[09真题] 2009年湖南省郴州市初中毕业考试数学试卷[word][评分标准]
- 格式:doc
- 大小:251.50 KB
- 文档页数:8
2009年湘西自治州初中毕业学业考试数学试题卷姓名: 准考证号: ----------------------------------------------------------------------------------------------------------------- 注意事项:1、本卷为试题卷,考生应在答题卡上作答,在试题卷、草稿纸上答题无效.2、答题前,考生须先将自己的姓名、准考证号分别在试题卷和答题卡上填写清楚.3、答题完成后,请将试题卷、答题卡、草稿纸放在桌上,由监考老师统一收回.4、本试卷三大题,25小题,时量120分钟,满分120分.-----------------------------------------------------------------------------------------------------------------一、填空题(本大题8小题,每小题3分,共24分. 将正确答案填在答题卡相应横线上) 1.数3的绝对值是 .2.用代数式表示“a 与b 的和”,式子为 .3.如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号) 4.一个圆的半径是4,则圆的面积是 .(答案保留π) 5.一次函数3y x b =+的图像过坐标原点,则b 的值为 .6.长方形一条边长为3cm ,面积为12cm 2,则该长方形另一条边长为 cm .7.截止到2008年底,湘西州在校小学生中的少数民族学生数约为21.2万人,约占全州小学生总数的80%,则全州的小学生总数大致为 万.(保留小数点后一位)8.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba b a -+,如3※2=52323=-+.那么12※4= . 二、选择题(本大题8个小题,每小题3分,共24分. 将每个小题所给四个选项中惟一正确选项的代号在答题卡上填涂)9. 一个角是80°,它的余角是( )A .10°B .100°C .80°D .120°10.要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( )A .个体B .总体C .样本容量D .总体的一个样本11.在下列运算中,计算正确的是( )A .326a a a ⋅=B .235()a a =C .824a a a ÷=D .2224()ab a b =12.在直角坐标系中,点M (sin50°,-cos70°)所在的象限是( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限13.在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相平分的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形14.O ⊙的半径为10cm ,弦AB =12cm ,则圆心到AB 的距离为( ) A . 2cmB . 6cmC . 8cmD . 10cm15.一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,摸到黄球的概率是( ) A .23B .15C .25D .3516.如图,12//l l ,∠1=120°,∠2=100°,则∠3= ( ) A .20°B .40°C .50°D .60°三、解答题(本大题9小题,共72分,每个题目都要求在答题卡的相应位置写出计算或证明的主要步骤) 17.(本题5分)先化简再计算:y x yx y x +---222,其中x =3,y =2.18.(本题5分)解方程:2725x y x y -=⎧⎨+=⎩①②19.(本题6分)如图,在△ABC 中,DE ∥BC , EF ∥AB ,求证:△ADE ∽△EFC .20.(本题6分)吉首某中学九年级学生在社会实践中,向市区的中小学教师调查他们的学历情况,并将调查结果分别用下图的扇形统计图和折线统计图(不完整)表示.l 1l 2123ABCDEF(1) 求这次调查的教师总数; (2) 补全折线统计图.21.(本题6分)在反比例函数xk y的图像的每一条曲线上,y 都随x 的增大而减小.(1) 求k 的取值范围;(2) 在曲线上取一点A ,分别向x 轴、y 轴作垂线段,垂足分别为B 、C ,坐标原 点为O ,若四边形ABOC 面积为6,求k 的值.22.(本题6分)如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:(1) 未开始收绳子的时候,图中绳子BC 的长度是 多少米?(2) 收绳8秒后船向岸边移动了多少米?(结果保留根号)23.(本题8分)2009年5月22日,“中国移动杯”中美篮球对抗赛在吉首进行.为组织该活动,中国移动吉首公司已经在此前花费了费用120万元.对抗赛的门票价格分别为80元、200元和400元.已知2000张80元的门票和1800张200元的门票已经全部卖出.那么,如果要不亏本,400元的门票最低要卖出多少张?24.(本题10分)如图,等腰直角△ABC 腰长为a ,现分别按图1、图2方式在△ABC 内内接一个正方形ADFE 和正方形PMNQ .设△ABC 的面积为S ,正方形ADFE 的面积为S 1,正方形PMNQ 的面积为S 2, (1) 在图1 中,求AD ∶AB 的值;在图2中,求AP ∶AB 的值; (2) 比较S 1+S 2与S 的大小.25.(本题20分)在直角坐标系xoy 中,抛物线2y x bx c =++与x 轴交于两点A 、B ,与y 轴交于点C ,其中A 在B 的左侧,B 的坐标是(3,0).将直线y kx =沿y 轴向上平移3个单位长度后恰好经过点B 、C .(1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.2009年湘西自治州初中毕业学业考试数学参考答案一、(本题8小题,每题3分,共24分,填错记0分)1.3; 2.a +b ; 3.<; 4.16π; 5.0; 6.4; 7.26.5; 8.1/2 二、(本题8小题,每题3分,共24分,选错记0分)图1 图2AEC F B DAQCM B NP9.A 10.C 11.D 12.D 13.C 14.C 15.C 16.B 三、(本题9个题,共72分) 17.(本题5分)解:原式=y x y x y x y x +---+2)())(( ··············································································· 2分=x +y -2x +y =-x +2y ···································································································· 4分 因为 x =3,y =2所以原式=-3+4=1 ······················································································· 5分 18.(本题5分)解:①+② 得 4x =12,即 x =3 ············································································· 2分 代入① 有6-y =7,即 y =-1 ······································································ 4分所以原方程的解是:⎩⎨⎧-==13y x ···················································································· 5分19.(本题6分)证明:∵DE ∥BC ,∴DE ∥FC ,∴∠AED =∠C ······························································ 3分又∵EF ∥AB ,∴EF ∥AD ,∴∠A =∠FEC ······························································· 5分 ∴△ADE ∽△EFC ····························································································· 6分 20.(本题6分)解:(1)总人数=27555%500÷=人 ·························································· 3分(2)教师中专科学历的人数=50010%50⨯=人 ·············································· 4分 作图: ·········································································································· 6分21.(本题6分)解(1)因为y 的值随x 的增大而减小,所以k >0 ···················································· 2分 (2)设A (x 0,y 0)则由已知,应有|x 0y 0|=6 ········································································· 4分 即|k |=6 而k >0所以k =6. ··································································································· 6分 22.(本题6分)解(1)如图,在Rt △ABC 中,BCAC =sin30° ······························································ 2分∴ BC =︒sin305=10米 ······························································· 3分(2)收绳8秒后,绳子BC 缩短了4米,只有6米, ·········································· 4分 这时,船到河岸的距离为1125365622=-=-米. ······································ 6分 23.(本题8分)解:2000张80元的门票收入为2000×80=160000元; ·············································· 2分 1800张200元的门票收入为1800×200=360000元;·············································· 4分 1200000-160000-360000=680000元, ······························································· 5分 故400元的门票至少要卖出:680000÷400=1700张. 答:400元的门票最少要卖出1700张. ······························································· 8分 24.(本题10分)解(1)图1中,∵AD =DF ,∠B =45°,从而DF =DB ,∴AD =DB , ∴AD ∶AB =1∶2 ············································································· 2分 图2中,∵PM =MN ,∠B =45°,从而PM =MB ,∴MN =MB , ∴MN =MB =NC ,∴AP ∶AB =PQ ∶BC =MN ∶BC =1∶3 ································································· 4分 (2)图1中,S 1=224121a a =⎪⎭⎫⎝⎛ ·············································································· 6分又PQ ∶BC =AP ∶AB =1∶3,∴PQ =a 32,∴S 2=229232a a =⎪⎪⎭⎫ ⎝⎛ ·········································································· 8分 从而S 1+S 2=2236179241a a =⎪⎭⎫⎝⎛+又S =22361821a a = ∴S 1+S 2<S ····················································································································10分 25.(本题20分)解(1)直线y kx =沿y 轴向上平移3个单位后,过两点B ,C从而可设直线BC 的方程为3y kx =+ ··········································································· 2分 令0x =,得C (0,3)································································································ 3分又B (3,0)在直线上, ∴033k =+∴1k =-······················································································································· 5分 (2)由(1),直线BC 的方程为3y x =-+ ································································· 7分 又抛物线2y x bx c =++过点B ,C∴⎩⎨⎧=++=0393c b c ⇒⎩⎨⎧=-=34c b∴抛物线方程为243y x x =-+····················································································10分 (3)由(2),令2430x x -+=得1213x x ==, ··········································································································12分 即A (1,0),B (3,0),而C (0,3) ∴△ABC 的面积S △ABC =21(3-1)·3=3平方单位 ····························································15分(4)由(2),D (2,1-),设对称轴与x 轴交于点F ,与BC 交于E ,可得E (2,1), 连结AE .∵1AF FB FE ===∴AE ⊥CE ,且AE =2,CE =22 (或先作垂线AE ⊥BC ,再计算也可) 在Rt △AFP 与Rt △AEC 中, ∵∠ACE =∠APE (已知) ∴CEPF AEAF = 即21=22PF∴2P F = ······································································ 18分 ∴点P 的坐标为(2,2)或(2,2-) ·························· 20分 (x 轴上、下方各一个) (注:只有一个点扣1分)。
茂名中考数学试卷答案 第 1 页 (共4 页)(4,4)(4,1)(4,2)(4,3)(3,1)(3,2)(3,3)(3,4)(2,1)(2,2)(2,3)(2,4)(1,1)(1,2)(1,3)(1,4)12344321ba茂名市2009年初中毕业生学业考试与高中阶段学校招生考试数学试题参考答案及评分标准说明:1.如果考生的解与本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷。
2.解答题右端所注的分数,表示考生正确做到这一步应得的累加分数.11、1 12、2113、2 14、60 15、110 三、(本大题共3小题,每小题8分,共24分.)16、(1)解:原式=821⨯⨯··············································2分 =4.······················································4分 (2)解:由①-②得: 3=y ,···········································2分∴把3=y 代入①得:2-=x ,····································3分∴方程组的解为⎩⎨⎧=-=32y x .·······································4分17、解:(1)列表(或树状图)得:因此,点A ()b a ,的个数共有16个;··4分(2)若点A 在x y =上,则b a =,由(1)得P (b a =)=41164=, 因此,点A ()b a , 在函数x y =图象上的概率为41.························8分 18、解:如图所示:每画对一个3分,共6分△ABC 与△A 1B 1C 1不一定全等.········8分四、(本大题共2小题,每小题8分,共16分.)19、解:(1)九年级捐书数为:12004%301000=⨯⨯(本)··························1分八年级捐书数为:21006%351000=⨯⨯(本)··························2分 七年级捐书数为:7002%351000=⨯⨯(本)···························3分 ∴捐书总本数为:1200+2100+700=4000(本)·····························5分 因此,该校学生捐图书的总本数为4000本.······························6分 (2)4000÷1000=4(本)····················································7分因此,该校平均每人捐图书4本.·······································8分茂名中考数学试卷答案 第 2 页 (共4 页)20、解:∵方程有实数根,∴042≥-ac b ,∴()0)1(442≥+--k ,即3≤k .···2分解法一:又∵()()k k x -±=+--±=32214442,·······························3分∴4)32()32(21=--+-+=+k k x x ,································4分 1)32()32(21+=--⋅-+=⋅k k k x x ,······························5分若2121x x x x +>⋅,即41>+k ,∴3>k .·····························7分 而这与3≤k 相矛盾,因此,不存在实数k ,使得2121x x x x +>⋅成立.·······8分 解法二:又∵41421=--=-=+ab x x ,·········································4分11121+=+==⋅k k ac x x ,········································5分(以下同解法一) 五、(本大题共3小题,每小题10分,共30分.)21、解:(1)依题意得:x x y 1100)2008002100(1=--=,·····························3分20000120020000)10011002400(2-=---=x x y ,············6分(2)设该月生产甲种塑料x 吨,则乙种塑料(700-x )吨,总利润为W 元,依题意得:20000)700(12001100--+=x x W 820000100+-=x .··················7分 ∵⎩⎨⎧≤-≤400700400x x ,解得:400300≤≤x . ································8分 ∵0100<-,∴W 随着x 的增大而减小,∴当300=x 时,W 最大=790000(元).····9分 此时,400700=-x (吨)因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.···10分 22、证明:(1)连接BM ,∵B 、C 把OA 三等分, ∴∠1=∠5=︒60,···················1分又∵OM=BM ,∴∠2=21∠5=︒30, ·····································2分 又∵OA 为⊙M 直径,∴∠ABO=︒90,∴AB=21OA=OM ,∠3=︒60,········3分∴∠1=∠3, ∠DOM=∠ABO=︒90,······································4分在△OMD 和△BAO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠ABO DOM AB OM 31···········5分∴△OMD ≌△BAO (ASA )·······················6分(2)若直线l 把⊙M 的面积分为二等份,则直线l 必过圆心M ,··························7分∵D (0,3),∠1=︒60, ∴OM =33360tan ==︒OD ,∴M ()0,3,···········8分把M()0,3代入b kx y +=得:03=+b k ····10分茂名中考数学试卷答案 第 3 页 (共4 页)123、解:(1)设2006年底至2008年底手机用户的数量年平均增长率为x ,依题意得:·······1分()721502=+x ,·····················································3分 ∴2.11±=+x , ∴2.01=x ,2.22-=x (不合题意,舍去),·············4分 ∴2006年底至2008年底手机用户的数量年平均增长率为20%.···············5分 (2)设每年新增手机用户的数量为y 万部,依题意得:··························6分()[]98.103%)51(%5172≥+-+-y y ,·································8分 即()98.10395.04.68≥+⋅+y y ,98.10395.095.04.68≥++⨯y y ,98.10395.198.64≥+y ,3995.1≥y ,∴20≥y (万部).···············9分∴每年新增手机用户数量至少要20万部.·································10分 六、(本大题共2小题,每小题10分,共20分.) 24、解:(1)当△ABC 与△DAP 相似时,∠APD 的度数是︒60或︒30.···········2分(2)设PC=x ,∵PD//BA ,∠BAC=︒90,∴∠PDC =︒90,···············3分又∵∠C=︒60,∴AC==︒⋅60cos 2412,CD=x x 2160cos =︒⋅,∴AD=x 2112-,而PD=x x 2360sin =︒⋅,·························4分 ∴S △APD =21PD ·AD =⎪⎭⎫ ⎝⎛-⋅⋅x x 21122321····························5分 =()x x 24832--=()31812832+--x . ∴PC 等于12时,△APD 的面积最大,最大面积是318.·········6分(3)设以BP 和AC 为直径的圆心分别为O 1、O 2,过O 2作O 2E ⊥BC 于点E ,设⊙O 1的半径为x ,则BP=2x .显然,AC=12,∴O 2C =6,∴CE==︒⋅60cos 63,∴O 2E=333632=-,O 1E=x x -=--21324,·······················7分 又∵⊙O 1和⊙O 2外切,∴O 1O 26+=x .··································8分 在Rt △O 1O 2E 中,有O 1O 22= O 2E 2+O 1E 2,∴()()()22233216+-=+x x ,·········································9分解得:8=x , ∴BP=162=x .·······································10分茂名中考数学试卷答案 第 4 页 (共4 页)25、解:(1)∵M ⎪⎭⎫ ⎝⎛41,0在b x y +=31上,∴b +⨯=03141 ,∴41=b .············2分 (2)由(1)得:4131+=x y , ∵B 1()1,1y 在l 上, ∴当1=x 时,127411311=+⨯=y ,∴B 1⎪⎭⎫⎝⎛127,1.··················3分 解法一:∴设抛物线表达式为:()12712+-=x a y )0(≠a ,·····················4分 又∵1x =d , ∴A 1()0,d ,∴()127102+-=d a ,∴()21127--=d a ,·······5分 ∴经过点A 1 、B 1 、A 2的抛物线的解析式为:()()1271112722+---=x d y .···6分 解法二:∵1x =d ,∴A 1()0,d ,A 2()0,2d -,∴设())2(d x d x a y +-⋅-=)0(≠a ,4分把B 1⎪⎭⎫ ⎝⎛127,1代入:())21(1127d d a +-⋅-=,得()21127--=d a ,·········5分 ∴抛物线的解析式为:()()()d x d x d y +-⋅---=211272.·················6分 (3)存在美丽抛物线.·····················································7分由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰直角三角形, ∴此等腰直角三角形斜边上的高等于斜边的一半,又∵10<<d , ∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1, 即抛物线的顶点的纵坐标必小于1.∵当1=x 时,411311+⨯=y 当2=x 时,412312=+⨯=y 当3=x 时,413313=+⨯=y ∴美丽抛物线的顶点只有B 1、B 2.·········································8分①若B 1为顶点,由B 1⎪⎭⎫ ⎝⎛127,1,则1251271=-=d ;·························9分 ②若B 2为顶点, 由B 2⎪⎭⎫ ⎝⎛1211,2,∴12111121121=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--=d ,综上所述,d 的值为125或1211时,存在美丽抛物线.······················10分。
2009年湖南省普通高中学业水平考试试卷物理真题试卷第I卷(选择题共60分)一、选择题(本题包括20小题,每小题3分,共60分。
每小题只有一个....选项符合题意。
)下列第1-15题为所有考生必答题。
1.下列单位属于国际单位制的基本单位的是A.牛顿B.焦耳C.米D.米/秒2.发现行星运动的三个定律的天文学家是A.开普勒B.伽利略C.卡文迪许D.爱因斯坦3.描述物体惯性的物理量是物体的A.体积B.质量C.速度D.密度4.用细线拴住一个小球在光滑的水平面内做匀速圆周运动,下列描述小球运动的物理量,发生变化的是A.动能B.线速度C.周期D.角速度5.经典力学的适用范围是A.宏观世界,低速运动B.微观世界,低速运动C.宏观世界,高速运动D.微观世界,高速运动6.两个共点力的大小分别为6N和8N,这两个共点力的合力的最大值是A.6N B.8N C.10N D.14N7.在竖直悬挂的轻质弹簧下端挂一个钩码,弹簧伸长了4cm,如果在该弹簧下端挂两个这样的钩码(弹簧始终发生弹性形变),弹簧的伸长量为A.4cm B.6cm C.8cm D.16cm8.一小球在周长为2m的圆形轨道上运动,从某点开始绕行一周又回到该点,则小球的A.位移大小是0,路程是2m B.位移大小和路程都是2mC.位移大小是2m,路程是0 D.位移大小和路程都是09.如图所示,放在固定斜面上的物体处于静止状态,物体所受静摩擦力的方向是A.垂直斜面向上B.垂直斜面向下C.沿斜面向上D.沿斜面向下10.玩具汽车在水平面上运动有如下四种情形,所受合力为零的情形是A.做匀速直线运动B.做匀速圆周运动C.做匀加速直线运动D.做匀减速直线运动11.物体做自由落体运动的过程中,下列说法正确的是A .物体的重力势能越来越小B .物体的动能越来越小C .物体的加速度越来越小D .物体所受重力的瞬时功率越来越小 12.机车A 拉着一节车厢B 向右行驶。
用F AB 和F BA 分别表示A 对B 和B 对A 的作用力,则F AB 和F BA 的大小关系是 A .F AB >F BA B .F AB <F BA C .F AB =F BAD .无法确定 13.一个物体做直线运动,其v-t 图象如图所示。
衡阳市2009年初中毕业学业考试试卷数 学考生注意:1、本学科试卷共三道大题,满分120分,考试时量120分钟.2、本试卷的作答一律答在答题卡上,选择题用2B 铅笔按涂写要求将你认为正确的选项涂黑;非选择题用黑色墨水签字笔作答,作答不能超出黑色矩形边框.直接在试题卷上作答无效.一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、 函数A .x2、 A .3、A . 4、 大致为( C )5、 如图6、 如图AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( A )A .AB 中点B .BC 中点C .AC 中点D .∠C 的平分线与AB 的交点 7、 已知33-=-y x ,则y x 35+-的值是( D )A .0B .2C .5D .88、 两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 ( A ) A .相交 B .外离 C .内含 D .外切图29、 如图3,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( A ) ①DE=3cm ; ②EB=1cm ; ③2A BCD 15S cm =菱形. A .3个B .2个C .1个D .0个10、如图4,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与1,-1) . -1 . 于H 点,连结CF ,且CF=2,则HE 的长为 3 .三、解答题(本大题共10个小题,满分72分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分6分)解下列不等式组,并把解集在数轴上表示出来.⎩⎨⎧≥+-<- x x x )2(33)1(2)1(02 解:由(1)得:C图32<x由(2)得:11 3322≤-≥-≥+- x x x x 把它们的解集在数轴上表示如下:1819(1)请你根据图中的数据填写下表:(2)从平均数和方差相结合看,分析谁的成绩好些.解:甲、乙两人射靶成绩的平均数都是6,但甲比乙的方差要小,说明甲的成绩较为稳定,所以甲的成绩比乙的成绩要好些.-1 012320、(本小题满分6分) 已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式. 解:设这个二次函数的关系式为2)1(2--=x a y 得: 2)10(02--=a解得:2=a∴这个二次函数的关系式是2)1(22--=x y ,即x x y 422-=21、(本小题满分7分)一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色处没有任何其他区别现.从中任意摸出一个球.(1)计算摸到的是绿球的概率. (2)如果要使摸到绿球的概率为41,需要在这个口袋中再放入多少个绿球? 解:(1)P (摸到绿球)61183==. (2) 设需要在这个口袋中再放入x 个绿球,得:13=+x22如图AC ,BD . (1(2;∴360)2(904322OC -=ππ解得:OC =1cm .23、(本小题满分8分) 如图9,△ABC 中,AB=AC ,AD 、AE 分别是∠BAC 和∠BAC 和外角的平分线,BE ⊥AE . (1)求证:DA ⊥AE ;(2)试判断AB 与DE 是否相等?并证明你的结论.解:(1)证明:图8图9A B CD EFAEDA DAE BAF BAC ⊥⇒︒=∠⇒︒=︒⨯=∠+∠∠+∠⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫︒=∠+∠∠∠⇒∠∠∠⇒∠909018021)(21BAE BAD 180BAF BAC BAF 21BAE BAF AE BAC 21BAD BAC AD ==平分=平分(2)AB =DE ,理由是:AD AB = 24S 1((1 (2 (3∴图中线段AB 所表示的S 2与t 间的函数关系式为:8102-t S =,自变量t 的取值范围是:10.8≤≤t .25、(本小题满分9分) 如图11,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.解:(1)∵AB 是⊙O 的直径(已知)∴∠ACB =90º(直径所对的圆周角是直角)∵∠ABC =60º(已知)∴∠BAC =180º-∠ACB -∠ABC = 30º(三角形的内角和等于180º) ∴AB =2BC =4cm (直角三角形中,30º锐角所对的直角边等于斜边的一半)即⊙O 的直径为4cm .(2)如图10(1)CD 切⊙O 于点C ,连结OC ,则OC =OB =1/2·AB =2cm .∴CD ⊥CO (圆的切线垂直于经过切点的半径) ∴∠OCD =90º(垂直的定义)∵∠BAC = 30º(已求)∴∠COD =2∠BAC = 60º(在同圆或等圆中一条弧所对的圆周角等于它所对的圆心角的一半)∴∠D =180º-∠COD -∠OCD = 30º(三角形的内角和等于180º) ∴OD =2OC =4cm (直角三角形中,30º锐角所对的直角边等于斜边的一半) ∴BD =OD -OB =4-2=2(cm )∴当BD 长为2cm ,CD 与⊙O 相切. (3)根据题意得:BE =(4-2t )cm ,BF =tcm ;如图10(2)当EF ⊥BC 时,△BEF 为直角三角形,此时△BEF ∽△BAC ∴BE :BA =BF :BC 即:(4-2t ):4=t :2 解得:t =1如图10(3)当EF ⊥BA 时,△BEF 为直角三角形,此时△BEF ∽△BCA ∴BE :BC =BF :BA 即:(4-2t ):2=t :4 解得:t =1.6∴当t =1s 或t =1.6s 时,△BEF 为直角三角形.26、(本小题满分9分)如图12,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D . (1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由;(2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.图10(3)B图10(1)B图10(2)解:(1)设点M 的横坐标为x ,则点M 的纵坐标为-x+4(0<x<4,x>0,-x+4>0); 则:MC =∣-x+4∣=-x+4,MD =∣x ∣=x ;∴C 四边形OCMD =2(MC+MD )=2(-x+4+x )=8∴当点M 在AB 上运动时,四边形OCMD 的周长不发生变化,总是等于8; (2)根据题意得:S 四边形OCMD =MC ·MD =(-x+4)· x =-x 2+4x =-(x-2)2+4∴四边形OCMD 的面积是关于点M 的横坐标x (0<x<4)的二次函数,并且当x =2,即当点M 运动到线段AB 的中点时,四边形OCMD 的面积最大且最大面积为4; (3)如图10(2),当20≤<a 时,411422+-=-=a a S ; 2)4-;图12(1)图12(2)图12(3))4<。
港中数学网2009年初中毕业生学业考试数 学 试 卷说明:本试卷共 4 页,23 小题,满分 120 分.考试用时 90 分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 5.本试卷不用装订,考完后统一交县招生办(中招办)封存. 参考公式: 抛物线2y ax bx c =++的对称轴是直线2b x a=-, 顶点坐标是424b ac b a a 2⎛⎫-- ⎪⎝⎭,.一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.12-的倒数为( ) A .12B .2C .2-D .1-2.下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D . 港中数学网二、填空题:每小题 3分,共 24 分. 6.计算:2()a a -÷= .7.梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为 .8.如图1,在O ⊙中,20ACB ∠=°,则AOB ∠=_______度.9.如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度.10.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .11.已知一元二次方程22310x x --=的两根为12x x ,,则12x x = ___________. 12.如图4,把一个长方形纸片沿EF 折叠后,点D C 、分别落在11 D C 、的位置.若65EFB ∠=°,则1AED ∠等于_______度.13. 如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.A .B .C .D .C 图1图3 A E D C F B D 1C 1图4… … 第1幅 第2幅 第3幅 第n 幅 图5 港中数学网三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分 7 分. 如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度;(2)当线段460A B A C B =∠=,°时,ACD ∠= ______度, ABC △的面积等于_________(面积单位).15.本题满分 7 分.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (分钟)的关系如图7所示.根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时; (3)小明去图书馆时的速度是______________千米/小时.16.本题满分 7 分.计算:112)4cos30|3-⎛⎫++- ⎪⎝⎭°.17.本题满分 7 分. 求不等式组1184 1.x x x x --⎧⎨+>-⎩≥,的整数解.C BD A 图6Q(分)图7 港中数学网18.本题满分 8 分.先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =.19.本题满分 8 分.如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:CDF BGF △∽△; (2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.20.本题满分 8 分.“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?21.本题满分 8 分. 如图10,已知抛物线233y x x =+与x 轴的两个交点为A B 、,与y 轴交于点C . (1)求A B C ,,三点的坐标;D C FE A BG 图8图9地点 港中数学网(2)求证:ABC △是直角三角形; (3)若坐标平面内的点M ,使得以点M 和三点 A B C 、、为顶点的四边形是平行四边形,求点M 的坐标.(直接写出点的坐标,不必写求解过程)22.本题满分 10 分.如图 11,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G . (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.23.本题满分 11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)如图 12,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;(2)设OP t =,OPQ △的面积为S ,求S 关于t 的函数关系式;并求出当02t <<时,S 的最大值;(3)直线1L 过点A 且与x 轴平行,问在1L 上是否存在点C , 使得CPQ △是以Q 为直角顶点的等腰直角三角形?若存在,求出点C 的坐标,并证明;若不存在,请说明理由.L 1xC B 图11 港中数学网2009年梅州市初中毕业生学业考试数学参考答案及评分意见一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.C 2.B 3.D 4.B 5.C 二、填空题:每小题 3分,共 24 分.6.a 7.63.610⨯ 8.40 9.4(1分),72(2分) 10.小张 11.12-12.50 13.7(1分),21n -(2分) 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. (1)90 ···································································································································· 2分 (2)30 ···································································································································· 4分······························································································································· 7分 15.本题满分 7 分. (1)3 ····································································································································· 2分 (2)1 ····································································································································· 4分 (3)15 ···································································································································· 7分 16.本题满分 7 分.解:112)4cos30|3-⎛⎫++- ⎪⎝⎭°.1342=++······································································································ 4分43=+-················································································································ 6分 4= ······································································································································ 7分17.本题满分 7 分.解:由11x x --≥得1x ≥, ······························································································ 2分 由841x x +>-,得3x <. ······························································································ 4 分 所以不等式组的解为:13x <≤, ···················································································· 6 分 所以不等式组的整数解为:1,2. ······················································································· 7 分 18.本题满分 8 分.解:2224441x x x x x x x --+÷-+-2(2)(2)(1)(2)1x x x x x x x -+-=+÷-- ············································· 3分212x x +=+- 港中数学网22xx =- ··································································································································· 6分 当32x =时,原式3226322⨯==--. ························································································ 8分 19.本题满分8 分.(1)证明:∵梯形ABCD ,AB CD ∥, ∴CDF FGB DCF GBF ∠=∠∠=∠,, ······················ 2 分∴CDF BGF △∽△. ···························· 3分(2) 由(1)CDF BGF △∽△,又F 是BC 的中点,BF FC = ∴CDF BGF △≌△, ∴DF FG CD BG ==, ················································ 6分又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+. ∴22462BG EF AB =-=⨯-=, ∴2cm CD BG ==. ··········································································································· 8分 20.本题满分 8 分. 解:(1)30;20. ·············································································································· 2 分 (2)12. ···························································································································· 4 分或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平. ························································ 8 分D C F EA BG19题图 1 2 3 4 1 1 2 3 4 2 1 2 3 4 3 1 2 3 4 4 开始 小张 小李 港中数学网21.本题满分 8 分.(1)解:令0x =,得y =(0C . ························································ 1分令0y =,得20x x ,解得1213x x =-=,, ∴(10)(30)A B -,,,. ·································································································· 3分(2)法一:证明:因为22214AC =+=,222231216BC AB =+==,, ························ 4分 ∴222AB AC BC =+, ··············································· 5分 ∴ABC △是直角三角形. ·········································· 6分法二:因为13OC OA OB ===,,∴2OC OA OB = , ··············································································································· 4分 ∴OC OB OA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△. ································································································ 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形. ····················································· 6 分(3)1(4M,2(4M -,3(2M .(只写出一个给1分,写出2个,得1.5分) ····································································· 8分22.本题满分 10 分.(1)①65····································································· 2分②法一:在矩形ABCD 中,AD BC =,ADE BCE ∠=∠,又CE DE =, ∴ADE BCE △≌△, ················································ 3分得AE BE EAB EBA =∠=∠,,连OF ,则OF OA =, ∴OAF OFA ∠=∠, OFA EBA ∠=∠, ∴OF EB ∥, ·················································································· 4 分 ∵FG BE ⊥, ∴FG OF ⊥, ∴FG 是O ⊙的切线 ································································································· 6分 (法二:提示:连EF DF ,,证四边形DFBE 是平行四边形.参照法一给分.) (2)法一:若BE 能与O ⊙相切, ∵AE 是O ⊙的直径, ∴AE BE ⊥,则90DEA BEC ∠+∠=°,又90EBC BEC ∠+∠=°, ∴DEA EBC ∠=∠,∴Rt Rt ADE ECB △∽△,22题图x21题图M 1 3 港中数学网∴AD DE EC BC =,设DE x =,则53EC x AD BC =-==,,得353xx =-, 整理得2590x x -+=. ······································································································· 8 分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ·········································· 10分 法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°,设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=, ······································· 8分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ·········································· 10分 (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分) 23.本题满分 11 分.(1)1y x =- ························································································································ 2分 (2)∵OP t =,∴Q 点的横坐标为12t , ①当1012t <<,即02t <<时,112QM t =-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ······································································································ 3分 ②当2t ≥时,111122QM t t =-=-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ∴1110222111 2.22t t t S t t t ⎧⎛⎫-<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪- ⎪⎪⎝⎭⎩,,,≥ ······························································································ 4分当1012t <<,即02t <<时,211111(1)2244S t t t ⎛⎫=-=--+ ⎪⎝⎭, ∴当1t =时,S 有最大值14. ······························································································ 6分 (3)由1O A O B ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ△。
2009年来宾市初中毕业升学统一考试试题数学(考试时间:120分钟;满分:120分)第Ⅰ卷说明:1.本试卷分第Ⅰ卷(填空题和选择题)和第Ⅱ卷(答卷,含解答题)两部分.第Ⅰ卷共2页,第Ⅱ卷共6页.考试结束后,将第Ⅰ卷和第Ⅱ卷一并收回,并将第Ⅱ卷按规定装订密封.2.请考生将填空题和选择题的正确答案填写在第Ⅱ卷中规定的位置,否则不得分.一、填空题:本大题共10小题,每小题3分,共30分.请将答案填写在第Ⅱ卷相应题号后的横线上.1.如果将收入500元记作500元,那么支出237元记作__________元.2.已知AB 、CD 分别是梯形ABCD 的上、下底,且AB =8,CD =12,EF 是梯形的中位线,则EF =__________.3.分解因式:x 2-4=____________________.4.化简:823+=__________.5.二元一次方程组⎩⎨⎧=-=+2332y x y x 的解是__________.6.如果反比例函数的图象过点(2,-1),那么这个函数的关系式是__________.7.用四舍五入法,并保留3个有效数字对129 551取近似数所得的结果是__________.8.如图,已知AB ∥CD ,CE 平分∠ACD ,∠A =50°,则∠ACE =__________°.9.已知关于x 的方程x 2+mx +n =0的两个根分别是1和-3,则m =__________. 10.请写出一个对任意实数都有意义.........的分式.你所写的分式是_____________.(第8题图)A C E DB二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填写在第Ⅱ卷相应题号下的空格中.11.下列图形中,不是..正方体表面展开图的是(第11题图)D C BA12.如图,在⊙O 中,∠BOC =100°,则∠A 等于A .100°B .50°C .40°D .25°13.已知一个多边形的内角和是900°,则这个多边形是A .五边形B .六边形C .七边形D .八边形14.已知下列运算:①()4222y x xy =-;②224x x x =÷;③()c b a c b a --=--; ④43722=-x x .其中正确的有A .①②③④B .①②③C .①②④D .①② 15.不等式组⎩⎨⎧≤->+0603x x 的解集是A .-3<x ≤6B .3<x ≤6C .-3<x <6D .x >-3 16.若圆锥的底面周长是10π,侧面展开后所得的扇形的圆心角为90°,则该圆锥的侧面积是A .25πB .50πC .100πD .200π17.如图,正方形的四个顶点在直径为4的大圆圆周上,四条边与小圆都相切,AB 、CD 过圆心O ,且AB ⊥CD ,则图中阴影部分的面积是A .4πB .2πC .πD .2π 18.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前4位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .121B .61C .41D . 31 B (第17题图)(第12题图)。
第 1 页 共 8 页2009年郴州市初中毕业考试试卷数 学注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对答题卡上的姓名、准考证号和科目.2.考生作答时,选择题和非选择题均需作在答题卡上,在本试题卷上作答无效. 考生在答题卡上按答题卡中注意事项的要求答题.3.考试结束后,将本试题卷和答题卡一并交回.4.本试卷包括试题卷和答题卡. 满分100分,考试时间120分钟.试题卷共4页.如缺页,考生需声明,否则后果自负.一、选择题(本题满分20分,共10小题,每小题2分) 1. -5的绝对值是( ) A .5 B .5- C .15 D . 15-2. 函数12y x =-的自变量x 的取值范围是( ) A .0x ¹ B . 2x ¹ C . 2x > D . 2x <3. 下列各式计算不正确...的是( ) A .(3)3--= B2 C .()3339x x = D .1122-=4.我市免费义务教育已覆盖全市城乡,2008年初中招生人数达到47600人,将数据47600用科学记数法表示为( ) A . 44.7610´B . 54.7610´C . 50.47610´D . 347.610´5.点(35)p ,-关于x 轴对称的点的坐标为( ) A . (3,5)-- B . (5,3) C .(3,5)- D . (3,5)6.为了支援地震灾区学生,学校开展捐书活动,以下是某学习小组5名学生捐书的册数:3,9,3,7,8,则这组数据的中位数是( )A .3B . 7C .8D . 9 7. 不等式26x ≤的解集为( )A .3x ≥B . 3x ≤C . 13x ≥D . 13x ≤ 8.两圆的半径分别为3cm 和8cm ,圆心距为7cm ,则该两圆的位置关系为( )A .外离B . 外切C .相交D .内含9. 如图1已知扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )第 2 页 共 8 页A . 24πcmB . 26πcmC . 29πcmD . 212πcm10.如图2是一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6cm ,则CD =( )A .4cmB .6cmC .8cmD .10cm 二、填空题(本题满分16分,共8小题,每小题2分) 11.7的倒数是___________.12.因式分解:2m m -=_______________.13.方程320x +=的解是______________.14.如图3,在四边形ABCD 中,已知AB CD =,再添加一个条件___________(写出一个即可),则四边形ABCD 是平行四边形.(图形中不再添加辅助线)15. 如图4,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,1Ð与2Ð的和总是保持不变,那么1Ð与2Ð的和是_______度.16.抛物线23(1)5y x =--+的顶点坐标为__________.17.不透明的袋中装有2个红球和3个黑球,它们除颜色外没有任何其它区别,搅匀后小红从中随机摸出一球,则摸出红球的概率是__________. 18.如图5,在O 中,40AB AC A°=?,,则B Ð=________度.三、解答题(本题满分30分,共5小题,每小题6分) 19.计算:202(π2009)2sin 45+-+-21图4图1 120B OA6cm F E D B AC 图2D C B A 图3第 3 页 共 8 页20.化简:1a b a b b a ++--21.如图6,在下面的方格图中,将△ABC 先向右平移四个单位得到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转90°得到D A 1B 2C 2,请依次作出△A 1B 1C 1和△A 1B 2C 2。
2009年湖南省初中毕业学业考试标准数学一、考试指导思想初中毕业数学学业考试是依据《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)进行的义务教育阶段数学学科的终结性考试。
考试要有利于全面贯彻国家教育方针,推进素质教育;有利于体现九年义务教育的性质,全面提高教育质量;有利于数学课程改革,培养学生的创新精神和实践能力;有利于减轻学生过重的课业负担,促进学生生动、活泼、主动地学习。
数学学业考试命题应当根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,面向全体学生,使具有不同认知特点、不同数学发展程度的学生都能正常表现自己的学习状况。
学业考试要求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。
数学学业考试要重视对学生学习数学的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认识水平的评价;学业考试试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致,加强对学生思维水平与思维特征的考查,使试题的解答过程体现《数学课程标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等。
二、考试内容和要求(一)考试内容数学学业考试应以《数学课程标准》所规定的四大学习领域,即数与代数、空间与图形、统计与概率、实践与综合应用的内容为依据,主要考查基础知识、基本技能、基本体验和基本思想。
1.关注基础知识与基本技能了解数的意义,理解数和代数运算的算理和算法,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题。
能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能够对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性。
2009年郴州市初中毕业考试试卷数 学注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对答题卡上的姓名、准考证号和科目.2.考生作答时,选择题和非选择题均需作在答题卡上,在本试题卷上作答无效. 考生在答题卡上按答题卡中注意事项的要求答题.3.考试结束后,将本试题卷和答题卡一并交回.4.本试卷包括试题卷和答题卡. 满分100分,考试时间120分钟.试题卷共4页.如缺页,考生需声明,否则后果自负.一、选择题(本题满分20分,共10小题,每小题2分) 1. -5的绝对值是( ) A .5 B .5- C .15 D . 15-2. 函数12y x =-的自变量x 的取值范围是( ) A .0x ¹ B . 2x ¹ C . 2x > D . 2x <3. 下列各式计算不正确...的是( )A .(3)3--=B 2C .()3339x x = D .1122-=4.我市免费义务教育已覆盖全市城乡,2008年初中招生人数达到47600人,将数据47600用科学记数法表示为( ) A . 44.7610´B . 54.7610´C . 50.47610´D . 347.610´5.点(35)p ,-关于x 轴对称的点的坐标为( ) A . (3,5)-- B . (5,3) C .(3,5)- D . (3,5)6.为了支援地震灾区学生,学校开展捐书活动,以下是某学习小组5名学生捐书的册数:3,9,3,7,8,则这组数据的中位数是( )A .3B . 7C .8D . 9 7. 不等式26x ≤的解集为( )A .3x ≥B . 3x ≤C . 13x ≥D . 13x ≤ 8.两圆的半径分别为3cm 和8cm ,圆心距为7cm ,则该两圆的位置关系为( )A .外离B . 外切C .相交D .内含9. 如图1已知扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A . 24πcm B . 26πcm C . 29πcm D . 212πcm10.如图2是一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6cm ,则CD =( )A .4cmB .6cmC .8cmD .10cm 二、填空题(本题满分16分,共8小题,每小题2分) 11.7的倒数是___________.12.因式分解:2m m -=_______________.13.方程320x +=的解是______________.14.如图3,在四边形ABCD 中,已知AB CD =,再添加一个条件___________(写出一个即可),则四边形ABCD 是平行四边形.(图形中不再添加辅助线)15. 如图4,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,1Ð与2Ð的和总是保持不变,那么1Ð与2Ð的和是_______度.16.抛物线23(1)5y x =--+的顶点坐标为__________.17.不透明的袋中装有2个红球和3个黑球,它们除颜色外没有任何其它区别,搅匀后小红从中随机摸出一球,则摸出红球的概率是__________. 18.如图5,在O 中, 40AB AC A°=?,,则B Ð=________度.三、解答题(本题满分30分,共5小题,每小题6分) 19.计算:202(π2009)2sin 45+-+-20.化简:1a b a b b a ++--21图4图1 120B OA6cm F E D B AC 图2D C B A 图321.如图6,在下面的方格图中,将△ABC先向右平移四个单位得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90°得到D A1B2C2,请依次作出△A1B1C1和△A1B2C2。
22.如图7,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB的高度为1.5米,测得仰角 为30°,点B到电灯杆底端N的距离BN为10米,求路灯的高度MN,,结果保留两位小数)23.如图8,在D ABC中,已知DE∥BC,AD=4,DB=8,DE=3,(1)求ADAB的值,(2)求BC的长αN BAPM图7图6ABCACBD E图8四、证明题(本题满分8分)24. 如图9,E 是正方形ABCD 对角线BD 上的一点,求证:AE=CE .五、应用题(本题满分16分,共2小题,每小题8分)25.李大叔今年五月份购买了一台彩电和一台洗衣机,根据“家电下乡”的补贴标准:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户. 因此,李大叔从乡政府领到了390元补贴款. 若彩电的售价比洗衣机的售价高1000元,求彩电和洗衣机的售价各是多少元.26.郴州市一座美丽的旅游城市,吸引了很多的外地游客,某旅行社对5月份本社接待的外地游客来郴州旅游的首选景点作了一次抽样调查. 调查结果如下图表:(如图10) (1)此次共调查了多少人?(2)请将以上图表补充完整.(3)该旅行社预计6月份接待外地来郴的游客2500人,请你估计首选去东江湖的人数约有多少人.六、综合题(本题满分10分)0莽山万华岩802010010景点307060409050图10图9 D C E BA27. 如图11,已知正比例函数和反比例函数的图像都经过点M (-2,1-),且P (1-,-2)为双曲线上的一点,Q 为坐标平面上一动点,P A 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.2009年郴州市基础教育课程改革实验区初中毕业学业考试试卷数学参考答案及评分标准说明:一、如果考生的解法与本答案的解法不同,可参照本答案的评分意见给分.二、评卷中,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错影响了后继部分,但该步以后的解答未改变这道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分但不应超过后面部分应给分数的一半,如有严重概念错误,就不记分. 三、各题解答中右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题满分20分,共10小题,每小题2分)三、解答题(本题满分30分,共5小题,每小题6分) 19、解:原式=41+- ··························································································· 4分 = 5 ····················································································································· 6分20、解:原式=1a ba b a b -+-- ·························································································· 2分=1a ba b-+- ······································································································· 4分 =1+1 ·············································································································· 5分 =2 ················································································································ 6分 21、正确作出图形即可,图略.平移(4分)旋转(2分) 22、解:在直角三角形MPA 中,30α∠=°,10AP =米10tan 3010 5.7733MP =窗=椿米··························································· 3分因为 1.5AB =米所以 1.5 5.87.27MN =+=米 ········································································ 5分答:路灯的高度为7.27米 ··························································································· 6分 23、解:(1)因为48AD DB ==, 所以4812AB AD DB =+=+= ······························································· 1分所以41123AD AB == ························································································· 3分 (2)因为DE BC ∥,所以ADE ABC △∽△ ···················································· 4分所以DE ADBC AB= ······························································································ 5分 因为3DE =所以313BC = 所以9BC = ···································································································· 6分四、证明题(本题满分8分)24、证明:因为四边形ABCD 是正方形 所以 AB BC = ································································································ 2分ABD CBD ? ······················································································· 4分 又BE 是公共边 ·························································································· 6分 所以ABE CBE △≌△ ······················································································· 7分 所以 AE CE = ································································································ 8分五、应用题(本题满分16分,共2小题,每小题8分)25.解:设一台彩电的售价为x 元,一台洗衣机的售价为y 元 根据题意得:100013()390x y %x y ì-=ïïíï+=ïî ·················································································· 4分解得20001000x y ì=ïïíï=ïî································································································· 7分 答:略 ························································································································ 8分26.(1)300人 ····················································································································· 2分 (2)63 图略 (各2分) ······························································································ 4分 (3)25002%2597?人 ······························································································ 2分 六、综合题(本题满分10分)27. (1)设正比例函数解析式为y kx =,将点M (2-,1-)坐标代入得12k =,所以正比例函数解析式为12y x =················································································································· 2分 同样可得,反比例函数解析式为2y x= ·································································· 3分(2)当点Q 在直线DO 上运动时,设点Q 的坐标为1()2Q m m ,, ······················································································· 4分 于是211112224OBQ S OB BQ m m m △=?创=, 而1(1)(2)12OAP S △=-?=, 所以有,2114m =,解得2m =± ··············································································· 6分 所以点Q 的坐标为1(21)Q ,和2(21)Q ,-- ··································································· 7分 (3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ =PC ,而点P (1-,2-)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值. ··················································································································· 8分 因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标为2()Q n n,, 由勾股定理可得222242()4OQ n n n n=+=-+,所以当22()0n n -=即20n n-=时,2OQ 有最小值4, 又因为OQ 为正值,所以OQ 与2OQ 同时取得最小值,所以OQ 有最小值2. ·····································································································9分由勾股定理得OP OPCQ 周长的最小值是2()2)4OP OQ +==. ··································································· 10分。