XLPE高压电缆在线监测方法及设计
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
10~35 kV XLPE电缆在线监测技术摘要:变电站是电网的重要组成部分,变电站的正常运行关系着整个电网的安全,本文主要讨论了如何使电站的运行变得更为安全,这就关系到在电网建设和日常的运行当中对电网的监测设备以及监测技术的应用。
重点提出了XLPE电缆在线监测这种电网监测技术。
关键词:变电站电网XLPE电缆交联聚乙烯简称XLPE,这种材质的电缆由于其绝缘性强、介电损耗系数小、抗酸碱等性能特别是在电性能和热性能等方面的优异表现,使其广发应用于各个电压等级的电力系统[1]。
但是使用一定年限后,常常会因为绝缘被击穿而造成事故,并且因为其电压高、容量大,每次事故都有可能造成重大的经济损失。
根据分析其上述的优势和劣势,这种材料的电缆仍然是利大于弊,瑕不掩瑜。
而且我们也找不到更好地材料代替。
目前对于35 kV以下的电压等级的电缆诊断,采用的是停电施压测试法,停电后对电缆进行直流高压的测试,从而判断出能经受得住的最大电压,这样做明显是弊大于利,往往测试的时候电缆是正常的,但测试过后就事故不断,就是因为测试是加速了地电缆的老化。
所以我们应该实行XLPE在线监测技术,不用停电物无损耗的在线监测内容,实现不停电的监测。
1 在线监测设备可燃性气体总量(TCG)检测装置,来测定变压器储油柜油面上的自由气体,以判断变压器的绝缘状态,这一监测装置最早出现在20世纪60年代的美国。
但这种装置无法监测到潜在性的故障。
为此日本研究开发了气相色谱仪,但由于气体会溶解于油中[2],因此不能连续在线监测,随着塑料渗透膜的发明和应用,它能分离油中气体的高分子。
这一技术的发明和运用标志这这一监测技术的成熟。
这一监测设备在长期的实践应用中证明了它的有效性,但是对突发事故的监测是其软。
局部放电分析装置,加拿大开发并取得一定的成效,一直以来都受技术问题方面的限制。
近年来随着传感器技术、信号处理技术、电子和光电技术、计算机技术的发展,局部放在线监测的灵敏度和抗干扰水平大大的提高了。
XLPE电力电缆绝缘老化分析摘要:本文对电缆的绝缘老化原因和主要绝缘监测技术进行分析,首先建立了气隙局放等效电路模型,在此基础上搭建电缆绝缘介质气隙放电仿真模型。
提出基于监测电缆绝缘介质局部放电信号为主的模糊综合评价法,为基于局部放电信号的电缆绝缘监测提供了理论依据。
关键词:电力电缆;绝缘老化;仿真模型1电缆绝缘老化故障及监测方法1.1绝缘材料老化基于物联网的配电线路监测系统,由前端的智能电网传感器和通常电缆绝缘劣化分为电劣化、热劣化、化学劣化、机械劣化及鼠虫害引起的劣化等。
最常见的类型是电劣化。
电劣化的主要形式有局部放电劣化和电树枝劣化。
电缆浸水是影响电缆安全运行的主要隐患。
研究表明,聚乙烯聚合物的绝缘老化需要先经过树枝老化。
1.2绝缘监测方法现有的电缆绝缘性检测方法分为离线检测试验和绝缘在线监测两种。
而离线检测多以周期预防性试验为主。
预防性实验的模式为周期巡检、定期停电实验。
离线检测方法主要包括介质损耗检测试验、直流耐压试验、局部放电试验及交流耐压试验等。
传统的电缆离线检测方法需要停电为辅,这对人们的生产、生活带来极大的困扰,难以适应当今电网全面自动化、智能化的趋势。
在线监测可以在对电缆无任何损伤情况下实现对电缆的绝缘水平评估、实时掌握电缆运行状况。
其独特的优势成为近几年来学者们热衷的话题。
国内外主流的电缆在线监测方法有直流分量法、直流叠加法、交流叠加法、介质损耗法、局部放电法、低频叠加法等依托电信号监测的方法以及温度分布测量法、电缆应力测量法等物理特征监测方法。
1.3局放在线监测方法监测局部放电信号是定量分析绝缘劣化的主要方式之一,可以判断内部是否存在缺陷,作为警告或预警信息。
还可根据信号分析电缆的老化情况,预估电缆的剩余使用寿命。
局部放电会产生的放电现象有很多种,有些诸如电流脉冲、介质损耗突然增大、电磁波辐射等电气现象,另外一些则属于非电气现象,例如光、热、噪声等。
通过这些现象完成对局部放电现象的监测。
XLPE电缆的试验方法1.2 直流耐压试验直流耐压试验反映电缆绝缘的泄漏特性和耐压特性。
理论分析和实际效果均表明油浸纸介质电缆、充油电缆或充气电缆。
其直、交流耐压特性基本相同。
固体介质电缆如橡塑电缆(包括XLPE电缆),因绝缘层中气隙的存在,在直流状态下往往会使气隙短时放电,而加强(提高)了气隙的耐压强度,同时由于气隙放电后形成的反电势短时不能消失而形成积累效应,当改变外加电压方向后,绝缘耐压强度显著降低。
故直流耐压试验不但不能充分反映电缆的实际耐压,且有时对电缆还有破坏作用。
XLPE电缆在运行过程中发生的故障,用M表测电阻较低,用直流电源“烧穿”故障点时,绝缘电阻却越来越高,即泄漏电流越来越趋于正常值,“隐蔽”了故障点。
其原因为:②直流作用下多个含潮水气隙引发的故障点放电后形成反电势,提高了该点绝缘强度;②交流下形成的导电桥路在直流下被破坏。
故障直流耐压不适合试验橡塑电缆。
1.3工频耐压试验方法工频耐压试验最能反映电缆绝缘实际情况的,原因为:①电缆是在工频下运行的,其试验电压频率在工频下最为合理,可完全模拟运行情况。
②从理论上讲,工频耐压试验不但能反映电缆的泄漏特性,而且能完全反映电缆的耐压特性,还能反映电缆局部电介质损耗引起的局部耐压特性。
但实际中,由于电缆为容性负载,每m有约150~400PF的电容量。
若10kV XLPE电缆长为1km,工频试验电压为20kV时可计算出该试验设备的容量≮50kVA 。
故需50kVA的调压控制器和50kVA/20kV的试验变压器才能完成工频试验。
若电缆的长度为5km时,设备的容量应≮250kVA。
而当电缆为110kV耐压等级电缆时,也可通过上式计算得知。
当电缆较长时因设备太笨重而无法实施。
为了减小工频试验装置的体积重量,通常由变压器与电感L、电缆组成工频串联谐振电路。
因电缆电容一定,可通过调节电感使回路发生工频串联谐振。
此方法显然比直接采用工频变压器做试验要好此,但实际设备很笨重,且操作很麻烦。
XLPE电缆绝缘在线检测技术方法综述摘要:电力电缆在电力系统电力供应中的应用越来越广泛,供电质量的可靠性也越来越为供电企业和电力用户所关心,电力电缆的可靠性是保证供电可靠性的重要环节之一.如何实现电力电缆的在线监测和状态检修,一种重要的前提就是对电力电缆进行实时的状态检测。
本文基于交联聚乙烯电缆(XLPE电力电缆)绝缘在线检测技术的地位和意义,梳理了国内外XLPE电力电缆在线检测技术的研究现状,,并探讨了XLPE电力电缆绝缘在线检测技术的发展方向,阐述了电力电缆绝缘故障在线监测系统的国内外技术现状和发展趋势,在此分析的基础上认识到电缆绝缘在线监测是迫切需要的。
关键词:XLPE电力电缆;电缆绝缘;在线检测1 电缆绝缘在线检测的意义电力电缆是电力系统的重要组成部分,随着企业生产的发展,对电力需求的不断增加,电力电缆的使用量也在逐年增长,现代化企业的生产要求电力电缆的运行必须是长期、连续和安全稳定[1].因此如何保证电力电缆安全稳定运行是电力系统中长期研究的一个多因素、非常复杂的课题。
长期以来,为了防止事故的发生,对电力系统运行中的设备,一直坚持定期进行预防性试验的制度.这对保证设备在电力系统中安全可靠地运行、防止事故的发生起了很好的作用[2].但是随着电力生产的发展,传统的常规性预防试验,已经满足不了安全生产的需要。
这是因为常规预防性试验需要停电测试,而且两次试验间隔时间过长,所以不易及时发现设备的绝缘缺陷,而且停电还要造成一定的损失。
因此对电力系统中设备的绝缘进行实时监测显得极为重要了.随着电力系统的不断发展,电力电缆的应用越来越多,很多单位无法根据规程按时完成预防性试验任务,所以电力电缆设备绝缘的在线监测势在必行。
在线监测就是在工作电压下对电力电缆绝缘状况进行实时监测,把计算机引入测量系统,对测量过程实现自动化,对数据处理实现智能化[3].与此同时,随着现代化技术的飞跃发展,特别是电子、计算机和各种传感器技术的新成就,都为开展电力设备绝缘的带电检测和在线监测技术提供了有利条件[4].对电力电缆进行带电检测,可以缩短检测周期,提高及时发现绝缘缺陷的概率,从而降低绝缘事故,这一点在电力电缆设备投入运行的初期和老化期是尤其重要的[5]。
XLPE高压电缆在线监测方法及设计
【摘要】交联聚乙烯简称为XLPE,XLPE高压电缆具有优越的力学性能、电气性能与热血性能,敷设容易,运维也简单,在各等级电压输电线路与配电网等电力系统中获得了广泛的应用。
【关键词】XLPE;在线监测;高压电缆;设计
在生产、安装与运行等过程当中,电缆系统因人为操作不当或工艺不良等,均可能引入缺陷,而这些缺陷可能要多年之后才能逐步显现出来,为了及早发现故障隐患,避免运行事故出现,基于电缆的在线监测结果,分析电缆运行的状态,以确保电缆运行安全可靠性。
一、XLPE高压电缆的在线监测方法
1.局部放电的在线监测方法
局部放电所指的是利用电缆绝缘本体存在的微孔,产生局部放电的信号,对电缆给予监测与诊断,该放电信号音外界绝缘介质缘故,所表现出的频率大小是不相同的,通常产生的高频信号,频率要高于300KHz。
因信号一般在电缆线路屏蔽层进行传播,可在电缆外层的屏蔽接地线上,利用高频电流的互感器对高频电流的信号进行耦合。
也可运用超声波传感器对电缆局部的放电声信号进行监测,在电缆当中,声信号传输率不高,受到外部电磁噪声的影响比较小,还能对局部放电源给予定位,是一种较为理想可行的现场检测法。
2.接地电流的在线监测法
在电压等级为110kV以上的高压电缆多是单芯电缆,由于电缆金属护层和线芯的交流电流会出现磁力线的铰链,致使较高感应电压出现,因此,需要采用接地措施,一般0.5km以内的短线路电缆金属护层所采取的是:一端直接接地,而另一端通过保护电阻或者间隙来接地。
电缆线路在1km以上的金属护层通常采取的措施是:三相分段且交叉互联两端的接地方法。
对电缆接地电流进行监测,能获得电缆外护套完整的信息,而对接地电流当中的容性分量变化进行在线监测,则能获得电缆老化的相关信息,该方法较适合等级高于110kV的高压电缆线路。
3.温度监测法
在电缆运行中,对其温度进行监测,不仅能获得电缆绝缘工况,还能利用线路载流量的计算,对线路运行状况进行了解,当前,应用较广的温度监测法是分布式的光纤温度检测法,是根据拉曼散射与光时域反射等原理来设计的,利用单根光纤的多点故障温度测量,对电缆运行工况进行监测,其分布式的光纤测温系统如图1所示。
光纤本身能当作传感器,受分布电流的影响较小,维护简单,不
过也存在分辨率低,容易受湿度与敷设环境温度的影响。
4.tanδ介损法
Tanδ在线监测法所反映的是电缆绝缘整体的缺陷水平,已广泛应用在互感器、变压器及套管等设施的绝缘检测当中,电缆tanδ测量的方法和电容性设备测量的方法相似,也就是从电流互感器与电压互感器中获得电流、电压信号,经数字化测量装置,对两者相位差进行测量,以获得tanδ,通常tanδ在线监测方法,所检测的是两正弦波之间的过零点时间差,运用频率与时间差对相位差进行计算。
Tanδ在线监测的原理如图2所示。
该监测方法对信号本身要求较高,工频信号的过零点周围会叠加一些干扰,对零点检测准确性会产生影响,并且该方法所反映的是电缆线路绝缘的整体性能,对局部老化与受潮等因素所引发的劣化不能有效反映,所以,在电缆运行当中,该方法未得到广泛应用。
二、综合信息下的电缆在线监测设计
不同的监测方法,其优缺点是不同的,在XLPE高压电缆的在线监测系统当中,可根据电缆实际的运行状况,采用多种监测方法相结合的诊断形式,设计一种综合信息下的高压电缆监测法,以温度与局部放电监测为主要方法,并预留相应接口,通过水位、电流与烟雾等监测信息来综合监测及诊断,其具体监测设计如下:
1.传感器设计
利用高频电流互感器与分布式光纤等监测方法,对待测设备特征量进行检出反映,并将其特征量向电信号进行转换,根据温度在线监测方法与局部放电法两种方法,让在线监测系统能同时应用分布式光纤与甚高频的电磁耦合VHF,并形成两类信息采集的模块。
局部信号所采取的是VHF与UHF的局部放电监测相结合方法,对100MHz以内与500MHz-1500MHz两频段给予检测。
UHF具有优良的抗干扰特点,可对真实局部的放电信号进行检测,还能利用VHF的局放信号将真实信号从接地回线的干扰信号与背景噪声中提取出来,给以标定,不仅能排除现场干扰,还能检测出局部的放电量大小。
2.在线监测单元设计
根据综合在线监测系统的运行状况,对其监测单元采取DCS总线的形式,对传感器的变送信号给予数据采集与预处理,并实施A/D转换、采集记录与监测信息传输等。
而综合监测系统则采取分布式单元,每个监测单元在信息传输与采集方面是相对独立的,所以,在监测平台上,增加相应接口,可方便增加与改变监测方法,给设备改进与改造提供相应空间。
为满足现场检修与调试人员的需求,电缆监测信息除了传送至监控室之外,也可直接传送至现场便携式计算机中,以提高电缆监测效率。
3.在线监测平台与输出装置
电缆在线监测平台作为信息采集的接口与界面,能为监测所需要的数据运算与处理等,提供相关的处理平台,通过处理信息显示,发送到输出设备中,并利用交互界面,向监测人员提供在线监测、采集、分析与报警等信息。
当监测值超过了报警阈值的时候,监测系统会自动报警,同时,将报警设备位置、名称与时间等信息,显现在平面图中。
而监测系统中的输出装置主要包含打印机、显示器与预警装置等。
4.监测数据分析
通过温度的监测单元,可分六个时间点,对其温度、绝缘阻值与湿度数据等进行测试,通过测试,其局放信号PD均在5mV以内,依据局放检测设备中的电缆故障判据,能看出在不同温度下,电缆的绝缘阻值具有一定幅度变化,不过整体而言,依然满足正常的运行需求,局放信号也表明电缆处在正常的工作状态。
结语
XLPE高压电缆在我国的敷设量越来越多,其电缆运行的安全性,直接关系着电网供电的可靠性,传统耐压试验已不能满足电缆运行安全可靠性的要求了,加强电缆的在线监测是很有必要的,运用局部放电、接地电流与温度检测等多种方法,可有效监测高压电缆运行的工况。