高压电缆线路接地系统在线监测
- 格式:pdf
- 大小:744.10 KB
- 文档页数:6
高压电缆线路在线监测技术及应用摘要:在城市配电网中,高压电缆得到了普遍应用,但目前的电缆在线监测技术还不够成熟,为了保护电缆的安全运行,需要做好高压电缆线路在线监测技术的合理分析,进而满足实际应用需求。
本文就对高压电缆线路在线监测技术及应用进行深入探讨。
关键词:高压;电缆线路;在线监测;应用在线监控是一种通过互联网技术,对输电线路的情况进行实时监视,并能及时识别和处理线路故障的技术。
它能更加全面而精细地掌控电路各段的情况,极大地节约人力和物力。
具体来讲就是在输电线路中安插“眼睛”——传感器,传感器与终端计算机相连,可以将线路的情况如实汇总到终端,方便工作人员统计电路信息,同时还能对故障进行识别,节约维修人员的时间。
1在线监测技术概述在线监测技术是基于互联网技术研发出来的,可以利用分布在高压输电线路不同地点的传感器,对线路运行状态信息进行收集、汇总,并通过数据采集终端上传到主站监控管理平台处理。
供电企业监测人员通过对传感器上传资料信息的研究分析,对高压输电线路中可能存在的故障进行识别,从而为高压输电线路维护人员的工作提供针对性的数据支持,极大地提高了输电线路维护人员的工作效率。
为深化在线监测技术在高压输电线路中的应用,供电企业布置的在线监测装置应满足以下要求:①在线监测装置的安装方式应较为便捷,从而降低高空环境下安装人员的工作压力。
②在线监测装置应拥有统一的数据传输标准与储存标准,从而便于供电企业监测人员管理。
③在线监测装置与输电线路之间应设计缓冲区域,避免在线监测装置对输电线路造成物理伤害。
④在线监测装置应具备一定的抗干扰能力,从而保证其数据传输的准确性与全面性。
⑤在线监测装置应使用可再生能源,从而降低供电企业的后期维护成本。
2高压电缆线路在线监测技术的应用2.1导线晃动在线监测技术高压输电线路导线晃动大多是由于气候状况引起的,例如大风天气或是下雪天气,输电线路在风力或偏心重力的影响下发生大幅度的晃动。
高压电缆局部放电在线监测系统高压、超高压电缆局部放电在线监测系统主要用于监测发生在高压电缆、GIS以及与其相连高压设备中的局放信号,预测该局放的发展趋势,预防突发性的电气事故,为设备的状态检修和维护提供有效的数据依据。
该系统是一个独立的、紧凑型多功能分布式高频局放同步检测系统,采用光纤组网方式进行数据传输,实时在线监测电缆系统局部放电,通过高压电缆局放分析系统来评估系统的绝缘状态。
系统基于高频脉冲电流法测量局放的原理而设计,通过高频电流传感器(HFCT)和100Mbps采样率采集局放源点激发的脉冲电流信号。
二、技术特点
(1)采用高频脉冲电流法原理,通过高频电流传感器测量局放信号;
(2)局放监测装置可以通过单模光纤级联,组成光纤环网,控制计算机通过总线控制单元管理所有装置,进行长电缆线路分布式局放检测,各监测装置之间实现完全电气绝缘。
光纤长度可达20km;
(3)可以进行电缆线路局放在线监测;
(4)供电电源使用AC220V市电;
(5)分析软件采用可视化方式展示局放图谱,如二维q-φ, N-φ, N-q和三维N-q-φ;
(6)可生成测试报告,用于存档或运维问题追溯。
注意事项
1)严禁在局放传感器输出端处于短路状态下在接地线上合上局放传感器,在合上局放传感器前,需确认其输出端是否短路;
2)传感器应牢固固定于接地线上,若接地线过细,可使用绝缘胶布缠绕数层后再使用电流互感器;。
10kV配电线路故障定位及在线监测(控)系统技术规范书批准:审核:拟制:总则1.本“规范书”明确了某城市供电公司配电线路故障定位及在线监测(控)系统的技术规范。
2.本“技术规范书”与商务合同具有同等的法律效力。
1.1 系统概述配电线路传输距离远,支线多、大部分是架空线和电缆线,环境和气候条件恶劣,外破、设备故障和雷电等自然灾害常常造成故障率较高。
一旦出现故障停电,首先给人民群众生活带来不便,干扰了企业的正常生产经营;其次给供电公司造成较大损失;再者一条线路距离较长,分支又多,呈网状结构,查找故障,非常困难,浪费了大量的人力,物力。
配电线路故障定位及在线监测(控)系统主要用于中高压输配电线路上,可检测短路和接地故障并指示出来,可以实时监测线路的正常运行情况和故障发生过程。
该系统可以帮助电力运行人员实时了解线路上各监测点的电流、电压、温度的变化情况,在线路出现短路、接地等故障以后给出声光和短信报警,告知调度人员进行远程操作以隔离故障和转移供电,通知电力运行人员迅速赶赴现场进行处理。
主站SCADA系统除了显示线路故障电流途径和位置,还能显示线路负荷电流、零序电流、线路对地电场、接地尖峰电流的变化情况并绘制历史曲线图,用户根据需要还可以增加开关位置遥信采集、开关遥控、远程无线抄表和无功补偿柜电容投切等功能。
故障定位及在线监测(控)系统还可以提供瞬时性短路故障、瞬时性和间歇性接地故障的在线监测和预警功能,以及故障后事故分析和总结功能。
1.2 总体要求1.2.1当线路正常运行时:系统能够及时掌握线路运行情况,并将线路负荷电流、首半波尖峰突变电流、线路对地电场等线路运行信息和太阳能充电电压、电池电压等设备维护信息处理后发送至主站,在主站能够方便地查询有关实时信息和历史数据。
为及时掌握线路故障前的运行状态,保证线路正常运行,避免事故发生,并为在线调整故障检测参数提供技术手段。
1.2.2当线路发生故障时:系统能够及时判断出短路、过流和接地故障点,并将动作信号、短路动作电流、首半波尖峰电流、线路对地电场、接地动作电流等故障信息处理后发送至主站,在主站能购方便地查询有关历史数据和故障信息。
高压电缆线路接地系统在线监测分析随着电力供应体系的不断扩大和电力设备的不断发展,高压电缆线路在输电中的作用日益重要。
高压电缆线路接地系统是保证电网安全运行的重要组成部分,其良好的接地系统能够确保电网设备正常运行、人身安全,以及保护电网免受雷击等电力故障的影响。
对高压电缆线路接地系统的在线监测分析具有重要的意义。
高压电缆线路接地系统在线监测分析主要包括接地电阻监测、接地电位监测和接地电流监测等。
接地电阻是衡量接地系统性能的重要指标,通过对接地电阻的在线监测可以及时判断接地系统是否出现故障,确保接地系统的可靠性。
接地电位是指接地点与地面之间的电位差,通过对接地电位的在线监测可以了解接地系统是否存在漏电现象,及时排除隐藏的安全隐患。
接地电流是指通过接地系统的电流,通过对接地电流的在线监测,可以判断接地系统是否存在漏电或者过载等问题,及时进行修复。
高压电缆线路接地系统在线监测分析的方法主要有传统的实时监测和新兴的无线传感器网络监测两种。
传统的实时监测方法通常通过安装感应电阻器、测量电压表等设备,对接地电阻、接地电位和接地电流进行监测,并通过采集数据进行分析评估接地系统的性能。
这种方法需要人工进行监测和数据分析,操作繁琐,成本较高。
而新兴的无线传感器网络监测方法则采用无线传感器网络技术,通过部署在电缆线路接地系统上的传感器节点,实时采集接地系统的信息,并通过网络传输到监测中心进行数据分析和处理。
这种方法不仅可以实现接地系统的在线监测,还可以实现自动化操作,减轻人工负担,提高监测效率。
高压电缆线路接地系统在线监测分析的关键技术主要包括传感器技术、数据传输技术和数据分析技术。
传感器技术主要涉及接地电阻传感器、接地电位传感器和接地电流传感器等,需要具备高精度、高可靠性和低功耗的特点,能够在恶劣的环境条件下工作。
数据传输技术主要包括有线传输和无线传输两种,有线传输主要通过电缆进行数据传输,无线传输则通过无线传感器网络进行数据传输。
高压电缆线路接地系统在线监测分析高压电缆线路接地系统在线监测分析是指通过对高压电缆线路的接地系统进行在线监测,并通过分析监测数据,评估接地系统的运行状态和性能。
高压电缆线路的接地系统是电力系统中重要的安全组成部分,它能够将电流回路与地之间的电压差降到一个安全的范围,保证电力设备和人员的安全。
接地系统的良好运行状态对于电力系统的安全稳定运行至关重要。
在线监测技术是一种基于传感器和数据采集系统的监测手段,通过实时采集和分析监测数据,可以实现对接地系统的连续、及时和精确的检测和评估。
在线监测系统通常包括传感器、数据采集器、数据传输网络和监测分析软件等组成部分。
在进行高压电缆线路接地系统在线监测时,首先需要选择合适的监测参数。
常用的监测参数包括接地电阻、接地电位、接地电流等。
这些参数能够反映接地系统的电阻特性、电位分布和接地电流分布等关键信息。
接下来,通过安装监测传感器和数据采集器,对接地系统的相关参数进行实时采集。
传感器通常采用非接触式的电气测量技术,能够实现对接地系统的非干扰性监测。
采集器负责数据的采集和处理,并将采集到的数据传输到监测中心或数据存储设备进行处理和分析。
在实际应用中,高压电缆线路接地系统在线监测分析可以实现对接地系统的实时监测和故障诊断。
通过连续监测接地系统的运行状态,可以及时发现和纠正接地系统存在的问题,提高接地系统的可靠性和稳定性,减少故障发生的可能性。
高压电缆线路接地系统在线监测分析是电力系统中重要的技术手段,能够帮助保护电力设备和人员的安全,提高电力系统的可靠性和稳定性。
随着监测技术的不断进步和发展,相信在线监测技术在电力系统中的应用前景将会更加广阔。
配电电缆线路故障定位及在线监测系统技术规范书批准:审核:拟制:总则1.本“规范书”明确了某城区供电公司10kV配电电缆线路故障定位及在线监测系统的技术规范。
2.本“技术规范书”与商务合同具有同等的法律效力。
1.1 系统概述配电线路传输距离远,支线多、大部分是架空线和电缆线,环境和气候条件恶劣,外破、设备故障和雷电等自然灾害常常造成故障率较高。
一旦出现故障停电,首先给人民群众生活带来不便,干扰了企业的正常生产经营;其次给供电公司造成较大损失;再者一条线路距离较长,分支又多,呈网状结构,查找故障,非常困难,浪费了大量的人力,物力。
电缆线路故障定位及在线监测(控)系统主要用于10kV电缆系统,可检测短路和接地故障并指示出来,可以实时监测电缆线路的正常运行情况和故障发生过程。
该系统可以帮助电力运行人员实时了解电缆线路上各监测点的电流、电缆头温度、电缆头对地电压(局部放电)的变化情况,在线路出现短路、接地、过温等故障以后给出声光和短信报警,告知调度人员进行远程操作以隔离故障和转移供电,通知电力运行人员迅速赶赴现场进行处理。
主站SCADA系统除了显示线路故障电流途径和位置,还能显示线路负荷电流、零序电流、首半波尖峰突变电流、线路对地电压(局部放电)的变化情况并绘制历史曲线图,用户根据需要还可以增加开关位置遥信采集、开关遥控、远程无线抄表和无功补偿柜电容投切等功能。
故障定位及在线监测(控)系统还可以提供瞬时性短路故障、瞬时性和间歇性接地故障的在线监测和预警功能,以及故障后事故分析和总结功能。
1.2 总体要求1.2.1当电缆线路正常运行时:系统能够及时掌握线路运行情况,并将线路负荷电流、零序电流、电缆头温度、线路对地电压(局部放电)等线路运行信息和开口CT取电电压、后备电池电压等设备维护信息处理后发送至主站,在主站能够方便地查询有关实时信息和历史数据。
为及时掌握线路故障前的运行状态,保证线路正常运行,避免事故发生,并为在线调整故障检测参数提供技术手段。
高压电缆接地系统故障监测方法
一、接地电阻监测
接地电阻监测是高压电缆接地系统故障监测的重要手段。
通过定期测量接地电阻,可以及时发现接地不良、接地线断裂等问题,从而防止因接地不良引起的过电压、设备损坏等事故。
接地电阻监测通常采用电阻测量仪进行测量。
二、电流不平衡监测
电流不平衡监测是通过监测高压电缆接地线上的电流,判断接地系统是否正常工作。
正常情况下,接地线上的电流应该是平衡的,如果发现电流不平衡,则说明接地系统存在故障,如接地线接触不良、断裂等。
电流不平衡监测通常采用钳形电流表进行测量。
三、接地线温度监测
接地线温度监测是通过监测接地线的温度变化,判断接地系统是否正常工作。
当接地系统存在故障时,如接地线接触不良、过载等,会导致接地线温度升高。
接地线温度监测通常采用红外测温仪进行测量。
四、电缆振动监测
电缆振动监测是通过监测高压电缆的振动情况,判断接地系统是否正常工作。
当接地系统存在故障时,如接地线松动、断裂等,会导致电缆振动增加。
电缆振动监测通常采用振动传感器进行测量。
五、绝缘电阻监测
绝缘电阻监测是通过测量高压电缆的绝缘电阻,判断电缆是否存在绝缘老化、破损等问题。
绝缘电阻过低可能会导致电缆击穿、短路等事故。
绝缘电阻监测通常采用绝缘电阻测试仪进行测量。
六、电容电流监测
电容电流监测是通过监测高压电缆的电容电流,判断电缆是否存在异常。
电
容电流的变化可以反映电缆的绝缘状况,如果发现电容电流异常,则说明电缆存在绝缘问题。
电容电流监测通常采用电容电流测试仪进行测量。
高压电缆接地电流在线监测技术方案一、技术背景及意义高压电缆在输电过程中难免会出现各种故障和隐患,其中一种较为普遍的故障就是接地故障。
接地故障是指电缆中的导体与地面之间发生电气连通的故障,这种故障如果不及时发现和处理,就可能会给设备带来损害,甚至危及人员的生命安全。
目前,为了预防和及时发现高压电缆接地故障,传统的方法是利用接地线圈进行周期性的检测,但这种方法的缺点是检测的范围狭窄,检测效率低,且只能检测直流接地故障。
为了弥补传统检测方法的不足,近年来出现了一种新的技术——高压电缆接地电流在线监测技术。
高压电缆接地电流在线监测技术是利用传感器监测电缆的接地电流,并将监测结果通过数据传输技术传送到监测系统进行实时处理和显示,可以检测交流、直流接地故障,并可以对接地故障进行精准定位,提高故障检测的效率和准确性,减少故障带来的损失。
二、技术方案高压电缆接地电流在线监测技术方案的组成部分包括:传感器、数据采集装置、监测系统和数据处理分析软件。
1. 传感器传感器是高压电缆接地电流在线监测技术的核心部分,其主要作用是测量电缆接地电流并将测量结果转换为电信号,通过信号电缆传输给数据采集装置。
传感器的选择需要结合实际情况考虑,一般有两种类型的传感器可供选择:磁环型传感器和霍尔型传感器。
(1)磁环型传感器磁环型传感器主要是通过使用磁性环监测电流的变化,具有测量范围大、线性度高、抗干扰能力强等优点,并且适用于测量高压电缆的接地电流。
(2)霍尔型传感器霍尔型传感器是一种基于霍尔效应测量电流的传感器,其优点是电路简单、响应速度快、抗干扰能力强等,特别适用于直流电缆的接地电流测量。
2. 数据采集装置数据采集装置是将传感器测量得到的电信号采集、放大和处理后,通过数据传输技术传送到监测系统。
数据采集装置包括模拟部分和数字部分两大部分。
模拟部分主要是将传感器输出的电信号放大处理,并滤掉干扰信号。
数字部分则将模拟信号进行数字化,再进行压缩、存储和传输处理。