奥数知识点整数的拆分
- 格式:pdf
- 大小:12.52 KB
- 文档页数:3
小学奥数知识点趣味学习——整数的分拆整数的拆分,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。
整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。
在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。
例1.电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。
我们知道,1+2+3+4+5+6+7=28。
如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。
由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。
例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。
所以最多可以播7天。
例2:有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。
问:有多少种不同支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。
因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。
当使用3枚5分币时,5×3=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2),23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。
当使用4枚5分币时,5×4=20,23-20=3,所以最多使用1枚2分币,或不使用,从而可有23=20+(2+1),23=20+(1+1+1),共2种支付方法。
总共有5种不同的支付方法。
例3:把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?解:37=3+5+29=2+5+7+23=3+11+23=2+3+13+19=5+13+19=7+11+19=2+5+11+19=7+13+17=2+5+13+17=2+7+11+17,共10种不同拆法,其中3×5×29=435最小。
第五讲:整数的拆分一、不连续加数拆分例1将一根长144厘米的铁丝,做成长和宽都是整数的长方形,共有______种不同的做法?其中面积最大的是哪一种长方形?(1992年“我爱数学”邀请赛试题)讲析:做成的长方形,长与宽的和是144÷2=72(厘米)。
因为72=1+71=2+70=3+69=……=35+37=36+36,所以,一共有36种不同的做法。
比较以上每种长方形长与宽的积,可发现:当长与宽都是36厘米时,面积最大。
例2将1992表示成若干个自然数的和,如果要使这些数的乘积最大,这些自然数是______。
(1992年武汉市小学数学竞赛试题)讲析:若把一个整数拆分成几个自然数时,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比它大。
又如果拆分的数中含有1,则与“乘积最大”不符。
所以,要使加数之积最大,加数只能是2和3。
但是,若加数中含有3个2,则不如将它分成2个3。
因为2×2×2=8,而3×3=9。
所以,拆分出的自然数中,至多含有两个2,而其余都是3。
而1992÷3=664。
故,这些自然数是664个3。
例3把50分成4个自然数,使得第一个数乘以2等于第二个数除以2;第三个数加上2等于第四个数减去2,最多有______种分法。
(1990年《小学生报》小学数学竞赛试题)讲析:设50分成的4个自然数分别是a、b、c、d。
因为a×2=b÷2,则b=4a。
所以a、b之和必是5的倍数。
那么,a与b的和是5、10、15、20、25、30、35、40、45。
又因为c+2=d-2,即d=c+4。
所以c、d之和加上4之后,必是2的倍数。
则c、d可取的数组有:(40、10),(30、20),(20、30),(10、40)。
由于40÷5=8,40-8=32;(10-4)÷2=3,10-3=7,得出符合条件的a、b、c、d一组为(8、32、3、7)。
第十五讲 整数分拆综合前续知识点:二年级第一讲;XX 模块第X 讲 后续知识点:X 年级第X 讲;XX 模块第X 讲把里面的人物换成相应红字标明的人物.好想吃啊! 5和10打不开!6和9也打不开!3和12还打不开!呃呃呃……不行了!这个密码到底有多少种可能啊?密码:找出两个数,使得这两个数相加的和是15.密码:找出两个数,使得这两个数相加的和是15.和 和 3 12萱萱萱萱萱萱萱萱- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 整数分拆:把一个自然数表示成若干个自然数的和的形式.(0除外)在进行整数分拆时,要按一定的顺序,做到不重复、不遗漏.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1(1)猴子小孙从山上采来10个桃子.如果小孙把这些桃子全部分给猴妈和猴爸,并且猴妈和猴爸都要分到桃子,那么小孙共有多少种不同的分法?(2)猪八戒拔了15根萝卜.如果猪八戒把这些萝卜分成2堆,那么共有多少种不同的分法?提示:分给2人与分成2堆有什么不一样?练习1小虎有9块积木,他要把这些积木分成2堆,一共有多少种不同的分法?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 体会一下,“分给两个人”和“分成两堆”有什么区别呢?例如:(1)把5个苹果全部分给两个人,共有多少种不同的分法?经过分析可知两人分别有的苹果个数可以是“1、4”,也可以是“4、1”,这是两种不同的分法;而且还可以是“0、5”,可以有1个人没有得到.(2)把5个苹果分成两堆,共有多少种不同的分法?“分堆”的时候,如果出现“1、4”,同时也出现“4、1”,这是两种相同的分法,那么只能看成是一种,并且不可能出现“0、5”,即“分堆”时,每堆都不能为“0”.在“分几堆”的过程中,会出现一些限制的条件,这时,一定要注意审题,把题中重点词圈出来.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题2(1)甜甜有20块糖果.如果她要把这些糖果分成2堆,且每堆最少有2块糖果,那么一共有多少种不同的分法?(2)唐僧要把20个桃子全部分到2个相同的盘子中,且每个盘子中的桃子数量都不超过17个,那么唐僧一共有多少种不同的分法?提示:枚举过程中注意题目中的限制条件“最少”、“不超过”.练习2灰灰有16个小球,要把这些小球全部分到2个相同的盒子中,每个盒子中的小球都不超过12个,那么灰灰共有多少种不同的分法?例题3小糊涂在商店买回了一包巧克力,他数了数,一共有13块巧克力,现在他要把这些巧克力分成3堆,一共有多少种不同的分法?提示:分3堆时,可先固定1堆数量不变,把剩下的分2堆.练习3小兔子拔萝卜,它数了数,一共拔了11个萝卜.现在它要把这些萝卜分成3堆,一共有多少种不同的分法?例题4东东在小区的广场上发现了14只小鸟,这14只小鸟恰好凑成3堆,每堆至少有2只小鸟.请问:这3堆小鸟共有多少种不同的情况?提示:拆分过程中注意限制条件“至少”.练习4甜甜有15根棒棒糖,她要把这些棒棒糖分成3堆,且每堆至少有3根棒棒糖.甜甜一共有多少种不同的分法?例题5(1)一个海盗要把12枚金币分成3份,且每份的金币数不相同,那么这个海盗共有多少种不同的分法?(2)一个海盗要把12枚金币分3天全部花完,且每天花的金币数量都不少于3枚,那么这个海盗共有多少种不同的花法?提示:分成3份是“无区分”的,“分3天花完”是“有区分的”.例题6从1~12这十二个自然数中选取3个不同的数,使得这3个不同的数的和等于26.共有多少种不同的选取方法?提示:与选出的3个数的排列顺序有关吗?课堂内外中国传统字典《康熙字典》《康熙字典》,在清朝康熙年间由文华殿大学士兼户部尚书张玉书及经筵讲官、文渊阁大学士兼吏部尚书陈廷敬担任主编,参考明代的《字汇》、《正字通》两书而写,是一套成书于康熙五十五年(1716年)的详细汉语字典,重印至今不辍.《康熙字典》采用部首检字和笔画检字方法.可记歌诀:一二子中寻,三画问丑寅,四在卯辰巳,五午六未申,七酉八九戌,其余亥部存.或是“一二在子三丑寅,四卯辰巳五午寻,六在未申七在酉,八九在戌余亥存”.笔画检字用于难字查检,可依笔画检字表.如查“民”字,如果不知道其部首,可以查笔画检字表.“民”为5画,可以在5画中查到.“民”下注为“氏”部,再到“部首索引”中查到“氏”部.“氏”在“辰下”33页,再到“辰集下”氏部1画里查到“民”字.在“辰集下”34页中可以查到.作业1.把12块水果橡皮分成两堆,一共有多少种不同的分法?2.小象用一只平底锅煎了17块饼.现在它要把这些饼全部放到2个相同的盘子中,且每个盘子里的饼数都不超过15块,共有多少种不同的分法?3.聪聪有10个玻璃球,他要把这些玻璃球分成3堆,一共有多少种不同的分法?4.小松鼠采了16个松籽,它要把这些松籽分成3堆,每堆至少有3个松籽,一共有多少种不同的分法?5.刘老师准备了20个笔记本,要把这些笔记本分成3份,且每份的笔记本数量都不少于5本.那么,刘老师共有多少种不同的分法?第十五讲 整数分拆综合1.例题1答案:(1)9;(2)7详解:(1)把10个桃子分给猴爸猴妈,且都要分到,属于计次序的.按从小到大的顺序,即1019=+,1028=+,1037=+,1046=+,1055=+,1064=+,1073=+,1082=+,1091=+,共9种.(2)把15根萝卜分2堆,属于不计次序的,且每堆不能为“0”.按从小到大的顺序,即15114=+,15213=+,15312=+,15411=+,15510=+,1569=+,1578=+,共7种.2.例题2答案:(1)9;(2)8详解:(1)把20块糖果分成2堆,且每堆最少有2块,这属于不计次序的.按从小到大的顺序,即20218=+,20317=+,20416=+,20515=+,20614=+,20713=+,20812=+,20911=+,201010=+,共9种.(2)把20个桃子分到2个相同的盘子中,且每个盘子中的桃子数量都不超过17个.这属于不计次序的.按从大到小的顺序,即20173=+,20164=+,20155=+,20146=+,20137=+,20128=+,20119=+,201010=+,共8种. 3.例题3 答案:14详解:把13块巧克力分成3堆,这属于不计次序的,且每堆不能为“0”.按从小到大的顺序,即131111=++,131210=++,13139=++,13148=++,13157=++,13166=++,13229=++,13238=++,13247=++,13256=++,13337=++,13346=++,13355=++,13445=++,共14种.4.例题4 答案:10详解:把14只鸟分成3堆,每堆至少有2只小鸟,这属于不计次序的.按从小到大的顺序,即142210=++,14239=++,14248=++,14257=++,14266=++,14338=++,14347=++,14356=++,14446=++,14455=++,共10种.5.例题5答案:(1)7;(2)10详解:(1)把12枚金币分成3份,且每份的金币数不相同,每份不能为“0”,这属于不计次序的.按从小到大的顺序,即12129=++,12138=++,12147=++,12156=++,12237=++,12246=++,12345=++,共7种.(2)把12枚金币分3天花完,且每天花的金币数量都不少于3枚.这属于计次序的.按从小到大的顺序,即12336=++,12345=++,12354=++,12354=++,12435=++,12444=++,12453=++,12534=++,12543=++,12633=++,共10种.6.例题6 答案:8详解:2612113=++,2612104=++,261295=++,261286=++,2611105=++,261196=++,261187=++,261097=++.7.练习1 答案:4简答:把9块积木分成2堆,这属于不计次序的,且每堆不能为“0”.按从小到大的顺序,即918=+,927=+,936=+,945=+,共4种.8.练习2 答案:5简答:把16个小球分到2个相同的盒子中,且每个盒子中的小球数量都不超过12个.这属于不计次序的.按从大到小的顺序,即16412=+,16511=+,16610=+,1679=+,1688=+,共5种. 9.练习3 答案:10简答:把11个胡萝卜分成3堆,这属于不计次序的,且每堆不能为“0”.按从小到大的顺序,即11119=++,11128=++,11137=++,11146=++,11155=++,11227=++,11236=++,11245=++,11335=++,11344=++,共10种.10. 练习4答案:7简答:把15根棒棒糖分成3堆,每堆至少有3根棒棒糖,这里不需要考虑每次分的顺序.按从小到大的顺序,即15339=++,15348=++,15357=++,15366=++,15447=++,15456=++,15555=++,共7种.11. 作业1答案:6简答:把12块橡皮分成两堆,这属于计次序的.所以按照从小到大的顺序,有以下11种情况:12111=+,12210=+,1239=+,1248=+,1257=+,1266=+.12. 作业2答案:7简答:把17块饼分到2个相同的盘子中,这属于不计次序的,且每个盘子中的饼不超过15块.所以按照从大到小的顺序,有以下7种情况:17152=+,17143=+,17134=+,17125=+,17116=+,17107=+,1798=+. 13. 作业3答案:8简答:把10个玻璃球分3堆,这属于不计次序的,且任意一堆都不可为0.所以按照从小到大的顺序,有以下10种情况:10118=++,10127=++,10136=++,10145=++, 10226=++,10235=++,10244=++,10334=++.14. 作业4答案:8简答:把16个松籽分3堆,这属于不计次序的,且每堆至少有3个.所以按照从小到大的顺序,有以下8种情况:163310=++,16349=++,16358=++,16367=++,16448=++,16457=++,16466=++,16556=++. 15. 作业5答案:5简答:把20个笔记本分3份,这属于不计次序的,且每份不少于5本.所以按照从小到大的顺序,有以下5种情况:205510=++,20569=++,20578=++,20668=++,20677=++.。
小学奥数知识点趣味学习——整数的分拆整数分拆内容概述:1.一般的有,把一个整数表示成两个数相加,当两个数相近或相等的时候,乘积最大。
也就是把整数分拆成两个相等或者相差1的两个整数。
2.一般的有,把自然数m分成n个自然数的和,使其乘积最大,则先把m进行对n的带余除法,表示成m=np+r,则分成r个(p+1),(n-r)个P。
3.把自然数S (S>1)分拆为若干个自然数的和(没有给定是几个),则分开的数当中最多有两个2,其他的都是3,这样它们的乘积最大。
4.把自然数分成若干个互不相等的整数,则先把它表示成2+3+4+5+…+n形式,当和等于原数则可以,若不然,比原数大多少除去等于它们差的那个自然数。
如果仅大于1,则除去2,再把最大的那个数加1。
5.若自然数N有k个大于1的奇约数,则N共有k种表示为两个或两个以上连续自然数之和的方法。
即当有m个奇约数表示的乘积,则有奇约数个奇约数。
6.共轭分拆.我们通过下面一个例子来说明共轭分拆:如:10=4+2+2+1+1,我们画出示意图,我们将其翻转(将图左上到右下的对角线翻转即得到):,可以对应的写成5+3+l+1,也是等于10,即是10的另一种分拆方式。
我们把这两种有关联的分拆方式称为互为共轭分拆。
典型例题:1.写出13=1+3+4+5的共轭分拆。
【分析与解】画出示意图,翻转得到,对应写为4+3+3+2+1=13,即为13=1+3+4+5的共轭分拆。
2.电视台要播出一部30集电视连续剧,若要每天安排播出的集数互不相等。
则该电视连续剧最多可以播出几天?【分析与解】由于希望播出的天数尽可能地多,若要满足每天播出的集数互不相等的条件下,每天播出的集数应尽可能地少。
选择从1开始若干连续整数的和与30最接近(小于30)的情况为1+2+3+4+5+6+7=28,现在就可以播出7天,还剩下2集,由于已经有2集这种情况,就是把2集分配到7天当中又没有引起与其他的几天里播出的集数相同.于是只能选择从后加.即把30表示成:30=1+2+3+4+5+6+9或30=1+2+3+4+5+7+8即最多可以播出7天。
三年级奥数春季班第10讲整数的分拆之强化篇一、引言随着春季班的推进,我们来到了三年级奥数的第10讲——整数的分拆。
整数分拆是数学中一个有趣且实用的领域,通过学习这一讲,同学们将能够掌握整数分拆的基本概念和方法,并在实际问题中灵活运用。
二、整数分拆的概念与方法1.整数分拆的含义整数分拆,指的是将一个整数拆分成若干个正整数的和。
在数学中,整数分拆有着广泛的应用,如求解最值问题、优化问题等。
2.整数分拆的方法整数分拆的方法主要包括:质因数分解、同余分拆、最简分拆等。
这些方法在解决不同类型的问题时有所侧重,接下来我们将通过实例来了解。
三、整数分拆的强化篇1.强化分拆的定义与特点强化分拆,是指在常规整数分拆的基础上,对拆分后的整数进行进一步的优化。
强化分拆的特点如下:(1)强化分拆追求拆分方式的简洁性;(2)强化分拆注重运用数学原理,如数论、组合数学等;(3)强化分拆强调解题策略的多样性。
2.强化分拆的实例解析以下是一个利用强化分拆求解最值问题的实例:题目:已知正整数n,求n(n+1)(n+2)(n+3)的最小值。
解:通过强化分拆,可以将n(n+1)(n+2)(n+3)转化为(n^2+3n)(n^2+3n+2)。
进一步拆分为(n^2+3n)[(n+1)+(n+2)],然后利用基本不等式,得到最小值为24。
四、整数分拆在奥数中的应用1.题目类型一:利用整数分拆求解问题例题:求解不等式|x-1|+|x-2|+|x-3|+|x-4|≥4。
解:将不等式转化为四个绝对值之和的形式,然后根据整数分拆的原理,讨论x的取值范围,求解得到x∈[-1,4]。
2.题目类型二:利用整数分拆优化问题例题:已知四个数a、b、c、d,求a^2+b^2+c^2+d^2的最小值。
解:利用整数分拆,将a、b、c、d分为两组,使得两组数的和相等。
然后根据平方差公式,将原式转化为一个关于和的形式,进一步求解得到最小值。
3.题目类型三:整数分拆与组合数的联系例题:求解组合数问题C(n,m)=n(n-1)(n-2)...(n-m+1)/m!的性质。
三年级奥数春季班第10讲整数的分拆之强化篇
(最新版)
目录
1.整数分拆的定义和意义
2.整数分拆的方法和技巧
3.整数分拆的实际应用和强化练习
正文
一、整数分拆的定义和意义
整数分拆是奥数中的一个重要概念,它指的是将一个整数拆分成若干个整数的和,这些整数可以是正数、负数或零。
整数分拆在数学问题中有着广泛的应用,它可以帮助我们简化问题,提高解题效率。
通过学习整数分拆,我们可以培养自己的逻辑思维能力和数学运算技巧。
二、整数分拆的方法和技巧
1.直接分拆法:根据题目要求,直接将整数拆分成若干个整数的和。
这种方法适用于较简单的问题,需要我们熟练掌握整数的加减法。
2.差分法:通过计算两个整数的差,然后逐步逼近目标整数。
这种方法适用于较难直接分拆的问题,需要我们具备较强的观察能力和计算能力。
3.代换法:将题目中的整数用变量表示,通过代数运算求解。
这种方法适用于含有较多未知数的问题,需要我们具备较强的代数运算能力。
4.构造法:通过构造特殊的数列或数组,找到整数的分拆方式。
这种方法适用于题目中存在一定规律性的问题,需要我们具备较强的创新思维和构造能力。
三、整数分拆的实际应用和强化练习
为了更好地掌握整数分拆的方法和技巧,我们需要进行大量的练习。
可以从简单的题目开始,逐步提高难度,巩固所学知识。
在实际应用中,我们要注意观察题目的特点,灵活运用各种方法,以求达到最佳的解题效果。
总之,整数分拆是奥数中一个重要的概念,通过学习整数分拆,我们可以提高自己的数学运算能力和解题技巧。
三年级奥数春季班第10讲整数的分拆整数的分拆是数学中一个重要的概念,也是三年级奥数春季班的一部分内容。
所谓整数的分拆,就是把一个整数表示为若干个正整数的和的形式。
首先,我们来看一个例子。
假设我们要把整数5分拆成若干个正整数的和。
从1开始,我们可以找到一组分拆方式:5=1+1+1+1+1。
这就是把整数5分拆成5个1的和。
同样,我们还可以找到其他的分拆方式,如:5=2+2+1或者5=3+1+1。
这里需要注意的是,分拆的方式可以有很多种,但是分拆的正整数的个数是有限的。
那么如何确定一个整数的所有分拆方式呢?我们可以利用递归的方法来求解。
假设n是一个正整数,我们要求n的所有分拆方式。
如果n等于1,那么分拆方式只有一种,即n=1。
如果n大于1,那么我们可以将n分拆成两部分。
第一部分是一个正整数i,i可以从1取到n-1。
第二部分是n-i。
例如,当n=5时,我们可以将5分拆成1和4、2和3等。
然后,我们可以递归地求解这两部分的所有分拆方式,最后将它们合并在一起,就得到了n的所有分拆方式。
这个方法可以表示为如下的递归公式:f(n)=f(n-1)+f(n-2)+...+f(1)其中f(n)表示n的分拆数。
接下来,我们来看一个具体的例子。
假设我们要求整数5的所有分拆方式。
根据递归公式,我们可以先求解f(1)、f(2)、f(3)、f(4)的值,然后将它们相加,即f(5)=f(4)+f(3)+f(2)+f(1)。
由于f(1)等于1,那么我们可以依次求解f(2)、f(3)、f(4)的值。
f(2)=f(1)+f(0)=1+1=2f(3)=f(2)+f(1)=2+1=3f(4)=f(3)+f(2)+f(1)=3+2+1=6所以,f(5)=f(4)+f(3)+f(2)+f(1)=6+3+2+1=12。
这就是整数5的所有分拆方式的个数。
通过上面的例子,我们可以看出,求解整数的分拆方式主要是利用了递归的思想。
递归的过程就是不断地将原问题转化为更小的子问题,直到子问题的规模足够小,可以直接求解。
奥数知识点:整数的拆分
1.某运输部门规定:办理托运,当一件物品的重量不超过16千克时,需付基础费30元和保险费3元;为限制过重物品的托运,当一件物品的重量超过16千克时,除了付基础费和保险费外,超过部分每千克还需付3元超重费.在托运的50千克物品可拆分(按整数千克拆分)的情况下,使托运费用最省的拆分方案是_________.
解:①整体托运50千克物品,所花运费:30+3+(50-16)×3=135(元)
②把托运的50千克物品可拆分成两部分,16千克与34千克,则所花运费:
16千克的运费:30+3=33(元)
34千克所花运费:33+(34-16)×3=87(元)
总共花运费为:33+87=120(元)
③把托运的50千克物品可拆分成三部分,16千克,16千克与18千克,则所花运费:
16千克的运费:30+3=33(元)
18千克所花运费:33+(18-16)×3=39(元)
总共花运费为:33+33+39=105(元)
④把托运的50千克物品可拆分成四部分,16千克,16千克,16千克与2千克,则所花运费:
16千克的运费:30+3=33(元)
总共花运费为:33×4=132(元)
综上:把托运的50千克物品可拆分成三部分,16千克,16千克与18千克时所花运费最少.2. 把10拆分成三个数的和(0除外)有_____种拆分方法.
解:因为10=1+2+7=1+3+6=1+4+5,
所以把10拆分成三个数的和(0除外)有3种拆分方法,
故答案为:3.
3. 将100拆分成若干个不同的非零自然数相加的形式,最多能拆分成多少个数之和?
解:因为1+2+3+…+13=(1+13)×13÷2=91,和不能超过100,因此最多只能拆分为13个数.
答:最多能拆分成13个数之和.
4.正确书写离子方程式的关键是将有关物质拆分为离子,在水溶液中能拆分的
物质有______(用文字描述);其余一概不拆分.试写出Na与H2O (aq)反应的离子方程式_______.
解:书写离子方程式时,在水溶液中能拆分的是易溶于水、易电离的物质,金属钠和水反应生成氢氧化钠和氢气,即2Na+2H2O═2Na++2OH-+H2↑,故答案为:易溶于水,易电离的;
2Na+2H2O═2Na++2OH-+H2↑.
5.若集合A1,A2满足A1∪A2=A,则记[A1,A2]是A的一组双子集拆分.规定:[A1,A2]和[A2,A1]是A的同一组双子集拆分,已知集合A={1,2},那么A的不同双子集拆分共有()
D.4组
A.8组B.7组C.5组
解:根据题意,集合A={1,2},其子集是?,{1},{2},{1,2},设集合A1,A2满足A1∪A2=A,
若A1=?,则A2={1,2},有1种情况,
若A1={1},则A2={1,2}或{2},有2种情况,
若A1={2},则A2={1,2}或{1},有2种情况,有一种情况是重复的,
若A1={1,2},则A2={1}或{2}或?,有3种情况,但这三种情况都是重复的,
共有1+1+2=4组;
故选D.
6.若集合A1、A2满足A1∪A2=A,则称(A1,A2)为集合A的一种拆分,并规定:
当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种拆分,则集合A={1,2}的不同拆分的种数是_____.
解:∵A1∪A2=A,对A1分以下几种情况讨论:
①若A1=?,必有A2={1,2},共1种拆分;
②若A1={1},则A2={2}或{1,2},共2种拆分;同理A1={2}时,有2种拆分;
③若A1={1,2},则A2=?、{1}、{2}、{1,2},共4种拆分;
∴共有1+2+2+4=9种不同的拆分.
故答案为:9.
7.若集合A1,A2满足A1∪A2=A,则记[A1,A2]是A的一组双子集拆分.规定:[A1,A2]和[A2,A1]是A的同一组双子集拆分,已知集合A={1,2,3},那么A的不同双子集拆分共有()
A.15组B.14组C.13组D.12组
解:∵A={1,2,3},根据规定知A的不同双子集拆分为:φ与A={1,2,3}一组,{1}分别与{1,2,3},与{2,3},共两组,同理{2}分别与{1,2,3},与{1,3}两组,{3}分别与{1,2,3},与{1,2},共两组;{1,2}分别与{1,2,3},与{2,3},与{1,3},与{3},共四组,同理与{2,3}是一组双子集有四组,和{1,3}是一组双子集共四组,{1,2,3}与{1,2,3}一组;但有6组重合的,所以共有20-6=14组,∴A的不同双子集拆分共有14组,
故选B.
8. 有一类七位数,中间断开可以分成三位数和四位数,但无论拆分成前三位、后四位,还
是前四位、后三位,每次拆分的两个数的和总是相等的.这类七位数中最小的是多少?
解:设这个七位数是abcdefg,
则根据题意得到abc+defg=abcd+efg,
也就是100a+10b+c+1000d+100e+10f+g
=1000a+100b+10c+d+100e+10f+g,
因此得到100a+10b+c+1000d=1000a+100b+10c+d;
a,b,c,d,e,f,g均是小于10的自然数,
所以可以得到1000d=1000a,
100a=100b,
10b=10c,
c=d,因此得到a=b=c=d;
因此这类七位数的特点是前四位上的数字一样,与后四位数上的数字没有关
系.(1111+111=111+11111)
所以最小的是1111111.
答:这类七位数中最小的是1111111.
9. 将一个不能被3整除的自然数,拆分成若干个自然数的和.那么,在这若干个自然数中不能被3整除的数至少有_____个.
解:不能被3整除的数至少有1个,否则每个数都能被3整除,其和必为3的倍数,与已知产生矛盾.
故答案为:1.
10. 整数除以整数,商一定是整数._______.
解:整数除以整数,商不一定是整数,如:
2÷4=0.5;
6÷9=
2
3
;
商不是整数;
故答案为:错误.。