(完整版)小学四年级奥数自然数的拆分
- 格式:doc
- 大小:89.51 KB
- 文档页数:5
1.7 数的拆分1.7.1 整数的拆分整数的拆分,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。
整数的分拆是古老而又风趣的问题,此中最有名的是哥德巴赫猜想。
在国内外数学比赛中,整数分拆的问题经常以各样形式出现,如,存在性问题、计数问题、最优化问题等。
例 1 电视台要播放一部 30 集电视连续剧,若要求每日安排播出的集数互不相等,则该电视连续剧最多能够播几日?剖析与解:因为希望播出的天数尽可能地多,所以,在每日播出的集数互不相等的条件下,每日播放的集数应尽可能地少。
我们知道, 1+2+3+4+5+6+7=28 。
假如各天播出的集数分别为1,2,3,4,5,6,7 时,那么七天共可播出28 集,还剩 2 集未播出。
因为已有过一天播出 2 集的情况,所以,这余下的 2 集不可以再独自于一天播出,而只能把它们分到从前的日子,经过变动某一天或某二天播出的集数,来解决这个问题。
比如,各天播出的集数安排为1, 2,3, 4,5, 7, 8 或 1,2, 3, 4, 5, 6, 9 都能够。
所以最多能够播7 天。
例 2 有面值为 1 分、 2 分、 5 分的硬币各 4 枚,用它们去支付 2 角 3 分。
问:有多少种不一样支付方法?剖析与解:要付 2 角 3 分钱,最多只能使用 4 枚 5 分币。
因为所有 1 分和 2 分币都用上时,共值12 分,所以最少要用 3 枚 5 分币。
当使用 3 枚 5 分币时, 5× 3=15,23-15=8 ,所以使用 2 分币最多 4 枚,最少 2 枚,可有23=15+( 2+2+2+2 ),23=15+( 2+2+2+1+1 ),23=15+( 2+2+1+1+1+1 ),共 3 种支付方法。
当使用 4 枚 5 分币时, 5× 4=20,23-20=3 ,所以最多使用 1 枚 2 分币,或不使用,进而可有23=20+( 2+1 ),23=20+( 1+1+1 ),共 2 种支付方法。
第一讲自然数的拆分一、导入一次老师说对小明说:“你长大后要做社会精英。
”一同学问“什么是精英?”老师回答:“就是把所有人都聚在一起,过滤筛选,过滤筛选。
过滤筛选后剩下的。
”这时忽然有位同学问:“这不是人渣吗二、课堂内容例题讲解1、班级要举办联欢会,老师要把30粒糖果分给几位小朋友,使每人得到的粒数互不相同。
最多有多少位小朋友得到糖果呢?(p1)课堂练习1、把22拆成几个不同自然数相加的形式,要使加数尽可能的多,加数最多有多少个?2、老师要把39枚巧克力分给几位小朋友,没人得到的枚数互不相同。
最多能有多少位小朋友得到巧克力?请你把不同的分发都写出来。
3、学校为了奖励同学,欲把23个福娃公仔分给几位同学,使每位同学得到的个数互不相同。
得到个数最多的同学最少能得到几个福娃公仔?少?课堂练习1、把36拆成四个不同自然数相加的形式,如果要使最大的加数尽可能的的小,那么最小的是多少?2、把72拆成四个不同自然数相加的形式,如果要使最小的加数尽可能的的大,那么最大的是多少?3、为了迎接奥运会,学校组织同学们植树。
老师将同学们分成7个小队,7个小队共种树100棵,个小队种的棵数互不相同,其中种树最多的小队种了18棵。
请你计算出种树最少的小队至少种了多少棵例题讲解3、把252拆成四个不同的自然数相加的形式,要使最小数与最大数的和尽可能地大,那么他们的和的最大值是多少?课堂练习1、把243拆成四个不同自然数相加的形式(由小到大顺次相加),使中间两个数的和尽可能地大。
那么他们的和最大值是多少?2、把181拆成四个不同自然数相加的形式(由小到大顺次相加),已知最小的数是23。
那么中间两个数最大值是多少?3、把317拆成四个不同自然数相加的形式(由小到大顺次相加),使中间两个数的差尽可能地大。
那么他例题讲解四、把35拆成两个自然数相加的形式,使这两个自然数的乘积尽可能的大,那么它们的乘积的最大值是多少?课堂练习1、把40拆成两个自然数相加的形式,使这两个自然数的乘积尽可能的大,那么它们的乘积的最大值是多少?2、把28拆成两个自然数相加的形式,使这三个自然数的乘积尽可能的大,那么它们的乘积的最大值是多少?3、把47拆成两个两位数相加的形式,使这三个自然数的乘积尽可能的小,那么它们的乘积的最小值是多少?例题讲解五、把11拆成几个自然数相加的形式,使他们的连乘积尽可能的大,那么它们的乘积的最大值是多少?课堂练习1、把16拆成几个自然数相加的形式,使他们的连乘积尽可能的大,那么它们的乘积的最大值是多少?2、把10拆成几个不同自然数相加的形式,使他们的连乘积尽可能的大,那么它们的乘积的最大值是多少?3、把8拆成几个不同自然数相加的形式,使他们的连乘积尽可能的小,那么它们的乘积的最小值是多少?三、课堂反思四、课后练习题1、把26拆成三个不同自然数相加的形式,使他们的连乘积尽可能的大,那么它们的乘积的最大值是多少?2、把20拆成三个不同自然数相加的形式,使他们的连乘积尽可能的小,那么它们的乘积的最小值是多少?3、把30拆成两个自然数乘的形式,使两个乘数的和尽可能的小,那么和的最小值是多少?4、一个四边形的周长是32厘米,各边的长度都是整数厘米,并且长度互不相同,最长的边最短有多少厘米?5、用一根40厘米长的钢筋焊接成一个长方形框架。
小学奥数重要知识点整理汇总资料目录数论知识点…………………………………………2~6计算知识点…………………………………………7~14应用题知识点…………………………………………15~23几何知识点…………………………………………24~27组合专题…………………………………………28~35数论知识点整除,奇数偶数,质数,合数,分解质因数,约数,倍数。
\r\n余数问题:完全平方数,数的进制,数的综合,周期性问题,数的拆分。
数的整除性1、整数a除以整数b(b≠0),所得的商是整数而没有余数,则称a能被b整除,或b整除a,记作:b|a。
2、整除的性质:性质1.如果c|a,c|b,则c|(a±b)。
性质2.如果bc|a,则b|a,c|a。
性质3.如果c|b,b|a,则c|a。
3、整除问题的解决方法:整除特征法;补9、补0试除法。
4、涉及极值的整除问题:逐步调整法。
5、数的整除特征:a.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……b.一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;c.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;d.一个数从个位到高位,每三位进行分段,将形成的奇位之和与偶位之和以大减小,如果差可以被7、11、13整除,则此数也可被7、11、13整除;如果一个整数的末三位与末三位之前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;e.如果逐次去掉最后一位数字并减去末位数字的2倍后能被7整除,那么这个数能被7整除;如果逐次去掉最后一位数字并减去末位数字后能被11整除,那么这个数能被11整除;如果逐次去掉最后一位数字并减去末位数字的9倍后能被13整除,那么这个数能被13整除;f.一个数从个位到高位,每两位分成一段,将每段上的数相加。
【导语】数学给予⼈们的不仅是知识,更重要的是能⼒,这种能⼒包括观察实验、收集信息、归纳类⽐、直觉判断、逻辑推理、建⽴模型和精确计算。
这些能⼒和培养,将使⼈终⾝受益。
以下是整理的相关资料,希望对您有所帮助。
【篇⼀】 ⼀、概念:把⼀个⾃然数(0除外)拆成⼏个⼤于0的⾃然数相加的形式。
⼆、类型----⽅法 1、基本型 2、造数型 3、求加数最多 ⽅法:1+2+3+……接近结果但是不超过已知数为⽌,再补差 4、两数型 (1)和不变:差⼩积⼤,差⼤积⼩ (2)积不变:差⼤和⼤,差⼩和⼩ 5、拆数型 积(1)允许相同:多3少2没有1 (2)不允许相同:从2连续拆分2+3+4+……刚好超过⽬标数为⽌ 1)超⼏就去⼏ 2)多1去2,差1补尾【篇⼆】 例题 例1、若⼲只同样的盒⼦排成⼀列,⼩明把42个同样的⼩球放在这些盒⼦⾥然后外出,⼩聪从每只盒⼦⾥取出⼀个⼩球,然后把这些⼩球放到⼩球最少的盒⼦⾥去,在把盒⼦从新排列了⼀下。
⼩明回来,仔细查看,没有发现友⼈动过⼩球和盒⼦。
问:⼀共有多少只盒⼦? 分析:设原来⼩球数最少的盒⼦⾥装有a只⼩球,现在增加到了b只,但⼩明发现没有⼈动过⼩球和盒⼦,这说明现在⼜有了⼀只装有a个球的盒⼦,这只盒⼦原来装有a+1个⼩球, 同理,现在另有⼀个盒⼦⾥装有a+1个⼩球,这只盒⼦⾥原来装有a+2个⼩球。
依此类推可知:原来还有⼀个盒⼦⾥装有a+3个⼩球,a+4个⼩球等等,故原来那些盒⼦⾥装有的⼩球数是⼀些连续⾃然数。
现在这个问题就变成了:将42分拆成若⼲个连续整数的和,⼀共有多少种分法,每⼀种分法有多少个加数? 因为42=6×7,故可将42看成7个6的和,⼜: (7+5)+(8+4)+(9+3) 是六个6,从⽽: 42=3+4+5+6+7+8+9 ⼀共有7个加数;⼜因为42=14×3,可将42写成13+14+15,⼀共有3个加数; ⼜因为42=21×2,故可将42写成9+10+11+12,⼀共有4个加数。
幻灯片1小学奥数解题方法完整版幻灯片2解题方法1--分?类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的。
幻灯片3可分为这样几类:(1)以A为左端点的线段共4条,分别是:AB,AC,AD,AE;(2)以B为左端点的线段共3条,分别是:BC,BD,BE;(3)以C为左端点的线段共2条,分别是:CD,CE;(4)以D为左端点的线段有1条,即DE。
一共有线段4+3+2+1=10(条)。
幻灯片4还可以把图中的线段按它们所包含基本线段的条数来分类。
(1)只含1条基本线段的,共4条:AB,BC,CD,DE;(2)含有2条基本线段的,共3条:AC,BD,CE;(3)含有3条基本线段的,共2条:AD,BE;(4)含有4条基本线段的,有1条,即AE。
幻灯片5有长度分别为1、2、3、4、5、6、7、8、9、10、11(单位:厘米)的木棒足够多,选其中三根作为三条边围成三角形。
如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度。
设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边。
幻灯片61、11 一种2、11 2、10 二种3、11 3、10 3、9 三种4、11 4、10 4、9 4、8 四种5、11 5、10 5、9 5、8 5、7 五种6、11 6、10 6、9 6、8 6、7 6、6 六种7、11 7、10 7、9 7、8 7、7 五种8、11 8、10 8、9 8、8 四种9、11 9、10 9、9 三种10、11 10、10 二种11、11 一种1+2+3+4+5+6+5+4+3+2+1=36种幻灯片7解题方法2--化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况(化大为小),从中分析探寻出问题的规律,以获得问题的答案。
第一讲计算与简算知识导航巧算是四则计算中的一个重要组成部分,学会一些巧算的方法,对提高计算能力有很大的帮助。
经常见到的几种类型:凑整求和、找基准数、分组求解、自然数的分拆、连续自然数求和巧设中间数的方法。
在计算过程中,最常用的技巧之一是灵活熟练地运用运算律。
运算律有:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac 减法(括号)的性质:a-b-c=a-(b+c) 除法的性质:a÷(b×c)=a÷b÷c (a+b) ÷c=a÷c+b÷c(a-b) ÷c=a÷c-b÷c精典例题例1:计算:(2005+2006+2007+2008+2009+2010+2011)÷2008(第六届小学“希望杯”全国数学邀请赛试题)思路点拨利用等差数列或平均数进行计算。
模仿练习计算:(1993+1994+1995+1996+1997+1998+1999+2000+2001)÷1997例2:计算118×43—86×9思路点拨仔细观察题中的每一个数,不难发现:86=43×2,可把2与9结合。
模仿练习2006×37+2006×23+1003×80例3:计算:1994×1994-1995×1993思路点拨我们经过观察发现,两个部分的积没有相同的因数,但是我们可以把1995拆成1994+1,这样就可以把1995×1993分成两部分的积相加,即1994×1993+1×1993,再应用乘法分配律就能使计算简便。
模仿练习计算:1994×1995-1993×1996例4:计算:54÷13+63÷13+117÷13思路点拨注意除数相同有类似提取公因数的方法,利用除法的性质:(a+b) ÷c=a÷c+b÷c模仿练习计算:1998÷28+802÷28拓展练习+⨯77230⨯5454012345×99+12345×99-98×12345 (2002年四川省小学生数学夏令营计算竞赛卷) 1994×19951995-1995×19941994+⨯3799999⨯711111速算与巧算(三)一、本讲知识概要本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
小学四年级奥数班教学大纲讲义的结构分为几部分:⑴教学目标提示为教师讲课提供一个主线,一类是根据讲义编写的思路,春季班教学目标分两类:直接说明哪些知识点和方另一类是整体思路和知识点都比较清晰,教师重难点及亮点之处; . 法是学生要熟练掌握和应用的、哪些知识点和方法是学生要了解的等等(包括基础知识、例题、例题的铺垫、巩固、拓展)⑵经典精讲才能更好的解决让学生有最基本的知识做铺垫,每一讲都有最基本的基础知识的学习,各种题型. 铺垫的题目更侧重介绍例题相关内直接给学生讲解可能难以接受,本例题较难,铺垫: . 容的基础知识 . 巩固:巩固的题目与例题近似,帮助学生巩固练习例题 . 拓展:拓展的题目是例题的变形或延伸,帮助学生举一反三系统讲解知识,教师可根据所拓展都是想帮助教师调节课堂节奏,例题的铺垫、巩固、 . 带班级的实际情况灵活选择通过做难易程度不同的习题,练习题是与例题在思想方法上有共同特征、⑶巩固精练:练习可以强化、巩固本讲所学的重要数学思想、方法与技巧,讲义的大纲安排:讲:速算与巧算1第这一讲主要知识点包括凑整法、基准数法、分组法、自计算是所有考试必考的知识点,培养学通过各种形式的题目和教学游戏激发学生对数字的兴趣,然数的拆分及几种小技巧;速算巧算的各种方法在以往的学习中大部分都已经学.,体会各种速算法的魅力"数感"生的 . 过,这一讲除了对以往的内容在深度上做了加深外,还加入了学生刚要接触的小数计算 2第讲:格点与面积从三年级开.几何是小升初的必考知识点,但是对许多学生来说这是一个很薄弱的环节本讲继续来学习一个求.始,学生已经初步接触了求解最基本的矩形面积和周长的一般方法在学习格点法求面积这部分内容的时候,我们同时还.格点法--解几何图形面积的基本方法今年的小升初考试中清华附中就出了一道格.需要用到割补剪切等各种求解面积的基本方法,则图中阴影三角形的面积为多少?猛一看题目1点问题:如图,相邻两个格点间的距离是而且但是对于了解格点问题的同学来讲就容易多了。
DSE五星级专题系列第一讲自然数的拆分
一、导入
一次老师说对小明说:“你长大后要做社会精英。
”
一同学问“什么是精英?”
老师回答:“就是把所有人都聚在一起,过滤筛选,过滤筛选。
过滤筛选后剩下的。
”
这时忽然有位同学问:“这不是人渣吗
二、课堂内容
例题讲解1、班级要举办联欢会,老师要把30粒糖果分给几位小朋友,使每人得到的粒数互不相同。
最多有多少位小朋友得到糖果呢?(p1)
课堂练习
1、把22拆成几个不同自然数相加的形式,要使加数尽可能的多,加数最多有多少个?
2、老师要把39枚巧克力分给几位小朋友,没人得到的枚数互不相同。
最多能有多少位小朋友得到巧克力?请你把不同的分发都写出来。
3、学校为了奖励同学,欲把23个福娃公仔分给几位同学,使每位同学得到的个数互不相同。
得到个数最多的同学最少能得到几个福娃公仔?
例题讲解2、把25拆成三个不同自然数相加的形式,如果要使最大的加数尽可能的的小,那么最小的是多少?
课堂练习
1、把36拆成四个不同自然数相加的形式,如果要使最大的加数尽可能的的小,那么最小的是多少?
2、把72拆成四个不同自然数相加的形式,如果要使最小的加数尽可能的的大,那么最大的是多少?
3、为了迎接奥运会,学校组织同学们植树。
老师将同学们分成7个小队,7个小队共种树100棵,个小队种的棵数互不相同,其中种树最多的小队种了18棵。
请你计算出种树最少的小队至少种了多少棵
例题讲解3、把252拆成四个不同的自然数相加的形式,要使最小数与最大数的和尽可能地大,那么他们的和的最大值是多少?
课堂练习
1、把243拆成四个不同自然数相加的形式(由小到大顺次相加),使中间两个数的和尽可能地大。
那么他们的和最大值是多少?
2、把181拆成四个不同自然数相加的形式(由小到大顺次相加),已知最小的数是23。
那么中间两个数最大值是多少?
3、把317拆成四个不同自然数相加的形式(由小到大顺次相加),使中间两个数的差尽可能地大。
那么他们的差最大值是多少?
例题讲解四、把35拆成两个自然数相加的形式,使这两个自然数的乘积尽可能的大,那么它们的乘积的最大值是多少?
课堂练习
1、把40拆成两个自然数相加的形式,使这两个自然数的乘积尽可能的大,那么它们的乘积的最大值是多少?
2、把28拆成两个自然数相加的形式,使这三个自然数的乘积尽可能的大,那么它们的乘积的最大值是多少?
3、把47拆成两个两位数相加的形式,使这三个自然数的乘积尽可能的小,那么它们的乘积的最小值是多少?
例题讲解五、把11拆成几个自然数相加的形式,使他们的连乘积尽可能的大,那么它们的乘积的最大值是多少?
课堂练习
1、把16拆成几个自然数相加的形式,使他们的连乘积尽可能的大,那么它们的乘积的最大值是多少?
2、把10拆成几个不同自然数相加的形式,使他们的连乘积尽可能的大,那么它们的乘积的最大值是多少?
3、把8拆成几个不同自然数相加的形式,使他们的连乘积尽可能的小,那么它们的乘积的最小值是多少?
三、课堂反思
四、课后练习题
1、把26拆成三个不同自然数相加的形式,使他们的连乘积尽可能的大,那么它们的乘积的最大值是多少?
2、把20拆成三个不同自然数相加的形式,使他们的连乘积尽可能的小,那么它们的乘积的最小值是多少?
3、把30拆成两个自然数乘的形式,使两个乘数的和尽可能的小,那么和的最小值是多少?
4、一个四边形的周长是32厘米,各边的长度都是整数厘米,并且长度互不相同,最长的边最短有多少厘米?
5、用一根40厘米长的钢筋焊接成一个长方形框架。
要是这个长方形框架的面积尽可能的大,那么面积最大是多少平方厘米
6、12拆成5个自然数相加的形式,使他们的连乘积尽可能的大,那么它们的乘积的最大值是多把少?
7、把100拆成4个自然数相加的形式(由小到大顺次相加),使中间两数的差最大,那么差最大是多少?
8、7个人参加数学竞赛,共得110分,每人得的都是整数分,并且互不相同,得分最高的人得了20分,得分最底的人得了多少分?。