思想:分类讨论和数形结合题型二:在工程与速度中的应用一、工程问题工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
解法探究2023年9月下半月㊀㊀㊀巧用反比例函数k 的几何意义模型解题◉重庆市九龙坡区杨家坪中学㊀郑天顺㊀㊀在数学解题教学中,教师既要讲解解题思路,更要培养学生的数学思想㊁模型意识㊁几何直观理念,让学生学会利用数学模型解决数学问题.本文中将对反比例函数k 的几何意义模型解题进行简要分析.1利用反比例函数面积不变性模型解题反比例函数面积不变性指的是过反比例函数图象上的任意一点分别作x 轴与y 轴的垂线,它们与坐标轴形成的矩形面积为定值|k |(如图1所示),即S 矩形A B E O =S 矩形D O F C =|k |.图1㊀㊀㊀图2如图2,过双曲线上任意一点分别作x 轴与y 轴的垂线,则连接该点㊁垂足与坐标原点所构成的三角形面积始终为|k |2,即S әA B O =S әC O D =k2.2利用反比例函数面积公式模型解题反比例函数面积公式模型指的是过反比例函数图象上的任意两点与坐标原点相连形成的三角形与过这两点分别作x 轴的垂线所形成的梯形面积相等.简单来说,即A ,B 是反比例函数y =kx图象上的任意两点,则S ΔA B O =S 梯形A MN B(如图3所示).图3㊀㊀图4例1㊀如图4,在平面直角坐标系x O y 中,点A ,B ,C 为反比例函数y =kx(k >0)上不同的三点,连接O A ,O B ,O C ,过点A 作A D 垂直y 轴于点D ,过点B ,C 分别作B E ,C F 垂直x 轴于点E ,F ,O C 与B E 相交于点M ,记әA O D ㊁әB O M ㊁四边形C M E F 的面积分别为S 1,S 2,S 3,则(㊀㊀).A.S 1=S 2+S 3㊀㊀㊀㊀㊀B .S 2=S 3C .S 1<S 2<S 3D.S 1S 2<S 23分析:由模型1和模型2的结论,可知S 1=12k =S әB O E =S әC O F .由S әB O E -S әO M E =S әC O F -S әO M E ,得S 2=S 3.所以S 2=S 3<S 1.故选答案:B .3利用反比例函数平行性质模型解题反比例函数平行性质模型指的是过反比例函数图象上的任意两点分别作x 轴与y 轴的垂线,如图5,则A B 与MN 一直保持平行关系,即A B //MN .反比例函数平行性质模型可有效解决位置㊁面积等方面的问题.图5㊀㊀图6例2㊀如图6,直线y =k x +b 分别与x 轴㊁y 轴相交于点C ,D ,与反比例函数y =2x(x >0)的图象相交于点A (1,3)与点B (32,2),过点A 作A M 垂直y 轴于点M ,过点B 作B N 垂直x 轴于点N ,连接MN ,O A 与O B .以下结论:①әA D M ɸәC B N ;②MN //A B ;③S әA O D =S әB O C ;④四边形D MN B 与四边形MN C A 的周长相等.其中正确的结论个数为(㊀㊀).A.1㊀㊀㊀B .2㊀㊀㊀C .3㊀㊀㊀D.4分析:结论①,从反比例函数的平行性质模型来看,四边形DMN B 与四边形AMN C 均为平行四边形,所以B D =NM =A C ,AM =C N ,所以A D =B C .又øAMD =øB N C =90ʎ,所以ΔAMD ɸәC N B ,故①正确.结论②,从平行性质模型来看显然正确.结论③,过点O 作C D 的垂线,әA O D 与әB O C 等底同高,面积相同.结论④,四边形DMN B 与四边形MN C A 只能确定一组对边相等,故周长并不一定相等.故选答案:C .28Copyright ©博看网. All Rights Reserved.2023年9月下半月㊀解法探究㊀㊀㊀㊀4利用反比例函数等线段性质模型解题反比例函数等线段性质模型指的是过反比例函数图象上的任意两点作直线,并使这条直线与坐标轴相交,若设相交点分别为M ,N ,则AM =B N (如图7与图8).图7㊀㊀图8图9例3㊀如图9所示,P 是反比例函数y =2x(x >0)图象上的某一点,过点P 分别作x 轴与y 轴的平行线,与y 轴㊁x 轴交于点D ,E ,且这两条平行线与经过点(2,5)的双曲线y =kx(x >0,k ʂ0)交于点A 和点B ,连接A B .(1)求k 的值;(2)连接O A 与O B ,若点P 的横坐标是2,求әA O B 的实际面积;(3)若直线A B 与x 轴交于点M ,与y 轴交于点N ,试证明AM =B N .分析:(1)显然k =10.(2)过点A 作x 轴的垂线,垂足为F .过点B 作y 轴的垂线,垂足为G .点P 的坐标为(2,1).由反比例函数面积不变性模型知,S әA O F 与S әB O E 的面积都是5.从反比例函数的面积公式来看,S әA O B 与S 梯形B E F A 的面积是相等的,且面积为12(1+5)(10-2)=24.(3)过点B 作y 轴的垂线,垂足为G ,设点P (m ,2m )(m >0),则点A (5m ,2m ),点B (m ,10m).易得直线A B 的表达式为y =-2m2x +12m ,可得M (6m ,0),N (0,12m ).因此,O M =6m ,O N =12m.所以N G =2m ,F M =m ,N G =A F =2m,G B =F M =m ,又øN G B =øA F M =90ʎ,则әN G B ɸәA F M ,所以AM =B N .本题第(3)问还可以先求证S әN O B =S әA O M ,再利用等高证明AM =B N ,或在R t әN G B 与R t әA F M 中利用勾股定理进行求解,从而论证AM =B N .5利用反比例函数之同侧双曲模型解题在反比例函数同侧双曲模型当中,如图10和图11,反比例函数y =k 1x(x >0)图象上有一点A ,且反比例函数y =k 2x(x >0)(k 1,k 2>0)图象上有一点B .(1)若直线A B 与x 轴或y 轴平行,则S 矩形A B N P =|k 1-k 2|.图10㊀㊀图11(2)若直线A B 与x 轴或y 轴平行,如图12和图13,则S әA B O =S әA B P =|k 1-k 2|2.图12㊀㊀图136利用反比例函数之异侧双曲模型解题在反比例函数之异侧双曲模型中,若反比例函数y =k 1x (x >0,k 1>0)图象上有一点A ,且反比例函数图象y =k 2x (x <0,k 2<0)图象上有一点B .(1)若A B 与x 轴或y 轴平行(如图15),则S ΔA B O =S әA B P =|k 1|+|k 2|2.图15㊀图16(2)若线段A B 的中点M 在y 轴上,如图16,则S әA B O =|k 1|+|k 2|2.在数学教学过程中,需注重学生解题思维㊁创新意识的培养,提高学生应用数学模型的能力.反比例函数k 的几何意义模型有很多,如面积不变性模型㊁面积公式模型㊁平行性质模型等,在解决数学问题的过程中,让学生了解各种模型的应用方法,从而提高解决问题的能力.Z38Copyright ©博看网. All Rights Reserved.。
数学篇数苑纵横例析反比例函数的三个重要特性湖北应城陈琳琳反比例函数是一种重要的函数模型.它的定义、图象、性质以及关系式是中考命题的热点内容.要学好反比例函数的有关知识,就要掌握它的三个重要特性:(1)函数的增减性;(2)图象的对称性;(3)面积的不变性.以下举例分析反比例函数的三个特性在解题中的应用.一、反比例函数的增减性反比例函数y =kx具有如下性质:(1)当k >0时,双曲线的两个分支位于第一、三象限,在每个象限内,y 随x 的增大而减小;(2)当k <0时,双曲线的两个分支位于第二、四象限,在每个象限内,y 随x 的增大而增大.同学们在应用这些性质时,要注意的是“在每个象限内”y 随x 的变化而变化.例1如果点A (-2,y 1),B (-1,y 2),C (3,y 3)都在反比例函数y =k x(k <0)的图象上,那么y 1、y 2与y 3的大小关系是()A.y 1<y 2<y 3B.y 3<y 1<y 2C.y 2<y 1<y 3或y 3<y 1<y 2D.y 1=y 2=y 3分析:先根据反比例函数中k <0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解:∵反比例函数y =kx(k <0)中k <0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y 随x 的增大而增大,∵-2<0,-1<0,∴点(-2,y 1),(-1,y 2)位于第二象限,∴y 1>0,y 2>0,∵-2<-1<0,∴0<y 1<y 2.∵3>0,∴点(3,y 3)位于第四象限,点评:在反比例函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按函数的增减性来比较,不在同一象限内,按坐标系内点的特点来比较.二、反比例函数图象的对称性反比例函数的图象是双曲线,它既是轴对称图形,也是中心对称图形.对称轴是直线y =±x ,关于直线对称的两点坐标值可互换.即点A (a ,b )关于y =x 对称的点为A ′(b ,a ).而关于中心对称的两点,坐标值的符号会发生互换,即互为相反数.因此对于反比例函数上的对称点,可直接根据该对称特性求出.这是反比例函数的一个重要性质.例2如图1所示,点P (4a ,a )是反比例函数图象y =kx(k >0)与⊙O 的一个交点,图中阴影部分的面积为17π,则k 的值为().A.4B.16C.27215D.2725分析:根据反比例函数图象的对称性得到圆的面积=4×17π=68π,再计算出圆的半径=217,然后利用两点间的距离公式得到16a 2+a 2=(217)2,解得a =2或-2(舍去),则P 点坐标为(8,2),然后根据反比例函数图象上点的坐标特征求k .解:∵图中阴影部分的面积为17π,∴圆的面积为4×17π,∴圆的半径为217,∵P (4a ,a )在圆上,∴16a 2+a 2=(217)2,图1数学篇数苑纵横把P (8,2)代入y =k x得k =8×1=16.故选B 项.点评:本题考查了反比例函数图象的对称性:反比例函数的图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y =-x ;②一、三象限的角平分线y =x ;对称中心是:坐标原点.三、反比例函数的面积不变性反比例函数的“面积不变性”实际上就是指y =kx的变式xy =k ,即如果已经给定反比例函数的关系式,那么它图象上所有点的横、纵坐标的积为同一常数.由此不难得到反比例函数的一个重要性质:过图象上任意一点作x 轴和y 轴的垂线,与坐标轴所围矩形的面积为||k .由此,过图象上任意一点作某一坐标轴的垂线,则垂足、已知点及原点三点所组成的三角形的面积为12||k ,这是比例系数k的几何意义.例3如图2,矩形OABC 的两边OA ,OC 在坐标轴上,且OC =2OA ,M ,N 分别为OA ,OC 的中点,BM 与AN 交于点E ,且四边形EMON 的面积为2,(1)△ABE 的面积是.(2)经过点B 的双曲线的解析式为.图2分析:(1)设A (0,2t ),则C (-4t ,0),B (-4t ,2t ),N (-2t ,0),M (0,t ),根据三角形面积公式得S △ABM =S △ANO =2t 2,所以S △ABE =S 四边形EMON =2;(2)利用待定系数法求出直线BM 的解析式为y =-14x +t ,同理可得直线AN 的解析式为y =x +2t ,通过解方程组ìíîïïy =-14x +t ,y =x +2t ,得E (-45t ,65t ),利用三角形面积公式得到12⋅4t ⋅(2t -65t )=2,解得t=或t =,所以B (-25,5),然后利用待定系数法求经过点B 的双曲线的解析式.解:(1)设A (0,2t ),则C (-4t ,0),B (-4t ,2t ),∵M ,N 分别为OA ,OC 的中点,∴N (-2t ,0),M (0,t ),∵S △ABM =12⋅t ⋅4t =2t 2,S △ANO =12⋅2t ⋅2t =2t 2,∴S △ABE =S 四边形EMON =2;(2)设直线BM 的解析式为y =kx +b ,把M (0,t )、B (-4t ,2t )代入得ìíîb =t ,-4t ⋅k +b =2t ,解得ìíîïïk =-14,b =t ,∴直线BM 的解析式为y =-14x +t ,同理可得直线AN 的解析式为y =x +2t ,解方程组ìíîïïy =-14x +t ,y =x +2t ,得ìíîïïx =-45t ,y =65t ,∴E (-45t ,65t ),∴12t -65t )=2,解得t =2或t =舍去),∴B (-25,5),设经过点B 的双曲线的解析式为y =k x,∴k =-25×5=-10,∴经过点B 的双曲线的解析式为y =-10x.故答案为2,y =-10x.点评:反比例函数的面积不变性,就是反比例函数图象的几何意义,也是一种数形结合思想的体现.通常情况下,若点在反比例函数图象上,求有关几何图形的面积和k 值的问题,可以考虑利用反比例函数的面积不变性求解.22。
【初中数学】反比例函数策略三——面积问题与面积法反比例函数策略(三)——面积问题与面积法王桥这一篇文章早都该写了。
因忙于修订《春季攻势》,今天略得小闲,续写《反比例函数策略(三)——面积问题与面积法。
在《沙场秋点兵》曾经有专门一讲,是讲述“反比例函数中的面积问题”的。
而对于“面积法”,更绝非一篇文章能够阐述得了的,只能是“后悔”“有期”了。
今天只谈与反比例函数“自带”的“面积模型”和与反比例函数相关的“面积法”。
一、反比例函数中的“面积模型”反比例函数是“自带”“面积模型”的!常言:“龙生龙,凤生凤”,发比例函数一旦诞生,就“自带”贵族气质——“自带”“面积模型”。
反比例函数就是这么“任性”!(一)反比例函数图像上的坐标矩形与坐标三角形的面积(以下部分内容选自《沙场秋点兵》)1、如图1,若反比例函数解析式为y=x/k,则;S矩形OBAC=|k|;2、如图2,若反比例函数解析式为y=x/k,则;S△OAB=1/2·|k|。
关于这两个结论的证明,自然不用赘述,关于这两个结论的灵活应用,则更是仪态万千,手头有《沙场秋点兵》的话,上面有许多练习,自己练练。
也可从本公众号找到去年推送的文章——反比例函数中的面积问题》自己打印练习......(二)反比例函数中的三角形与等积梯形1、如图3,若反比例函数解析式为y=k/x,则;S△OAB=S梯形BCDA;2、如图4,若反比例函数解析式为y=k/x,则(1)S△OAB=S梯形CDEA;(2)CD2=EB·EA;这两个结论,其实是前面结论的更进一步,但是,已经有些同学不太好理解了。
其证明如下:1、如图3,易知S△BOC=S△AOD=1/2·|k|,∴S△AOM=S梯形ADCM,∴S△BOM+S△ABM=S梯形ADCM+S△ABM,即S△AOB=S梯形BCDA;2、如图4,易知S△COD=S△BOE=1/2·|k|,∴S△COM=S梯形BEDM,则(1)S△COM+S△梯形ABMC=S梯形BEDM+S梯形ABMC,即S△AOB=S梯形BEDM;(2)易知CD·OD=BE·OE,∴BE:CD=OD:OE=CD:AE,即CD2=EB·EA。
反比例函数中与面积有关的问题知识点回忆由于反比例函数解析式及图象的特殊性,很多中考试题都将反比例函数与面积结合起来进展考察。
这种考察方式既能考察函数、反比例函数本身的根底知识内容,又能充分表达数形结合的思想方法,考察的题型广泛,考察方法灵活,可以较好地将知识与能力融合在一起。
下面就反比例函数中与面积有关的问题的几种类型归纳如下:利用反比例函数中|k|的几何意义求解与面积有关的问题设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,那么两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|∴xy=k故S=|k|从而得结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k| 对于以下三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:结论2:在直角三角形ABO中,面积S=结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB中,面积为S=|k|类型之一k与三角形的面积k〔k>0〕经过直角三角形OAB斜边OB的中点D,与直※1、如图,双曲线y=x角边AB相交于点C.假设△OBC的面积为6,那么k=______.最正确答案过D点作DE⊥x轴,垂足为E,1k,由双曲线上点的性质,得S△AOC=S△DOE=2∵DE⊥x轴,AB⊥x轴,∴DE∥AB,∴△OAB∽△OED,又∵OB=2OD,∴S△OAB=4S△DOE=2k,由S△OAB-S△OAC=S△OBC,得2k-21k=6,解得:k=4.故答案为:4.2、如图1-ZT-1,分别过反比例函数y=x2018(x>0)的图象上任意两点A、B作x 轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S 1、S2,,比拟它们的大小,可得A.S1>S2B.S1=S2C.S1<S2D.S1、S2大小不确定。
模型介绍考点1一点一垂线模型【模型讲解】反比例函数图象上一点关于坐标轴的垂线、另一坐标轴上一点(含原点)围成的三角形面积等于12|k|.【示例】拓展:【例1】.如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数y=(x >0)图象上,PA⊥x轴,△PAB是以PA为底边的等腰三角形.当点A的横坐标逐渐增大时,△PAB的面积将会()A.越来越小B.越来越大C.不变D.先变大后变小解:如图,过点B作BC⊥PA于点C,则BC=OA,设点P(x,),=PA•BC=••x=3,则S△P AB当点A的横坐标逐渐增大时,△PAB的面积将会不变,始终等于3,故选:C.变式训练【变1-1】.如图,点A、B在反比例函数的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是4,则k的值为﹣.解:设OM=a,则OM=MN=NC=a,∵点A、B在反比例函数y=的图象上,AM⊥OC、BN⊥OC,∴AM=,BN=,=S△AOM+S四边形AMNB+S△BNC,∵S△AOC∴﹣×3a×=﹣k+4﹣×a×,解得k=﹣,故答案为:﹣.【变1-2】.如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为()A.B.C.2D.解:把P(2,3),M(a,2)代入y=得k=2×3=2a,解得k=6,a=3,设直线OM的解析式为y=mx,把M(3,2)代入得3m=2,解得m=,所以直线OM的解析式为y=x,当x=2时,y=×2=,所以C点坐标为(2,),所以△OAC的面积=×2×=.故选:B.考点2一点两垂线模型【模型讲解】反比例函数图象上一点与坐标轴的两条垂线所围成的矩形面积等于|k |.【示例】ABCD S k【例2】.双曲线与在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为()A .1B .2C .3D .4解:设直线AB 与x 轴交于点C .∵AB ∥y 轴,∴AC ⊥x 轴,BC ⊥x 轴.∵点A 在双曲线y =的图象上,∴△AOC 的面积=×10=5.∵点B 在双曲线y =的图象上,∴△COB的面积=×6=3.∴△AOB的面积=△AOC的面积﹣△COB的面积=5﹣3=2.故选:B.变式训练【变2-1】.如图,函数y=(x>0)和(x>0)的图象分别是l1和l2.设点P在l2上,PA∥y轴交l1于点A,PB∥x轴交l1于点B,△PAB的面积为.解:设点P(x,),则点B(,),A(x,),∴BP=x﹣=,AP=﹣=,==,∴S△ABP故答案为:.【变2-2】.如图,直线AB∥x轴,分别交反比例函数y=图象于A、B两点,若S△AOB=2,则k2﹣k1的值为4.解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,=2,∵S△AOB∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.【变2-3】.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线l∥x轴,l分别与反比例函数y=和y=的图象交于A、B两点,若S△AOB=3,则k的值为﹣2.解:∵直线l∥x轴,∴AM⊥y轴,BM⊥y轴,=|k|,S△BOM=×4=2,∴S△AOM=3,∵S△AOB=1,∴S△AOM∴|k|=2,∵k<0,∴k=﹣2,故答案为:﹣2.考点3两曲一平行模型【模型讲解】两条双曲线上的两点的连线与一条(或两条)坐标轴平行,求这两点与原点或坐标轴上的点围成的图形面积,过这两点作坐标轴的垂线,结合k的几何意义求解.类型1两条双曲线的k值符号相同【示例】【例3】.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为()A.﹣8B.﹣12C.﹣24D.﹣36解:设A(x,0).∵正方形ADEF的面积为16,∴ADEF的边长为4,∴E(x﹣4,4),∵BF=2AF,∴BF=2×4=8,∴B(x,12).∵点B、E在反比例函数y=(k为常数,k≠0)的图象上,∴4(x﹣4)=12x,解得x=﹣2,∴B(﹣2,12),∴k=﹣2×12=﹣24,故选:C.变式训练【变3-1】.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为1;点E的坐标为(+,﹣).解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:(+,﹣).【变3-2】.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S=1.7,则S1+S2等于 4.6.阴影解:如图,∵A、B两点在双曲线y=上,=4,S四边形BDOC=4,∴S四边形AEOF∴S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,∴S1+S2=8﹣3.4=4.6故答案为:4.6.【变3-3】.如图,在反比例函数(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为1,2,3,4,….分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…,则S1+S2+S3+…+S n=.(用n的代数式表示,n为正整数)解:当x=1时,P1的纵坐标为2,当x=2时,P2的纵坐标1,当x=3时,P3的纵坐标,当x=4时,P4的纵坐标,当x=5时,P5的纵坐标,…则S1=1×(2﹣1)=2﹣1;S2=1×(1﹣)=1﹣;S3=1×(﹣)=﹣;S4=1×(﹣)=﹣;…S n=﹣;S1+S2+S3+…+S n=2﹣1+1﹣+﹣+﹣+…+﹣=2﹣=.故答案为:.考点4两点一垂线模型【模型讲解】反比例函数与正比例函数图象的交点及由交点向坐标轴所作垂线围成的三角形面积等于|k|,反比例函数与一次函数图象的交点及坐标轴上任一点构成三角形的面积,等于坐标轴所分的两个三角形面积之和.【示例】【例4】.如图,正比例函数y=kx与反比例函数y=﹣相交于A,C两点,点A的横坐标为﹣4,过点A作x轴的垂线交x轴于B点,连接BC,下列结论:①k=﹣;②不等式kx<﹣的解集为﹣4<x<0或x>4;③△ABC的面积等于16.其中正确的结论个数为()A.0B.1C.2D.3解:将x=﹣4代入y=﹣得y=﹣=2,∴点A坐标为(﹣4,2),将(﹣4,2)代入y=kx得2=﹣4k,解得k=﹣,∴①正确.由反比例函数及正比例函数的对称性可得点C坐标为(4,﹣2),∴当﹣4<x<0或x>4时,kx<﹣,∴②正确.=S△AOB+S△BOC=OB•y A+OB•(﹣y C)=BO(y A﹣y C)=×(2+2)∵S△AOC=8,∴③错误.故选:C.变式训练【变4-1】.如图所示,一次函数y=kx(k<0)的图象与反比例函数y=﹣的图象交于A,B两点,过点B作BC⊥y轴于点C,连接AC,则△ABC的面积为4.解:∵BC⊥y轴于点C,=|﹣4|=2,∴S△COB∵正比例函数y=kx(k>0)与反比例函数y=﹣的图象均关于原点对称,∴OA=OB,=S△COB=2,∴S△AOC=S△AOB+S△BOC=2+2=4,∴S△ABC故答案为:4.【变4-2】.如图,过点O的直线与反比例函数y=的图象交于A、B两点,过点A作AC⊥x轴于点C,连接BC,则△ABC的面积为.解:∵点A反比例函数y=的图象上,过点A作AC⊥x轴于点C,=|k|=,∴S△AOC∵过点O的直线与反比例函数y=的图象交于A、B两点,∴OA=OB,=S△AOC=∴S△BOC=2S△ACO=,∴S△ABC故答案为:.【变4-3】.如图,函数y=x与y=的图象交于A、B两点,过点A作AC垂直于y轴,垂=3,则k=3.足为C,连接BC,若S△ABC解:设A(a,a)(a>0),∵函数y=x与y=的图象的中心对称性,∴B(﹣a,﹣a),=•a•2a=a2=3,∴S△ABC∴a=,∴A(,),把A(,)代入y=得k==3.故答案为:3.考点5两点两垂线模型【模型讲解】反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂线围成的图形面积等于2|k|.【示例】【例5】.如图,正比例函数y=kx与反比例函数y=﹣的图象交于A,C两点,过点A作AB⊥x轴于点B,过点C作CD⊥x轴于点D,则△ABD的面积为4.解:∵点A在反比例函数y=﹣上,且AB⊥x轴,∴=2,∵A,C是反比例函数与正比例函数的交点,且CD⊥x轴,∴O是BD的中点,=2S△ABO=4.∴S△ABD故答案为:4.变式训练【变5-1】.如图,一次函数y=kx与反比例函数上的图象交于A,C两点,AB∥y轴,BC∥x轴,若△ABC的面积为4,则k=﹣2.解:设AB交x轴于点D,的面积为,由反比例函数系数的几何意义可得S△ADO由函数的对称性可得点O为AC中点,即DO为△ABC中位线,∴=,=4S△ADO=2|k|=4,∴S△ABC∵k<0,∴k=﹣2.故答案为:﹣2.【变5-2】.如图,正比例函数y=kx(k>0)与反比例函数y=的图象交于A,C两点,过点A作x轴的垂线,交x轴于点B,过点C作x轴的垂线,交x轴于点D,连接AD,BC,则四边形ABCD的面积为2.解:∵A、C是两函数图象的交点,∴A、C关于原点对称,∵CD⊥x轴,AB⊥x轴,∴OA=OC,OB=OD,=S△BOC=S△DOC=S△AOD,∴S△AOB又∵A点在反比例函数y=的图象上,=S△BOC=S△DOC=S△AOD×1=,∴S△AOB=4S△AOB=4×=2,∴S四边形ABCD故答案为:2.【变5-3】.如图,直线分别与反比例函数y=﹣和y=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是5.解:过点A作AF⊥y轴,垂足于点F;过点B作BE⊥y轴,垂足为点E.∵点P是AB中点.∴PA=PB.又∵∠APF=∠BPE,∠AFP=∠BEP=90°,∴△APF≌△BPE.=S△BPE.∴S△APF=S四边形ACOF+S四边形EODB=|﹣2|+|3|=5.∴S四边形ABCD故答案为:5.考点6反比例函数上两点和外一点模型【模型讲解】反比例函数与一次函数图象的交点和原点所围成的三角形面积,若两交点在同一分支上,用减法.【示例】方法一:S △AOB =S △COD -S △AOC -S △BOD .方法二:作AE ⊥x 轴于点E ,交OB 于点M ,BF ⊥x 轴于点F ,则S △OAM =S 四边形MEFB (划归到模型一),则S △AOB =S 直角梯形AEFB .【拓展】方法一:当BE CE 或BFFA=m 时,则S 四边形OFBE =m |k |.方法二:作EM ⊥x 轴于M ,则S △OEF =S 直角梯形EMAF (划归到上一个模型示例).【例6】.如图,一次函数y =ax +b 的图象与反比例函数y =的图象交于A ,B 两点,则S△AOB=()A.B.C.D.6解:把A(﹣4,1)代入y=的得:k=﹣4,∴反比例函数的解析式是y=﹣,∵B(1,m)代入反比例函数y=﹣得:m=﹣4,∴B的坐标是(1,﹣4),把A、B的坐标代入一次函数y=ax+b得:,解得:a=﹣1,b=﹣3,∴一次函数的解析式是y=﹣x﹣3;把x=0代入一次函数的解析式是y=﹣x﹣3得:y=﹣3,∴D(0,﹣3),=S AOD+S△BOD=×3×(1+4)=.∴S△AOB故选:A.变式训练【变6-1】.如图,直线AB经过原点O,且交反比例函数的图象于点B,A,点C在x=12,则k的值为()轴上,且.若S△BCAA.12B.﹣12C.﹣6D.6解:作AD⊥x轴于D,BE⊥x轴于E,∵点A、B在反比例函数的图象上,直线AB经过原点,∴OA=OB=AB,=12,∵,S△BCA=S△BCA=6,∴OB=BC,S△BCO∵BE⊥OC,∴OE=CE,=S△BCO=3,∴S△OBE∵BE⊥x轴于E,=|k|,∴S△OBE∴|k|=6,∵k<0,∴k=﹣6.故选:C.【变6-2】.如图,在平面直角坐标系中,反比例函数y=与直线y=交于A,B,x轴的正半轴上有一点C 使得∠ACB =90°,若△OCD 的面积为25,则k 的值为48.解:设点A 坐标为(3a ,4a ),由反比例函数图象与正比例函数图象的对称性可得点B 坐标为(﹣3a ,﹣4a ),∴OA =OB ==5a ,∵∠ACB =90°,O 为AB 中点,∴OC =OA =OB =5a ,设直线BC 解析式为y =kx +b ,将(﹣3a ,﹣4a ),(5a ,0)代入y =kx +b 得,解得,∴y =x ﹣a ,∴点D 坐标为(0,﹣a ),∴S △OCD =OC •OD =5a ×a =25,解得a =2或a =﹣2(舍),∴点A 坐标为(6,8),∴k =6×8=48.故答案为:48.【变6-3】.如图,正比例函数y =﹣x 与反比例函数y =的图象交于A ,B 两点,点C 在x 轴上,连接AC ,BC .若∠ACB =90°,△ABC 的面积为10,则该反比例函数的解析式是y =﹣.解:设点A 为(a ,﹣a ),则OA ==﹣a ,∵点C 为x 轴上一点,∠ACB =90°,且△ACB 的面积为20,∴OA =OB =OC =﹣a ,∴S △ACB =×OC ×(y A +|y B |)=×(﹣a )×(﹣a )=10,解得,a =±(舍弃正值),∴点A 为(﹣,2),∴k =﹣×2=﹣6,∴反比例函数的解析式是y =﹣,故答案为:y =﹣.考点7反比例函数上两点和原点模型【模型讲解】反比例函数与一次函数图象的交点和原点所围成的三角形面积,若两交点分别在两个分支上,用加法.【示例】方法一:S △AOB =12OD ·|x B -x A |=12OC ·|y A -y B |.方法二:S △AOB =S △AOC +S △OCD +S △OBD .方法三:作AE ⊥y 轴于点E ,BF ⊥x 轴于点F ,延长AE 与BF 相交于点N ,则S △AOB =S △ABN -S △AOE -S △OBF -S 矩形OENF .【例7】.如图,直线AB 交双曲线于A 、B ,交x 轴于点C ,B 为线段AC 的中点,过=12.则k的值为8.点B作BM⊥x轴于M,连接OA.若OM=2MC,S△OAC解:过A作AN⊥OC于N,∵BM⊥OC∴AN∥BM,∵,B为AC中点,∴MN=MC,∵OM=2MC,∴ON=MN=CM,设A的坐标是(a,b),则B(2a,b),=12.∵S△OAC∴•3a•b=12,∴ab=8,∴k=ab=8,故答案为:8.变式训练【变7-1】.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且四边形ODBE的面积为21,则k=7.解:设D点的横坐标为x,则其纵坐标为,∵BD=3AD,∴点B点的坐标为(4x,),点C的坐标为(4x,0)=21,∵S四边形ODBE﹣S△OCE﹣S△OAD=21,∴S矩形ABCD即:4x•﹣﹣=21解得:k=7.故答案为:7.【变7-2】.如图,点是直线AB与反比例函数图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求反比例函数和直线AB的解析式;(2)△ABC和△ABD的面积分别为S1,S2,求S2﹣S1.解:(1)由点A(,4)在反比例函数y=(x>0)图象上,∴n=×4=6,∴反比例函数的解析式为y=(x>0),将点B(3,m)代入y=(x>0)并解得m=2,∴B(3,2),设直线AB的表达式为y=kx+b,∴,解得,∴直线AB的表达式为y=﹣x+6;(2)由点A坐标得AC=4,则点B到AC的距离为3﹣=,∴S1==3,设AB与y轴的交点为E,则点E(0,6),如图:∴DE=6﹣1=5,由点A(,4),B(3,2)知,点A,B到DE的距离分别为,3,∴S2=S△BDE﹣S△AED=﹣=,∴S2﹣S1=﹣3=.考点8两双曲线k值符号不同模型【模型讲解】两条双曲线上的两点的连线与一条(或两条)坐标轴平行,求这两点与原点或坐标轴上的点围成的图形面积,过这两点作坐标轴的垂线,结合k的几何意义求解.类型1两条双曲线的k值符号相同【示例】【例8】.如图,在平面直角坐标系中,函数y=kx与的图象交于A、B两点,过A作y轴的垂线,交函数的图象于点C,连接BC,则△ABC的面积为()A.2B.3C.5D.6解:∵正比例函数y=kx与反比例函数y=﹣的图象交点关于原点对称,∴设A点坐标为(x,﹣),则B点坐标为(﹣x,),C(﹣2x,﹣),=×(﹣2x﹣x)•(﹣﹣)=×(﹣3x)•(﹣)=6.∴S△ABC故选:D.变式训练【变8-1】.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=(x>0)和y=﹣(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A.3B.6C.9D.解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y=﹣中得:y=﹣,故A(a,﹣);将x=a代入反比例函数y=中得:y=,故B(a,),∴AB=AP+BP=+=,=AB•x P的横坐标=××a=,则S△ABC故选:D.【变8-2】.如图,点A和点B分别是反比例函数y=(x>0)和y=(x>0)的图象上=2,则m﹣n的值为4.的点,AB⊥x轴,点C为y轴上一点,若S△ABC解:连接AO.CO,∵AB⊥x轴,点C为y轴上一点,∴AB∥y轴,=S△ABO=2,∴S△ABC∴=2.∴=2,即m﹣n=4.故答案为:4.1.如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是()A.4B.﹣4C.2D.﹣2解:∵∠ACB=30°,∠AOB=60°,∴∠OAC=∠AOB﹣∠ACB=30°,∴∠OAC=∠ACO,∴OA=OC=4,在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,∴∠OAB=30°,∴OB=OA=2,∴AB=OB=2,∴A点坐标为(﹣2,2),把A(﹣2,2)代入y=得k=﹣2×2=﹣4.故选:B.2.如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于()A.8sin2αB.8cos2αC.4tanαD.2tanα解:方法一:过点C作CE⊥OA于点E,过点D作DF⊥OA交OA的延长线于点F,设C点横坐标为:a,则:CE=a•tanα,∴C点坐标为:(a,a•tanα),∵平行四边形OABC中,点D为边AB的中点,∴D点纵坐标为:a•tanα,设D点横坐标为x,∵C,D都在反比例函数图象上,∴a×a•tanα=x×a•tanα,解得:x=2a,则FO=2a,∴FE=a,∵∠COE=∠DAF,∠CEO=∠DFA,∴△COE∽△DAF,∴==2,∴AF=,∴AO=OF﹣AF=a,∵点A的坐标为(3,0),∴AO=3,∴a=3,解得:a=2,∴k=a×a•tanα=2×2tanα=4tanα.方法二:∵C(a,a tanα),A(3,0),∴B(a+3,a tanα),∵D是线段AB中点,∴D(,a tanα),即D(,a tanα).∵反比例函数过C,D两点,∴k=a•a tanα=(a+6)•a tanα,解得a=2,∴k=4tanα.故选:C.3.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C.当以CD为边的正方形的面积为时,k的值是()A.2B.3C.5D.7解:设OA=3a,则OB=4a,∴A(3a,0),B(0,4a).设直线AB的解析式是y=kx+b,则根据题意得:,解得:,则直线AB的解析式是y=﹣x+4a,直线CD是∠AOB的平分线,则OD的解析式是y=x.根据题意得:,解得:则D的坐标是(,),OA的中垂线的解析式是x=,则C的坐标是(,),将C点坐标代入反比例函数y=,则k=.设OA的垂直平分线交x轴于点F,过点D作DE⊥x轴于点E,如图,则OF=CF=,OE=DE=a,∵∠DOA=45°,∴△COF和△DOE为等腰直角三角形,∴OC=OF=a,OD=OE=a,∴CD=OD﹣OC=()=(﹣)=a.∵以CD为边的正方形的面积为,∴=,则a2=,∴k=×=7.故选:D.4.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cos A=,则k的值为()A.﹣3B.﹣4C.﹣D.﹣2解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO,∵∠BFO=∠OEA=90°,∴△BFO∽△OEA,在Rt△AOB中,cos∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB:OA=:1,:S△OEA=2:1,∴S△BFO∵A在反比例函数y=上,=1,∴S△OEA=2,∴S△BFO则k=﹣4.故选:B.5.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A.B.C.D.解:如图,∵点A坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵OB=AB=1,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故选:A.6.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6B.﹣3C.3D.6解:∵A与C关于OB对称,∴A的坐标是(3,2).把(3,2)代入y=得:2=,解得:k=6.故选:D.7.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.8.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12.解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点B、A分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0),∴﹣a(2+b)=b(﹣1﹣a),整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以k=﹣12.9.如图,点E,F在函数y=(x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是2,△OEF的面积是(用含m的式子表示)解:作EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图,∵△OEP的面积为1,∴|k|=1,而k>0,∴k=2,∴反比例函数解析式为y=,∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴==,即HF=mPE,设E点坐标为(t,),则F点的坐标为(tm,),+S△OFD=S△OEC+S梯形ECDF,∵S△OEF=S△OEC=1,而S△OFD=S梯形ECDF=(+)(tm﹣t)∴S△OEF=(+1)(m﹣1)=.故答案为:2,.10.如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.解:设⊙P与边AB,AO分别相切于点E、D,连接PE、PD、PA,如图所示.则有PD⊥OA,PE⊥AB.设⊙P的半径为r,∵AB=5,AC=1,=AB•PE=r,S△APC=AC•PD=r.∴S△APB∵∠AOB=90°,OA=4,AB=5,∴OB=3.=AC•OB=×1×3=.∴S△ABC=S△APB+S△APC,∵S△ABC∴=r+r.∴r=.∴PD=.∵PD⊥OA,∠AOB=90°,∴∠PDC=∠BOC=90°.∴PD∥BO.∴△PDC∽△BOC.∴=.∴PD•OC=CD•BO.∴×(4﹣1)=3CD.∴CD=.∴OD=OC﹣CD=3﹣=.∴点P的坐标为(,).∵反比例函数y=(k≠0)的图象经过圆心P,∴k=×=.故答案为:.11.如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).解:作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴=,故①正确;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1﹣k2),故②错误;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,故③错误;若OABC是菱形,则OA=OC,而OM=ON,∴Rt△AOM≌Rt△CNO,∴AM=CN,∴|k1|=|k2|,∴k1=﹣k2,∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.故答案为:①④.12.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2=﹣,a2013=﹣;若要将上述操作无限次地进行下去,则a1不可能取的值是0、﹣1.解:当a1=2时,B1的纵坐标为,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=﹣,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=﹣,B2的纵坐标和A3的纵坐标相同,则A3的横坐标为a3=﹣,A3的横坐标和B3的横坐标相同,则B3的纵坐标为b3=﹣3,B3的纵坐标和A4的纵坐标相同,则A4的横坐标为a4=2,A4的横坐标和B4的横坐标相同,则B4的纵坐标为b4=,即当a1=2时,a2=﹣,a3=﹣,a4=2,a5=﹣,b1=,b2=﹣,b3=﹣3,b4=,b5=﹣,∵=671,∴a2013=a3=﹣;点A1不能在y轴上(此时找不到B1),即x≠0,点A1不能在x轴上(此时A2,在y轴上,找不到B2),即y=﹣x﹣1≠0,解得:x≠﹣1;综上可得a1不可取0、﹣1.故答案为:﹣;﹣;0、﹣1.13.如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CF⊥x轴于F,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),﹣y B=y P′﹣y A得,由y Q′0﹣1=y P′﹣3,=2,∴y P′当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).14.在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,且与反比例函数y2=的图象在第一象限内交于P,K两点,连接OP,△OAP的面积为.(1)求一次函数与反比例函数的解析式.(2)当y2>y1时,求x的取值范围.(3)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.解:(1)∵一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,∴,解得.∴一次函数的解析式为:y1=﹣x+.∵△OAP的面积为,∴•OA•y P=,∴y P=,∵点P在一次函数图象上,∴令﹣x+=.解得x=4,∴P(4,).∵点P在反比例函数y2=的图象上,∴k2=4×=2.∴一次函数的解析式为:y1=﹣x+.反比例函数的解析式为:y2=.(2)令﹣x+=,解得x=1或x=4,∴K(1,2),由图象可知,当y2>y1时,x的取值范围为:0<x<1或x>4.(3)如图,作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,∵P(4,).∴P′(4,﹣).∴PP′=1,∴直线KP′的解析式为:y=﹣x+.令y=0,解得x=.∴C(,0).=•(x C﹣x K)•PP′∴S△PKC=×(﹣1)×1=.∴当PC+KC最小时,△PKC的面积为.15.如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x+1经过点A(m,2),∴m+1=2,∴m=1,∴A(1,2),∵反比例函数y=经过点(1,2),∴k=2,∴反比例函数的解析式为y=;(2)由题意,得,解得或,∴B(﹣2,﹣1),∵C(0,1),=S△AOC+S△BOC=×1×2+×1×1=1.5;∴S△AOB(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).16.已知A(3,0)、B(0,4)是平面直角坐标系中两点,连接AB.(1)如图①,点P在线段AB上,以点P为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N是线段OB上一点,连接AN,将△AON沿AN翻折,使得点O与线段AB上的点M重合,求经过A、N两点的一次函数表达式.解:(1)作PC⊥x轴于C,PD⊥y轴于D,则四边形OCPD是矩形,∵以点P为圆心的圆与两条坐标轴都相切,∴PC=PD,∴矩形OCPD是正方形,设PD=PC=x,∵A(3,0)、B(0,4),∴OA=3,OB=4,∴BD=4﹣x,∵PD∥OA,∴△PDB∽△AOB,∴,∴,解得x=,∴P(,),设过点P的函数表达式为y=,∴k=xy==,∴y=;(2)方法一:∵将△AON沿AN翻折,使得点O与线段AB上的点M重合,∴ON=NM,MN⊥AB,由勾股定理得,AB=5,=S△AON+S△ABN,∴S△AOB∴=+,解得,ON=,∴N(0,),设直线AN的函数解析式为y=mx+,则3m+=0,∴m=﹣,∴直线AN的函数解析式为y=﹣x+.方法二:利用△BMN∽△BOA,求出BN的长度,从而得出ON的长度,。
探索反比例函数基本图形面积不变性教学设计一、给合课标与考纲阐述设置为总复习关键教学点的理由本节课教学的主要内容是探索反比例函数基本图形面积的不变性,让学生从“形”与“数”两个角度理解反比例函数比例系数K的几何意义,其中蕴含了化归与转化、数形结合思想,是培养学生抽象概括能力、推理能力和应用意识的良好载体。
所以依托本节专题课的复习,让学生掌握转化的基本技巧,学会构造法和坐标法两种重要的解题方法,渗透从特殊到一般、数形结合思想,也为学生自主进行数学探究活动积累经验,体会从感性认识到理性认识,发展理性的数学思考的思维品质,为高中阶段后续学习提供重要的活动经验和策略方法。
二、学情分析1、知识基础在本节课的复习前,学生已经复习了一次函数、二次函数及反比例函数基础知识的积累,学习了相交线、平行线、三角形、四边形、圆等空间与图形的相关知识,对于简单的反比例函数的图象与性质掌握较好,但学生对反比例函数K的几何意义的理解只停于表面,不能很好地从“形”与“数”两个角度进一步认识,用函数观点思考问题。
2、学习方法学生已经积累了探索函数问题的基本方法,如画函数图象,观察图象归纳函数性质,了解函数变化规律和函数的变化趋势等,积累了基本几何模型的特征、构造及应用,学生喜欢用探究式的学习方式,通过自已的分享来体验知识间的内在联系。
3、能力水平学生对于图形的空间想象力相对比较薄弱,知识整合能力不足,特别是对复杂图形问题、动点问题、图形变换问题不知所措。
本节通过几何画板演示,力求使学生更直观认识反比例函数基本图形面积的不变性。
三、复习目标及重、难点分析(一)复习目标1.经历梳理知识的过程,结合图象理解反比例函数K的几何意义。
2.掌握反比例函数基本图形面积不变性及常见的结论和方法,并会利用这些结论和方法解决复杂图形的面积问题。
3.经历问题的探究过程,学会从“形”与“数”两个角度思考问题,体会特殊到一般的研究方法,渗透转化、数形结合等思想方法。
例析反比例函数的四个模型及其应用近年来各省市中考都有考查反比例函数的难题,一般都放在选择题最后一题或填空题最后两个题的位置,属于中档偏上的题型.由于此类型的题目不仅要考察反比例函数的相关性质,而且常与其它几何图形相互结合考察几何图形特征,因此考察面较广又比较复杂,学生常常找不到解题突破口.笔者认为,这类题型解题方法是有章可循的.解决反比例函数的常用方法有:关键点法、模型法、设而不解法、面积不变性等.其中模型法的应用常常能让问题简单化,甚至能直接看出答案.下面笔者主要谈谈反比例函数的四个模型及其应用,供参考.一、反比例函数的四个模型(证明略)模型1(1)ABOC S k =矩形;(2)2ACO ABO ACN OBM kS S S S ∆∆∆∆====.图1图2模型2ABO AMNBS S ∆=梯形(1)(2)图3模型3AM BN =.模型4AM //BN .图4注以上四个模型中点A 、B 都是反比例函数上的任一点.二、模型的应用例1如图5,一次函数y ax b =+的图象与x 轴、y 轴交于A 、B 两点,与反比例函数k y x=的图象交于C 、D 两点,过C 、D 两点分别作y 轴,x 轴的垂线,垂足为E 、F ,连接,CF DE .有下列四个结论:①DEF ∆与CEF ∆的面积相等;②AOB ∆∽FOE ∆;③DCE ∆≌CDF ∆;④AC BD =.其中正确的结论是(填写序号).图5解析此题主要考察模型1,3.对结论①,,,,22DEF CEF DEF CEF kkS S S S ∆∆∆∆==∴=∴ ①正确;对结论②, DEF CEF S S ∆∆=,且两三角形同底,∴两三角形EF 边上的高相等,AB ∴∥,EF AOB ∴∆∽,FOE ∆∴②正确;结论③中, 找不到全等条件,∴③错误;对于结论④,直接运用模型3可得AC DB =,∴④正确.例2已知反比例函数(0)k y k x=>的图象与一次函数6y x =-+相交与第一象限的A 、B 两点,如图6所示,过A 、B 两点分别作x 、y 轴的垂线,线段AC 、BD 相交与P .给出以下结论:①OA OB =;②OAM ∆∽OBN ∆;③若ABP ∆的面积是8,则5k =;④P 点一定在直线y x =上.其中正确的结论是(填写序号).图6解析对于结论①,先求出直线6y x =-+与两坐标轴的交点坐标,可得出OEF ∆是等腰直角三角形,由模型3可得AE BF =,即OAE ∆≌OBF ∆,所以OA OB =,故①正确;对于结论②,AM OE ⊥,BN OF ⊥,且由①AOM BON ∠=∠,知OAM ∆∽OBN ∆,故②正确;对于③,设A (x ,6一x ),则B (6一x ,x ),P (x ,6一2x ).再由三角形的面积公式求出x 的值,故可得出A 点坐标.再根据点A 在反比例函数的图象上即可求出反比例函数的解析式.故③正确;对于④,由②得AM BN =,所以PD PC =.又因为,AC OF BD OE ⊥⊥,所以点P 在线段AB 的垂直平分线上,所以点P 在直线y x =上,故④正确.例3如图7,反比例函数(0)k y k x =>的图象与矩形ABCO 的两边相交于E 、F 两点,若E 是AB 的中点,2BEF S ∆=,则k 的值为.图7解析由模型4,可得EF //AC ,所以BEF ∆∽BAC ∆.又因为E 是AB 的中点,2BEF S ∆=,即:1:4,16BEF BAC AOCB S S S ∆∆==矩形,所以182AOME AOCB S k S ===矩形矩形,即8k =.例4(2013年重庆中考题)如图8,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 、C 分别在x 轴、y 轴上,反比例函数(0)k y k x=>的图象与正方形的两边AB 、BC 分别交于点M 、N ,ND x ⊥轴,垂足为D ,连结OM 、ON 、MN .下列结论:①OAM ∆≌OCN ∆;②四边形DAMN 与MON ∆面积相等;③若45,2MON MN ∠=︒=,则点C 的坐标为2+1).其中正确的结论是(填写序号)图8解析对于①,由模型1可得2ONC OMA kS S ∆∆==,而OC OA =,则NC AM =;再根据“SAS ”可判断OCN ∆≌OAM ∆,故①正确;对于②,由模型2可得OMN DAMN S S ∆=四边形,故②正确;对于③,作NE OM ⊥于E 点,则ONE ∆为等腰直角三角形.设NE x =,则2OM ON x ==,221)EM x x x =-=.在Rt NEM ∆中,利用勾股定理,可求出222x =+,所以222)42ON x ==+易得BMN ∆为等腰直角三角形,得到222BN MN ==.设正方形ABCO 的边长为a ,在Rt OCN ∆中,利用勾股定理,可求出a 的值为21+,从而得到C 点坐标为2+1).故③正确.总之,利用反比例函数的以上4个模型,是处理反比例函数问题的重要方法之一,我们在教学中应该重视这些几何模型的掌握和应用.。
反比例函数实际应用的六种题型题型一:在面积中的应用 一:面积不变性(k 的几何意义)如图,设点P (a ,b )是反比例函数y=xk上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO和三角形PBO 的面积都是k 21;面积是正数,所以k 要加绝对值) S 矩形PBOA =k ; S 三角形PAO =S 三角形PBO =k 21注意: (1)面积与P 的位置无关,即(0)ky k x=≠的面积不变性(2)当k 符号不确定的情况下须分类讨论S △ABC =︱K ︱; S ABCD =2︱K ︱二、曲直结合(一次函数与反比例函数)典型例题例1 如图,点P 是反比例函数xy 2=图象上的一点,PD ⊥x 轴于D.则△POD 的面积为 .例2 如图,已知,A,B 是双曲线)0(>=k xk y 上的两点,(1)若A(2,3),求K 的值;(2)在(1)的条件下,若点B 的横坐标为3,连接OA,OB,AB ,求△OAB 的面积。
(3)若A,B 两点的横坐标分别为a,2a ,线段AB 的延长线交X 轴于点C ,若6=∆AOC S ,求K 的值变式1 在双曲线)0(>=x xk y 上任一点分别作x 轴、y 轴的垂线段,与x 轴y 轴围成矩形面积为12,求函数解析式__________。
变式2 如图,在反比例函数2y x=(0x >)的图象上,有点1P ,2P ,3P ,4P 它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,求123S S S ++.S 3S 2S 11 2 3 4y=2xP 4P 3P 2xyO P 1变式3 如图,点P,Q是反比例函数y= 图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1________S2.(填“>”或“<”或“=”)变式4 已知A B C D E,,,,是反比例函数16yx=()0x>图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形,则这五个橄榄形的面积总和是__________(用含π的代数式表示)变式5 如图正方形OABC的面积为4,点O为坐标原点,点B在函数kyx=(0,0)k x<<的图象上,点P(m,n)是函数kyx=(0,0)k x<<的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为S l,判断S l与点P的位置是否有关(不必说理由).(2)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2,写出S2与m的函数关系,并标明m的取值范围.(8分)总结:一个性质:反比例函数的面积不变性AB COyxy=16xEDCBAyx O两种思想:分类讨论和数形结合题型二:在工程与速度中的应用一、工程问题工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
y=k x
C
B
A O
y x D
反比例函数面积不变性与模型
一、知识
1. 反比例函数面积不变性
反比例函数图象上任意一点向两坐标轴作垂线所围成的矩形的面积都是______的,为______.
2ABO ABCO S S k ==△矩形 2. 反比例函数模型
S △OPC =S 梯形PADC AB =CD
二、 练
1.如图,直线l 和双曲线0k
y k x
=>()交于A ,B 两点,P 是线段AB 上的点(不
与A ,B 重合).过点A ,B ,P 分别向x 轴作垂线,垂足分别为C ,D ,
y
x
C
P
D
A
O
y=
k
x y
x D C
B A O
E ,连接OA ,OB ,OP .设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则( )
A .123S S S <<
B .123S S S >>
C .123S S S =>
D .123S S S =<
第1题图 第2题图
2.如图,点A 在双曲线1y x =
(x >0)上,点B 在双曲线3
y x
=(x >0)上,且AB ∥x 轴,点C 和点D 在x 轴上,若四边形ABCD 为矩形,则矩形ABCD 的面积为 .
3.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数
0k
y k x
=>()
的图象交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列三个结论:①△CEF 与△DEF 的面积相等;②EF ∥CD ;③AC BD =.其中正确结论的序号是 .
4.如图,正比例函数y =x 与反比例函数m
y x
=
(m >0)的图象交于A ,C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D ,则四边形ABCD 的面积为( )
A .2m
B .2
C .m
D .1
第4题图 第5题图
5.如图,平行四边形ABCD 的顶点A ,C 在双曲线11k y x =-
上,B ,D 在双曲线22k y x
=上,k 1=2k 2(k 1>0),AB ∥y 轴,S □ABCD =24,则
k 1=________.
6.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形
的边分别平行于坐标轴,点C 在反比例函数
221
k k y x
++=的图象上.若点A 的坐标为(-2,-2),
则k 的值为( )
A .1
B .-3
C .4
D .1或-3 7.如图,双曲线)0(>k x
k
y =
经过矩形OABC 的边BC 的中点E ,交AB 于点D .若梯形ODBC 的面积为3,则双曲线的解析式为( ) A .1y x =
B .2y x =
C .3y x = D
.6
y x
=
第7题图 第8题图
8.如图,双曲线)0(2
>=
x x
y 经过四边形OABC 的顶点A ,C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴.将△ABC 沿AC 翻折后得△AB ′C ,
B ′点落在OA 上,则四边形OAB
C 的面积是
.
9.如图,在平面直角坐标系中,一次函数1y k x b =+的图象与反比例函数2
k y x
=
的图象交于A (1,4),B (3,m )两点,则△AOB 的面积是______.
第9题图 第10题图
10.如图,平行四边形OABC 的顶点O 在坐标原点,顶点A ,C 在反比例函数k
y x
=
(x >0)的图象上,点A 的横坐标为4,点B 的横坐标为6,且平行四边形OABC 的面积为9,则k 的值为_________.
11.如图1,已知直线
1
2y x =
与双曲线(0)k
y k x =>交于A ,B
两点,且点A 的横坐标为4.
(1)求k 的值; (2)如图2,过原点O 的另一条直线l 交双曲线(0)k
y k x
=
>于C ,D 两点(点C 在第一象限且在点A 的左边)
,当四边形ACBD 的面积为24时,求点C 的坐标.
如有侵权请联系告知删除,感谢你们的配合!
图2
图1。