山西省应县一中2019-2020学年高一上学期期中考试数学试卷Word版含答案
- 格式:doc
- 大小:431.50 KB
- 文档页数:8
2019-2020学年高一数学上学期期中试题(含解析)第Ⅰ卷选择题(共60分)一、选择题(每题5分,计70分)1.已知全集则 ( )A. B. C. D.【答案】B【解析】【分析】先求M的补集,再与N求交集.【详解】∵全集U={0,1,2,3,4},M={0,1,2},∴∁UM={3,4}.∵N={2,3},∴(∁UM)∩N={3}.故选B.【点睛】本题考查了交、并、补集的混合运算,是基础题.2.若全集且,则集合的真子集共有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据求出集合,再求真子集即可【详解】由全集且,则集合的真子集共有个,故选:C【点睛】本题考查由补集求原集的运算,集合真子集个数的求法,属于基础题3.已知函数在区间上是增函数,则实数的取值范围是( )A. B. C. D.【答案】B【解析】二次函数的对称轴为;∵该函数在上是增函数;∴,∴,∴实数的取值范围是,故选B.4.已知集合,,则()A. B. C. D.【答案】A【解析】分析】先求集合中的的取值范围,再根据交集运算求解即可【详解】,,则故选:A【点睛】本题考查集合的交集运算,属于基础题5.已知函数是定义域为的奇函数,当时,,则当时,函数的解析式为()A. B. C. D.【答案】B【解析】【分析】当时,由,所以得到解析式,利用奇函数的性质得到,从而得到答案.【详解】当时,当时,所以得到因为是定义域为的奇函数,所以,故选B.【点睛】本题考查根据奇函数的性质求分段函数的解析式,属于简单题.6.三个数之间的大小关系是 ( )A. B. C. D.【答案】D【解析】【分析】利用指数函数的性质、对数函数的性质确定所在的区间,从而可得结果.【详解】由对数函数的性质可知,由指数函数的性质可知,,故选D.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7.函数的零点必定位于下列哪一个区间()A. B. C. D.【答案】D【解析】【分析】根据零点存在定理进行判断即可【详解】由零点存在定理,,,故,函数零点位于故选:D【点睛】本题考查函数零点存在定理的使用,属于基础题8.函数在上的最大值与最小值之差为,则等于()A. B. C. D.【答案】A【解析】【分析】由对数函数特点判断函数为减函数,再根据减函数特点表示出最大值与最小值,作差即可求解【详解】,,为减函数,,,则,解得故选:A【点睛】本题考查由对数函数增减性求解具体参数,属于基础题9.设定义在上的奇函数在区间上单调递减,若,则实数的取值范围()A. B. C. D.【答案】B【解析】【分析】先将不等式结合奇函数定义变形成,再结合增减性和函数定义域求解即可【详解】由题可知,在单调递减,又为奇函数,故,结合减函数定义和函数定义域,则有,解得故选:B【点睛】本题考查由函数奇偶性和单调性解不等式,属于中档题10.设,则()A. 3B. 2C. 1D. 0【答案】B【解析】【分析】先求内层函数,将所求值代入分段函数再次求解即可【详解】,则故选:B【点睛】本题考查分段函数具体函数值的求法,属于基础题11.若不等式对于一切恒成立,则的最小值是()A. 0B. -2C.D. -3【答案】B【解析】【分析】可将不等式转化成,结合对勾函数的增减性即可求解【详解】,,由对勾函数性性质可知,当为减函数,当时,为增函数,故,即恒成立,,故的最小值为-2故选:B【点睛】本题考查一元二次不等式在某区间恒成立的解法,转化为对勾函数是其中一种解法,也可分类讨论函数的对称轴,进一步确定函数的最值与恒成立的关系,属于中档题12.函数是上的减函数,那么的取值范围是()A. B. C. D.【答案】C【解析】【分析】函数要满足减函数,则每个对应区间都应是减函数,再结合分界点处建立不等式即可求解【详解】由题可知,是上的减函数,则需满足,解得故选:C【点睛】本题考查由函数的增减性求解参数范围,易错点为忽略分界点处不等式的建立问题,属于中档题第Ⅱ卷非选择题(共90分)二、填空题13._____________.【答案】1【解析】【分析】结合对数的运算性质和对数的化简式即可求解【详解】故答案为:1【点睛】本题考查对数的运算性质,对数化简式的应用,属于基础题14.函数的定义域是_____________.【答案】【解析】【分析】根据分式、二次根式和对数函数性质求解即可【详解】由表达式可知,函数的定义域应满足,解得,故答案为:【点睛】本题考查具体函数的定义域的求法,属于基础题15.函数在上的值域为________________.【答案】【解析】【分析】结合换元法,将指数型函数转化为二次函数,再结合具体定义域求解值域即可【详解】,令,,,即,则,对称轴,则,,故答案为:【点睛】本题考查指数型函数值域的求法,换元法的应用,二次函数在指定区间值域的求法,属于中档题16.已知函数且关于 x 的方程有且只有一个实根,且实数 a 的取值范围是_____.【答案】a≤-1【解析】【分析】关于x的方程f(x)+x+a=0有且只有一个实根⇔y=f(x)与y=﹣x-a的图象只有一个交点,结合图象即可求得.【详解】关于x的方程f(x)+x+a=0有且只有一个实根⇔y=f (x)与y=﹣x-a的图象只有一个交点,画出函数的图象如右图,观察函数的图象可知当-a≥1时,y=f(x)与y=﹣x-a的图象只有一个交点,即有a≤-1.故答案为a≤-1【点睛】本题主要考查了指数函数、对数函数的图象性质,但要注意函数的图象的分界点,考查利用图象综合解决方程根的个数问题.三、解答题(第17、18题每题10分,第19、20、21题每题12分,第22题每题14分计80分)17.已知幂函数的图像经过点.(1)试确定的值;(2)求满足条件的实数的取值范围.【答案】(1);(2).【解析】【分析】(1)将代入指数函数表达式即可求解;(2)由(1)可得函数,再由函数的增减性解不等式即可【详解】(1)将代入得,即解得,(-1舍去);(2),函数增函数,则,【点睛】本题考查幂函数解析式的求法,根据幂函数增减性解不等式,属于基础题18.已知集合,.(1)若,求;(2)若,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)根据并集运算求解即可;(2)由可判断,再根据和两种情况求解即可【详解】(1)当时,集合,则;(2)由,可分为和两种情况;当时,,解得;当时,,解得综上所述,【点睛】本题考查集合的并集运算,根据集合的包含关系求解参数,属于基础题19.已知函数,且.(1)求使成立的的值;(2)若,试判断函数的奇偶性.【答案】(1)或;(2)见解析.【解析】【分析】(1)由可求得,再由可得,进一步求解即可;(2)先判断函数的定义域,再结合奇偶函数的判定性质证明即可;【详解】(1)由,∴可化,∴或,均符合.(2)∵,定义域关于原点对称,∴,因此是奇函数.【点睛】本题考查对数型函数的性质,复合型函数奇偶性的证明,属于基础题20.已知,且函数满足.(1)求实数的值;(2)判断函数的单调性,并加以证明.【答案】(1);(2)见解析.【解析】【分析】(1)可结合奇函数性质求解参数;(2)函数,结合单调性定义进一步求解即可;【详解】(1)函数的定义域为,又满足,∴,即,解得.(2)当时,在上为增函数,证明如下:设,得,则,∴,即,∴在定义域上为增函数.【点睛】本题考查由奇函数性质求解具体参数值的问题,函数增减性的证明,属于中档题21.某公司共有60位员工,为提高员工业务技术水平,公司聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付200元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则培训机构收取每位员工每人培训费800元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为人,此次培训的总费用为元.(1)求出与之间的函数关系式;(2)请你预算:公司此次培训的总费用最多需要多少元?【答案】(1);(2)此次培训的总费用最多需要32000元.【解析】【分析】(1)根据题意,确定人数30人为分界点,列出具体分段函数表达式即可;(2)分别求解两分段函数对应的最大值即可,其中二次函数可结合配方法求解;【详解】(1)当时,;当时,.故.(2)当时,元,此时;当时,元,此时.综上所述,公司此次培训的总费用最多需要32000元.【点睛】本题考查分段函数实际应用,分段函数最值在对应区间的求法,属于基础题22.已知二次函数,且函数的图像经过和.(1)若函数在区间上不单调,求实数的取值范围;(2)若,且函数在区间上有最小值2,求实数的值;(3)设,且,是否存在实数,使函数定义域和值域分别为和,如果存在,求出、的值;如果不存在,说明理由.【答案】(1);(2)或;(3),.【解析】【分析】(1)由函数的图像经过和可得,代入可求得对称轴,由函数在区间上不单调建立不等式即可求解;(2)结合(1)求出函数表达式为,对称轴为,再讨论区间与对称轴的关系即可;(3)根据,可得,进一步判断,结合函数的对称轴可判断在为增函数,由增函数性质可得,解出即可;【详解】(1)经过和,将两点代入化简可得,,则,函数对称轴为,又函数在区间上不单调,故,解得;(2),,对称轴为,分情况讨论:当时,即时,在上为增函数,的最小值为,解得,符合题意;当时,即时,在上为减函数,的最小值为,解得,符合题意;当,即时,函数最小值为,不符合题意,舍去;综上所述,或.(3)由,可得,∴时,,在上为增函数,若满足题设条件的,存在,则,即,解得或,或,又,∴存在,满足条件.【点睛】本题考查二次函数的基本性质,根据函数单调性求解参数,函数在某区间的最值求解参数范围,由函数的增减性求解具体参数值,属于难题2019-2020学年高一数学上学期期中试题(含解析)第Ⅰ卷选择题(共60分)一、选择题(每题5分,计70分)1.已知全集则 ( )A. B. C. D.【答案】B【解析】【分析】先求M的补集,再与N求交集.【详解】∵全集U={0,1,2,3,4},M={0,1,2},∴∁UM={3,4}.∵N={2,3},∴(∁UM)∩N={3}.故选B.【点睛】本题考查了交、并、补集的混合运算,是基础题.2.若全集且,则集合的真子集共有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据求出集合,再求真子集即可【详解】由全集且,则集合的真子集共有个,故选:C【点睛】本题考查由补集求原集的运算,集合真子集个数的求法,属于基础题3.已知函数在区间上是增函数,则实数的取值范围是( )A. B. C. D.【答案】B【解析】二次函数的对称轴为;∵该函数在上是增函数;∴,∴,∴实数的取值范围是,故选B.4.已知集合,,则()A. B. C. D.【答案】A【解析】分析】先求集合中的的取值范围,再根据交集运算求解即可【详解】,,则故选:A【点睛】本题考查集合的交集运算,属于基础题5.已知函数是定义域为的奇函数,当时,,则当时,函数的解析式为()A. B. C. D.【答案】B【解析】【分析】当时,由,所以得到解析式,利用奇函数的性质得到,从而得到答案.【详解】当时,当时,所以得到因为是定义域为的奇函数,所以,故选B.【点睛】本题考查根据奇函数的性质求分段函数的解析式,属于简单题.6.三个数之间的大小关系是 ( )A. B. C. D.【答案】D【解析】【分析】利用指数函数的性质、对数函数的性质确定所在的区间,从而可得结果.【详解】由对数函数的性质可知,由指数函数的性质可知,,故选D.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7.函数的零点必定位于下列哪一个区间()A. B. C. D.【答案】D【解析】【分析】根据零点存在定理进行判断即可【详解】由零点存在定理,,,故,函数零点位于故选:D【点睛】本题考查函数零点存在定理的使用,属于基础题8.函数在上的最大值与最小值之差为,则等于()A. B. C. D.【答案】A【解析】【分析】由对数函数特点判断函数为减函数,再根据减函数特点表示出最大值与最小值,作差即可求解【详解】,,为减函数,,,则,解得故选:A【点睛】本题考查由对数函数增减性求解具体参数,属于基础题9.设定义在上的奇函数在区间上单调递减,若,则实数的取值范围()A. B. C. D.【答案】B【解析】【分析】先将不等式结合奇函数定义变形成,再结合增减性和函数定义域求解即可【详解】由题可知,在单调递减,又为奇函数,故,结合减函数定义和函数定义域,则有,解得故选:B【点睛】本题考查由函数奇偶性和单调性解不等式,属于中档题10.设,则()A. 3B. 2C. 1D. 0【答案】B【解析】【分析】先求内层函数,将所求值代入分段函数再次求解即可【详解】,则故选:B【点睛】本题考查分段函数具体函数值的求法,属于基础题11.若不等式对于一切恒成立,则的最小值是()A. 0B. -2C.D. -3【答案】B【解析】【分析】可将不等式转化成,结合对勾函数的增减性即可求解【详解】,,由对勾函数性性质可知,当为减函数,当时,为增函数,故,即恒成立,,故的最小值为-2故选:B【点睛】本题考查一元二次不等式在某区间恒成立的解法,转化为对勾函数是其中一种解法,也可分类讨论函数的对称轴,进一步确定函数的最值与恒成立的关系,属于中档题12.函数是上的减函数,那么的取值范围是()A. B. C. D.【答案】C【解析】【分析】函数要满足减函数,则每个对应区间都应是减函数,再结合分界点处建立不等式即可求解【详解】由题可知,是上的减函数,则需满足,解得故选:C【点睛】本题考查由函数的增减性求解参数范围,易错点为忽略分界点处不等式的建立问题,属于中档题第Ⅱ卷非选择题(共90分)二、填空题13._____________.【答案】1【解析】【分析】结合对数的运算性质和对数的化简式即可求解【详解】故答案为:1【点睛】本题考查对数的运算性质,对数化简式的应用,属于基础题14.函数的定义域是_____________.【答案】【解析】【分析】根据分式、二次根式和对数函数性质求解即可【详解】由表达式可知,函数的定义域应满足,解得,故答案为:【点睛】本题考查具体函数的定义域的求法,属于基础题15.函数在上的值域为________________.【答案】【解析】【分析】结合换元法,将指数型函数转化为二次函数,再结合具体定义域求解值域即可【详解】,令,,,即,则,对称轴,则,,故答案为:【点睛】本题考查指数型函数值域的求法,换元法的应用,二次函数在指定区间值域的求法,属于中档题16.已知函数且关于 x 的方程有且只有一个实根,且实数 a 的取值范围是_____.【答案】a≤-1【解析】【分析】关于x的方程f(x)+x+a=0有且只有一个实根⇔y=f(x)与y=﹣x-a的图象只有一个交点,结合图象即可求得.【详解】关于x的方程f(x)+x+a=0有且只有一个实根⇔y=f(x)与y=﹣x-a的图象只有一个交点,画出函数的图象如右图,观察函数的图象可知当-a≥1时,y=f(x)与y=﹣x-a的图象只有一个交点,即有a≤-1.故答案为a≤-1【点睛】本题主要考查了指数函数、对数函数的图象性质,但要注意函数的图象的分界点,考查利用图象综合解决方程根的个数问题.三、解答题(第17、18题每题10分,第19、20、21题每题12分,第22题每题14分计80分)17.已知幂函数的图像经过点.(1)试确定的值;(2)求满足条件的实数的取值范围.【答案】(1);(2).【解析】【分析】(1)将代入指数函数表达式即可求解;(2)由(1)可得函数,再由函数的增减性解不等式即可【详解】(1)将代入得,即解得,(-1舍去);(2),函数增函数,则,【点睛】本题考查幂函数解析式的求法,根据幂函数增减性解不等式,属于基础题18.已知集合,.(1)若,求;(2)若,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)根据并集运算求解即可;(2)由可判断,再根据和两种情况求解即可【详解】(1)当时,集合,则;(2)由,可分为和两种情况;当时,,解得;当时,,解得综上所述,【点睛】本题考查集合的并集运算,根据集合的包含关系求解参数,属于基础题19.已知函数,且.(1)求使成立的的值;(2)若,试判断函数的奇偶性.【答案】(1)或;(2)见解析.【解析】【分析】(1)由可求得,再由可得,进一步求解即可;(2)先判断函数的定义域,再结合奇偶函数的判定性质证明即可;【详解】(1)由,∴可化,∴或,均符合.(2)∵,定义域关于原点对称,∴,因此是奇函数.【点睛】本题考查对数型函数的性质,复合型函数奇偶性的证明,属于基础题20.已知,且函数满足.(1)求实数的值;(2)判断函数的单调性,并加以证明.【答案】(1);(2)见解析.【解析】【分析】(1)可结合奇函数性质求解参数;(2)函数,结合单调性定义进一步求解即可;【详解】(1)函数的定义域为,又满足,∴,即,解得.(2)当时,在上为增函数,证明如下:设,得,则,∴,即,∴在定义域上为增函数.【点睛】本题考查由奇函数性质求解具体参数值的问题,函数增减性的证明,属于中档题21.某公司共有60位员工,为提高员工业务技术水平,公司聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付200元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则培训机构收取每位员工每人培训费800元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为人,此次培训的总费用为元.(1)求出与之间的函数关系式;(2)请你预算:公司此次培训的总费用最多需要多少元?【答案】(1);(2)此次培训的总费用最多需要32000元.【解析】【分析】(1)根据题意,确定人数30人为分界点,列出具体分段函数表达式即可;(2)分别求解两分段函数对应的最大值即可,其中二次函数可结合配方法求解;【详解】(1)当时,;当时,.故.(2)当时,元,此时;当时,元,此时.综上所述,公司此次培训的总费用最多需要32000元.【点睛】本题考查分段函数实际应用,分段函数最值在对应区间的求法,属于基础题22.已知二次函数,且函数的图像经过和.(1)若函数在区间上不单调,求实数的取值范围;(2)若,且函数在区间上有最小值2,求实数的值;(3)设,且,是否存在实数,使函数定义域和值域分别为和,如果存在,求出、的值;如果不存在,说明理由.【答案】(1);(2)或;(3),.【解析】【分析】(1)由函数的图像经过和可得,代入可求得对称轴,由函数在区间上不单调建立不等式即可求解;(2)结合(1)求出函数表达式为,对称轴为,再讨论区间与对称轴的关系即可;(3)根据,可得,进一步判断,结合函数的对称轴可判断在为增函数,由增函数性质可得,解出即可;【详解】(1)经过和,将两点代入化简可得,,则,函数对称轴为,又函数在区间上不单调,故,解得;(2),,对称轴为,分情况讨论:当时,即时,在上为增函数,的最小值为,解得,符合题意;当时,即时,在上为减函数,的最小值为,解得,符合题意;当,即时,函数最小值为,不符合题意,舍去;综上所述,或.(3)由,可得,∴时,,在上为增函数,若满足题设条件的,存在,则,即,解得或,或,又,∴存在,满足条件.【点睛】本题考查二次函数的基本性质,根据函数单调性求解参数,函数在某区间的最值求解参数范围,由函数的增减性求解具体参数值,属于难题。
2019-2020学年度第一学期高一期中考试数学试卷考试时间:120分钟总分:150分第Ⅰ卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2﹣x﹣6<0},集合B={x|x﹣1>0},则(∁RA)∩B=()A.(1,3)B.(1,3] C.[3,+∞)D.(3,+∞)2.已知函数f(x)=(m2﹣m﹣1)是幂函数,且x∈(0,+∞)时,f(x)是递减的,则m 的值为()A.﹣1 B.2 C.﹣1或2 D.33.已知f(x)=loga(x+1)﹣1(a>0,a≠1),则此函数恒过定点是()A.(1,0)B.(0,1)C.(0,﹣1)D.(1,﹣1)4.函数f(2x+1)的图象可由f(2x﹣1)的图象经过怎样的变换得到()A.向左平移2个单位B.向右平移2个单位C.向左平移1个单位D.向右平移1个单位5.分段函数则满足f(x)=1的x值为()A.0B.3C.0或3D.6.下列各组函数中,表示相同函数的是()A.f(x)=x与g(x)=B.f(x)=|x|与g(x)=C.f(x)=与g(x)=•D.f(x)=x0与g(x)=17.已知,则()A.a<b<c B.a<c<b C.c<a<b D.c<b<a8.函数f(x)=log a|x+1|在(﹣1,0)上是增函数,则f(x)在(﹣∞,﹣1)上是()A.函数值由负到正且为增函数B.函数值恒为正且为减函数C.函数值由正到负且为减函数D.没有单调性9.已知函数f(x)=,则下列的图象错误的是()A.y=f(x﹣1)的图象B.y=f(﹣x)的图象C.y=|f(x)|的图象D.y=f(|x|)的图象10.函数y=lgx+x有零点的区间是()A.(1,2)B.()C.(2,3)D.(﹣∞,0)11.已知函数f(x)=在(﹣∞,+∞)上是增函数,则a的取值范围是()A.a>1 B.a<2 C.1<a<2 D.1<a≤212.已知函数f(x)=(x+1)2,若存在实数a,使得f(x+a)≤2x﹣4对任意的x∈[2,t]恒成立,则实数t的最大值为()A.10 B.8 C.6 D.4第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分,答案填在.....)....Ⅱ.卷答题卡上13.求函数y=的定义域.14.已知f(x)是定义域为R的奇函数,当x>0时,f(x)=﹣4x+1,写出分段函数f(x)的解析式.15.已知f(x)=,则函数y=f(f(x))+1的零点的个数是;16.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:①函数f(x)=x2﹣2x(x∈R)是单函数;②函数f(x)=是单函数;③若y=f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.其中的真命题是(写出所有真命题的编号)三、解答题:(本大题共6小题,共70分。
应县一中高一年级期中考试数学试题2017.10时间:120分钟满分:150分命题人:一.选择题(本大题共12小题,每小题5分,共60分.在每个题给出的四个选项中,有且只有一项是符合题目要求的,请将答案填写在答卷纸上).1. []643log log(log81)的值为().A.-1 B.1C.0 D.22. 函数13xy=-的定义域是().A.(,0]-∞ B.[1,)+∞ C.[0,)+∞ D.(,)-∞+∞3.下列函数在区间(0,+∞)上是增函数的是().A.xy1= B. f(x)=x e C.xy)31(= D.1522--=xxy4.如果偶函数()f x在区间[],a b上有最大值M,那么()f x在区间[],b a--上().A.有最小值-M B.没有最小值C.有最大值M D.没有最大值5.下列各式:①n n a a=;②(322--aa)0=1;③33-=()623-;④22log18log33=-.其中正确的个数是( )A.3 B.2 C.1 D.06.设()()()()⎩⎨⎧≥-<+=23xxfxxxf,则f(3log2)的值为 ( ).A.3log2B.6log2C.33log2+ D.07.函数bay x+=()10≠>aa且与baxy+=的图象有可能是( ) .8.函数y =()234lg x x -+的单调增区间为( ).A .(-∞,32)B .(32,+∞)C .(-1,32]D .[32,4)9.设集合A={}c b a ,,,B={}1,0.则从A 到B 的映射共有( ).A .3个B .6个C .8个D .9个10.已知f (x )是定义在R 上的偶函数,且在(0,+∞)上是增函数,设a =f (-3),b =⎪⎭⎫ ⎝⎛21log 3f ,c =⎪⎭⎫ ⎝⎛34f ,则a ,b ,c 的大小关系是( ).A .a <c <bB .b <a <cC .c <b <aD .b <c <a11.能够把圆O (圆心在坐标原点,半径为r 的圆)的周长和面积同时分为相等的两部分的 函数称为圆O 的“和谐函数”,下列函数①()x x f 3=;②||x x y =; ③3()4f x x x =+; ④()x x x f --=22是圆O 的“和谐函数”的是( ).A .①②③④B .①②③C .①②D .①12.若函数()log ()m f x m x =-在区间[]5,4上的最大值比最小值大1,则实数m =( ).A .53±B .53±或255± C .53+或25-5 D .53+二.填空题(本大题共4小题,每小题5分,共20分, 请将答案填写在答卷纸上) 13. 函数3xy a =+()10≠>a a 且恒过定点 .14. 若143log <a,则a 的取值范围是 . 15. 若集合{|2}xM y y ==,2{|}N y y x ==,则下列结论①()(){2,2,4,16}M N =I ;②{2,4}M N =I ;③{4,16}M N =I ;④M N =;⑤M N ;⑥[0,)M N =+∞U .其中正确的结论的序号为_____________.16. 已知()()2122+-+=x a x x f 在[1,5]上的最大值为()1f ,则a 的取值范围是 .三、解答题:(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤. 把答案填在答题卷上)取值范围 17.(本小题满分10分)计算题:(1)21134320212)12(])2[(])73(2[)25.0(--+-⨯⨯---; (2)已知3log 2a =,35b=,用a 、b 表示 30log 3.18. (本小题满分12分) 已知函数2()1f x x=-. (1)若()()g x f x a =-为奇函数,求a 的值;(2)试判断()f x 在(0,)+∞内的单调性,并用定义证明.19.(本小题满分12分)二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求a 的取值集合.20.(本小题满分12分)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=()1log 2+x .(1)求当x <0时,f (x )的解析式;21. (本小题满分12分) 设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.22.(本小题满分12分)()x f 是定义在R 上的函数,对y x ,∈R 都有()()()y f x f y x f +=+,且当x >0时,()x f <0,且f (-1)=1. (1)求()()2,0-f f 的值; (2)求证:()x f 为奇函数; (3)求()x f 在[-2,4]上的最值.高一期中数学答案2017.101— 5 CABCC 6—10 BDCCD 11-12 AD1.因为2{|1}{|11}B x x x x x =>=<->或,所以{|12}A B x x =<≤I .选C .6.B [解析] 当n 为偶数时,na n=|a |,故①错;a =-1或3时,(322--a a)0无意义,故②错;6-32=33,3-3=-33,故③错;④对.8.D [解析] 1125333(log 3)(log 3)log 2log 5log 10x --=+=+=,333log 9log 10log 27<<. 10.D 解析 a =f (-3)=f (3),b =f (log 312)=f (log 32),c =⎪⎭⎫⎝⎛34f .∵0<log 32<1,1<43<3,∴3>43>log 32.∵f (x )在(0,+∞)上是增函数,∴a >c >b .12.D 显然0m x ->,而[4,5]x ∈,则5m >,得[4,5]是函数()log ()m f x m x =-的递减区间∴max ()log (4)m f x m =-,min ()log (5)m f x m =-, 即log (4)log (5)1m m m m ---=,得2640m m -+=,35m =±1m >,则35m =+13.(0,4) 14.()+∞⎪⎭⎫⎝⎛,143,0Y 15.③,⑤ 16.(]2,-∞-15.解析:{|20}(0,)xM y y ==>=+∞;2{|0}[0,)N y y x ==≥=+∞17.解:(1)1252-……………………5分 (2)∵35b =, 3log 5b =∴30log 331log 302==331(log 5log 21)2++=1(1)2a b ++……………………10分18.解:(Ⅰ)由已知()()g x f x a =-得:2()1g x a x=--,∵()g x 是奇函数,∴()()g x g x -=-对定义域任意x 成立,即221(1)()a a x x--=----, 解得 1.a =……………………6分 (Ⅱ)设120x x <<, 则121222()()1(1)f x f x x x -=---12122()x x x x -=.∵120x x <<,∴12120,0x x x x -<>,从而12122()0x x x x -<, 即12()()f x f x <.所以函数()f x 在(0,)+∞内是单调增函数. ……………………12分19.解:(1)∵f (x )为二次函数且f (0)=f (2), ∴对称轴为x =1.又∵f (x )最小值为1,∴可设f (x )=a (x -1)2+1 (a >0) ∵f (0)=3,∴a =2,∴f (x )=2(x -1)2+1,即f (x )=2x 2-4x +3. ……………………6分 (2)由(1)知抛物线的对称轴是1=x , ∴要使f (x )在区间[2a ,a +1]上不单调,则2a <1<a +1,∴0<a <12.∴a 的取值集合为⎭⎬⎫⎩⎨⎧<<210a a ……………………12分或写成a ∈(0,12)20.解:(1)当x <0时,-x >0,∴f (-x )=()[]()x x -=+-1log 1log 22, 又f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ),∴当x <0时,f (x )()x -=1log 2. ……………6分(2)由(1)知,()()()()()⎩⎨⎧<-≥+=01log 01log 22x x x x x f 作出f (x )的图象如图所示:…………10分由图得函数f (x )的递减区间是(-∞,0],递增区间是[0,+∞).……………12分21.【答案】a =13或3解:令t =a x(a >0且a ≠1),则原函数化为y =(t +1)2-2(t>0),在t ∈()1--,∞上是增函数,在()+∞-∈,1t 上是减函数.……………………4分 当0<a <1时,x ∈[-1,1],t =a x∈1,a a⎡⎤⎢⎥⎣⎦,此时f(t)在1,a a⎡⎤⎢⎥⎣⎦上为增函数.所以f(t)max =f 1a ⎛⎫ ⎪⎝⎭=11a ⎛⎫+ ⎪⎝⎭2-2=14.所以11a ⎛⎫+ ⎪⎝⎭2=16,所以a =-15或a =13.又因为0<a <1,所以a =13.……………………8分 ②当a >1时,x ∈[-1,1],t =a x ∈1,a a ⎡⎤⎢⎥⎣⎦,此时f(t)在1,a a ⎡⎤⎢⎥⎣⎦上是增函数.所以f(t)max =f(a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或3. ……………………12分 22. [解析] (1)f (x )的定义域为R ,令x =y =0,则f (0)=f (0)+f (0), ∴f (0)=0, ∵f (-1)=1,∴f (-2)=f (-1)+f (-1)=2,……………………3分 (2)令y =-x ,则f (x -x )=f (x )+f (-x ), ∴f (-x )+f (x )=f (0)=0, ∴f (-x )=-f (x ),∴f (x )是奇函数.……………………6分 (3)设x 2>x 1,f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1) ∵x 2-x 1>0,∴f (x 2-x 1)<0, ∴f (x 2)-f (x 1)<0, 即f (x 2)<f (x 1),∴f (x )在R 上为减函数.…………………10分 ∵f (x )为奇函数, ∴f (2)=-f (-2)=-2, ∴f (4)=f (2)+f (2)=-4, ∵f (x )在[-2,4]上为减函数, ∴f (x )max =f (-2)=2,f (x )min =f (4)=-4. …………………12分。
数 学 试 题(文)时间:120分钟 满分:150分一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、在平面直角坐标系xOy 中,若角α终边过点()5,12P -,则cos α=( )A .1213-B .513C .512 D .512-2.已知△ABC 中,c=6,a=4,B=120°,则b 等于( ) A .76 B .219 C .27 D .273.19sin 6π⎛⎫- ⎪⎝⎭的值等于( )A .12 B .12-C .32D .32-4、若1sin 4θ=,则cos2θ= ( )A .1516-B .1516C .78D .78-5、22cos15sin19522-的值为( ) A .32 B .12 C .32-D .12-6.函数的单调递增区间是( )A. B. C. D.7、函数21sin -2cos 21+=x x y 的值域是( ) A 、[]1,1- B 、⎥⎦⎤⎢⎣⎡45,1 C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,18、已知向量(),6a m =-,()4,3b =-,若//a b ,则a =( )A B C .9 D .109、已知ABC ∆为等边三角形,则cos ,AB BC <>=( )10、一只船自西向东匀速航行,上午10时到达灯塔P 的南偏西75︒距灯塔64海里的M 处,下午2时到达这座灯塔东南方向的N 处,则这只船航行的速度为(单位:海里/时)( )A B C D11 )AB .()f x 在C .()f x 在[]0,π有2个零点D .()f x 在12.在锐角三角形ABC 中,已知2A C =,则ac的范围是( )A .()0,2B .)2 C .D .)2二.填空题(本大题共4小题,每小题5分,共20分)13.已知71cos 85πα⎛⎫-= ⎪⎝⎭,则cos 8πα⎛⎫+= ⎪⎝⎭________.14、在ABC △中,角,,A B C 所对应的边分别为,,a b c ,已知1b =,2c =且()2cos cos cos A b C c B a +=,则A =__________;15、已知不共线向量,a b ,()AB ta b t R =-∈,23AC a b =+,若,,A B C 三点共线,则实数t 等于_____.16、若45A B +=︒,则(1tan )(1tan )A B ++=______,应用此结论求()()()()1tan11tan21tan431tan44+︒+︒+︒+︒的值为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤):17(本题10分)已知(1,3),(3,),(1,),//AB BC m CD n AD BC =-==. (1)求实数n 的值;(2)若AC BD ⊥,求实数m 的值.18(本题12分)已知tan 1tan 1αα=--,求下列各式的值.(1)sin 3cos sin cos αααα-+;(2)2sin sin cos 2ααα++.19(本题12分)向量OA =()3,4-,OB =()6,3-,OC =()5,3m m ---,O为坐标原点.(1)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值; (2)若点A 、B 、C 能构成三角形,求实数m 应满足的条件. 20(本题12分)在ABC ∆中,角A B C 、、的对边分别为a b c 、、, 且2cos cos cos b A c A a C ⋅=⋅+⋅. (1)求角A 的大小;(2)若4a b c =+=,求ABC ∆的面积21(本题12分)已知()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=-,()0,4ω∈,若()2f x a b =⋅其图像关于点(1)求()f x 的解析式;(2)求()f x 在(3)当a b ⊥时,求x 的值.22(本题12(1)求函数()f x 的单调递增区间;(3)在锐角ABC ∆中,若()1f A =,且:ABC ∆外接圆的面积为4π,求ABC ∆周长的取值范围.文科数学答案1--5BBACA 6--10DDDBB 11--12BC13.15-143: 2 222 17:解析:(1)(1,3),(3,),(1,),AB BC m CD n =-==(3,3),//3(3)303AD AB BC CD m n AD BCm n m n ∴=++=++∴++-=∴=-(2)由(1)得(1,-3),CD =(2,3),(4,3)AC AB BC m BD BC CD m =+=+=+=-AC BD ⊥所以8(3)(3)0,1m m m ++-=∴=± 18:解:由tan 1tan 1αα=--,解得1tan 2α=.(1)sin 3cos sin cos αααα-+13tan 3521tan 1312αα--===-++; (2)2sin sin cos 2ααα++22222sin sin cos 2(sin cos )sin cos ααααααα+++=+ 2222223sin sin cos 2cos 3tan tan 2sin cos tan 1ααααααααα++++==++22113()2132215()12⨯++==+19【详解】 (1)因为OA =()3,4-,OB =()6,3-,OC =()5,3m m ---,所以(3,1)AB OB OA =-=,(2,1)AC OC OA m m =-=--, 若△ABC 为直角三角形,且∠A 为直角,则AB AC ⊥,∴3(2﹣m )+(1﹣m )=0(2)若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线,得3(1﹣m )≠2﹣m ,∴实数12m ≠时,满足条件.20:(1)根据正弦定理2cos cos cos b A c A a C ⋅=⋅+⋅ ⇒,1sin 0,cos ,2B A ≠∴=又0180o o A <<,60o A ∴=.(2)由余弦定理得:,代入4b c +=得3bc =,故ABC ∆面积为21【详解】 (1)()sin ,cos a x x ωω=,()sin ,2sin cos b x x x ωωω=-()2222sin 4sin cos 2cos f x a b x x x xωωωω∴=⋅=+-2sin22cos2x x ωω=-22sin 24x πω⎛⎫=- ⎪⎝⎭ ()f x 的图象关于点,08M π⎛⎫⎪⎝⎭对称284k ππωπ∴⋅-=,k Z ∈即41k ω=+,k Z ∈()0,4ω∈1ω∴=()22sin 24f x x π⎛⎫∴=- ⎪⎝⎭.(2单调递减区间为:所以()f x 在(3)a b ⊥222sin a b ⋅=,k Z ∈,k Z ∈22(1,k Z ∈所以函数()f x 的单调递增区间为(2)因为()1f A =,所以又因为ABC ∆为锐角三角形,所以ABC ∆的外接圆,而其面积为4π.所以24R ππ=外,解得=2R 外,ABC ∆的角A ,B ,C 所对的边分别为a ,b ,c .,4sin b B =,4sin c C =,由ABC ∆为锐角三角形,所以故此ABC ∆的周长的取值范围为。
2019~2020学年度山西省朔州市应县一中高一第一学期第三次月考数学试题一、单选题1.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<… ,则()A C B =I U A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【试题答案】D【试题解答】先求A C I ,再求()A C B I U 。
因为{1,2}A C =I ,所以(){1,2,3,4}A C B =I U . 故选D 。
集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算. 2.下面的结论正确的是( ) A.一个程序的算法步骤是可逆的 B.一个算法可以无止境地运算下去的 C.完成一件事情的算法有且只有一种 D.设计算法要本着简单方便的原则 【试题答案】D【试题解答】试题分析:根据算法的基本特征,即可得到结论.解:算法需每一步都按顺序进行,并且结果唯一,不能保证可逆,故A 不正确; 一个算法必须在有限步内完成,不然就不是问题的解了,故B 不正确;一般情况下,完成一件事情的算法不止一个,但是存在一个比较好的,故C 不正确; 设计算法要尽量运算简单,节约时间,故D 正确, 故选D.点评:本题考查算法的基本特征,考查学生分析解决问题的能力,属于中档题.3.函数y =的定义域是( )A.[)1,+∞B.2,13⎛⎤ ⎥⎝⎦C.2,13⎡⎤⎢⎥⎣⎦D.2,3⎛⎫+∞ ⎪⎝⎭【试题答案】B【试题解答】函数y =的定义域为()12320|log 320x x x ⎧⎫->⎧⎪⎪⎪⎨⎨⎬->⎪⎪⎪⎩⎩⎭,解得2|13x x ⎧⎫<≤⎨⎬⎩⎭,函数y =2,13⎛⎤ ⎥⎝⎦,故选B.4.下列说法中不正确的是( )A.顺序结构是由若干个依次执行的步骤组成的,每一个算法都离不开顺序结构B.循环结构是在一些算法中从某处开始,按照一定的条件,反复执行某些步骤,所以循环结构中一定包含条件结构C.循环结构中不一定包含条件结构D.用程序框图表示算法,使之更加直观形象,容易理解 【试题答案】C【试题解答】根据程序框图的定义和性质依次判断每个选项得到答案.A.顺序结构是由若干个依次执行的步骤组成的,每一个算法都离不开顺序结构,正确;B.循环结构是在一些算法中从某处开始,按照一定的条件,反复执行某些步骤,所以循环结构中一定包含条件结构,正确;C.循环结构中一定包含条件结构,所以循环结构中不一定包含条件结构是错误的;D.用程序框图表示算法,使之更加直观形象,容易理解,正确; 故选:C本题考查了程序框图的定义,属于简单题型.5.已知幂函数()af x x =的图象经过点⎛ ⎝⎭,则()4f 的值为( )A.12B.14C.13D.2【试题答案】A【试题解答】将⎛ ⎝⎭代入函数解得12a =-,计算()4f 得到答案.幂函数()af x x =的图象经过点33,⎛⎫ ⎪ ⎪⎝⎭,则()313332a f a ==∴=- ()121442f -==故选:A本题考查了幂函数的求值,属于简单题. 6.下列程序输出的结果是( )A.3B.5C.7D.8【试题答案】B【试题解答】根据程序依次计算得到答案.依次计算得到:2,1,2c a b ===;3,2,3c a b ===;5,3,5c a b ===;结束,输出5b =故选:B本题考查了程序输出结果,依次计算是解题的关键. 7.函数()()23log 2f x x x =-+的单调递减区间为( )A.()1,+∞B.()1,2C.()0,1D.(),1-∞【试题答案】B【试题解答】根据复合函数单调性得到不等式2201x x x ⎧-+>⎨>⎩计算得到答案.函数()()23log 2f x x x =-+的单调递减区间满足:2201x x x ⎧-+>⎨>⎩解得12x << 故选:B本题考查了复合函数的单调区间,忽略定义域是容易发生的错误. 8.下面程序运行后输出的结果为( )A.0B.1C.2D.4【试题答案】A【试题解答】根据程序依次计算得到答案.根据程序依次计算:1,2a j ==;3,3a j ==;1,4a j ==;0,5a j ==;0,6a j == 结束,输出0a = 故选:A本题考查了程序的计算,依次计算是解题的关键. 9.函数f(x)=2x e x +-的零点所在的一个区间是 A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)【试题答案】C 【试题解答】试题分析:()()()()2102220,1120,0020,1120f e f e f e f e ---=--<-=--<=+-=+-Q()()100f f ∴<,所以零点在区间(0,1)上零点存在性定理10.阅读下列程序:如果输入的[]1,3t ∈-则输出的S ∈( )A.[]3,4- B.[]5,2-C.[]4,3-D.[]2,5-【试题答案】A【试题解答】讨论11t -≤<和13t ≤≤两种情况,分别计算值域得到答案.当11t -≤<时,[)33,3S t =∈-;当13t ≤≤时,()[]224243,4S t t t =-=--+∈ ; 综上所述:[]3,4S ∈- 故选:A本题考查了程序的输出结果,分类讨论是解题的关键.11.0.521xf x log x =﹣()﹣的零点个数为( )A.1B.2C.3D.4【试题答案】A 【试题解答】函数0.521xf x log x =﹣()﹣当x >1时,函数化为f(x)=2﹣x log 2x ﹣1令2﹣x log 2x ﹣1=0可得:2x =log 2x,方程没有解, 当0<x <1时,函数化为f(x)=2﹣x log 0.5x ﹣1 令2﹣x log 0.5x ﹣1=0可得:2x =log 0.5x,方程有一个解,所以函数0.521xf x log x ﹣()﹣的零点个数有1个.故选A.12.对于任意a ∈[-1,1],函数f(x)=x 2+(a-4)x+4-2a 的值恒大于零,那么x 的取值范围是( )(A)(1,3) (B)(-∞,1)∪(3,+∞) (C)(1,2) (D)(3,+∞) 【试题答案】B【试题解答】f(x)=x 2+(a-4)x+4-2a=(x-2)a+x 2-4x+4, 令g(a)=(x-2)a+x 2-4x+4,由题意知即解得x>3或x<1,故选B.二、填空题13.下边程序的运行结果为__________.【试题答案】1,1,1【试题解答】根据程序依次计算得到答案.根据程序依次计算:1,1,1p n m ===结束,输出结果 故答案为:1,1,1本题考查了程序输出结果,属于简单题. 14.43662log 2log 98+-=__________.【试题答案】-14【试题解答】直接利用对数指数运算法则得到答案.443666662log 2log 98log 4log 92log 361614+-=+-=-=-故答案为:14-本题考查了指数对数的计算,意在考查学生的计算能力.15.用秦九韶算法计算()432354f x x x x =++-在2x =的值时,3V 的值为______________ . 【试题答案】33【试题解答】根据秦九韶算法依次计算得到答案.计算()432354f x x x x =++-在2x =的值则02V =;1237V x =+=;27014V x =+=;314533V x =+=故答案为:33本题考查了秦九韶算法,理解掌握秦九韶算法是解题的关键.16.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,()112xf x -⎛⎫= ⎪⎝⎭,则:①()31f -=;②函数()f x 在()1,2上递减,在()2,3上递增; ③函数()f x 的最大值是1,最小值是0;④当()3,4x ∈时,()312x f x -⎛⎫= ⎪⎝⎭其中所有正确命题的序号是________. 【试题答案】①②④【试题解答】代入计算得到①正确;分别计算()1,2,()2,3,()3,4上的解析式得到②④正确;根据解析式和周期得到函数的最小值为12③错误,得到答案.取2x =-得到()()()1310f f f --===,①正确; 设12x <<,则021x <-<,()()()11222x f x f x f x -⎛⎫-==-= ⎪⎝⎭,单调递减设23x <<,则021x <-<,()()3122xf x f x -⎛⎫-== ⎪⎝⎭,单调递增,②正确;()()()()112f x f x f x f x +-∴=+=周期为2根据②知函数最大值为1,最小值为12③错误; 设34x <<,则041x <-<,()()3142x f x f x -⎛⎫-== ⎪⎝⎭,故④正确;故答案为:①②④本题考查了函数性质的判断,意在考查学生对于函数性质的灵活运用.三、解答题17.设集合2{|40,}A x x x x R =+=∈,22{|2(1)10,}B x x a x a x R =+++-=∈. (1)若A B B ⋃=,求实数a 的值; (2)若A B B =I ,求实数a 的范围. 【试题答案】(1)1a =;(2)1a ≤-或1a =【试题解答】(1)∵A B B ⋃=,∴A ⊆B,又B 中最多有两个元素,∴A=B,从而得到实数a 的值;(2)求出集合A 、B 的元素,利用B 是A 的子集,即可求出实数a 的范围.(1)∵A B B ⋃=,∴A ⊆B,又B 中最多有两个元素, ∴A=B,∴x=0,﹣4是方程x 2+2(a+1)x+a 2﹣1=0的两个根, 故a=1;(2)∵A={x|x 2+4x=0,x ∈R} ∴A={0,﹣4},∵B={x|x 2+2(a+1)x+a 2﹣1=0},且B ⊆A.故①B=∅时,△=4(a+1)2﹣4(a 2﹣1)<0,即a <﹣1,满足B ⊆A ; ②B≠∅时,当a=﹣1,此时B={0},满足B ⊆A ;当a >﹣1时,x=0,﹣4是方程x 2+2(a+1)x+a 2﹣1=0的两个根, 故a=1;综上所述a=1或a≤﹣1;本题主要考查集合的基本运算,属于基础题.要正确判断两个集合间的关系,必须对集合的相关概念有深刻的理解,善于抓住代表元素,认清集合的特征.18.已知程序框图如图所示,用“直到型循环”写出程序框图所对应的算法语句【试题答案】见解析【试题解答】根据程序框图直接写出直到型循环的算法语句得到答案.算法语句如下:本题考查了将程序框图转化为算法语句,意在考查学生对于程序框图和算法语句的理解和掌握.19.已知函数()()233xf x a a a =-+是指数函数,(1)求()f x 的表达式;(2)令()()()2x x f x f F =+-,解不等式()3F x > 【试题答案】(1) ()2xf x = (2) ()(),01,-∞⋃+∞【试题解答】(1)根据指数函数定义得到2331a a -+=,计算得到答案.(2)222x x F x -=+⋅(),()3F x >即()()21220x x-->,计算得到答案.(1)∵ 函数233x f x a a a =-+()()是指数函数,∴ 2331a a -+=,可得2a =或1a =(舍去),∴ 2x f x =() (2)由题意得,222R x x F x x -=+⋅∈(),,3Fx >()即12232x x +> 即()223220x x -⋅+> 即()()21220x x -->解得22x >或21x < 解得1x >或0x <原不等式的解集为()(),01,-∞⋃+∞本题考查了指数函数的表达式,解不等式,意在考查学生的计算能力.20.已知m ∈R 时,函数()2()1f x m x x a =-+-恒有零点,求实数a 的取值范围. 【试题答案】[11]-, 【试题解答】分为0m =和0m ≠进行分类讨论,当0m =时,易得a ∈R ,当0m ≠时,得到114()0m m a ∆=---…恒成立,从而转化为22(4)4410a ∆=-⨯⨯„,再解出a 的范围,得到答案.①当0m =时,由()0f x x a =-=,得x a =,此时a ∈R ;②当0m ≠时,令()0f x =,即20mx x m a +--=恒有解,即114()0m m a ∆=---…恒成立, 即24410m am ++…恒成立,则22(4)4410a ∆=-⨯⨯„,解得11a -剟. 综上,对m ∈R ,函数f x ()恒有零点时,实数a 的取值范围是[11]-,.本题考查由函数的零点个数求参数的范围,属于中档题.21.某厂生产一种机器的固定成本为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元,市场对此产品的年求量为500台,销售的收入函数为()252x R x x =-(万元)(05x ≤≤),其中x 是产品售出的数量(单位:百台).(1)把利润表示为年产量的函数;(2)年产量是多少时,工厂所得利润最大?【试题答案】(1)()()()24.750.5,052120.25,5x x x L x x x ⎧--≤≤⎪=⎨⎪->⎩;(2)生产475台所得利润最大. 【试题解答】(1)根据题意,分05x ≤≤和5x ≥两种情况进行讨论,分别根据利润=销售收入−成本,列出函数关系,即可得到利润表示为年产量的函数;(2)根据(1)所得的分段函数,分类讨论,分别求出两段函数的最值,然后进行比较,即可得到答案;解:(1)当05x ≤≤时,产品能售出x 百台;当5x >时,只能售出5百台,这时,成本为()0.50.25x +万元,依题意可得利润函数为()()()0.50.25L x R x x =-+()()()()2250.50.25,0525550.50.25,52x x x x x x ⎧⎛⎫--+≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪⨯--+> ⎪⎪⎝⎭⎩. 即()()()24.750.5,052120.25,5x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩. (2)当05x ≤≤时,()24.750.52x L x x =--, ∵抛物线开口向下,对称轴为 4.75x =,∴当 4.75x =时,max ()(4.75)10.75L x L ==;当5x >时,()120.25L x x =-为R 上的减函数,()(5)10.75L x L ∴<=.综合得,当 4.75x =时,()L x 取最大值,∴年产量为475台时,工厂利润最大.本题主要考查了函数模型的选择与应用,解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型,本题建立的数学模型为二次函数和分段函数,应用相应的数学知识进行求解.属于中档题.22.(本题满分14分)已知函数2()|1|f x x x a =++-,其中a 为实常数.(Ⅰ)判断()f x 的奇偶性;(Ⅱ)若对任意x R ∈,使不等式()2||f x x a ≤-恒成立,求a 的取值范围.【试题答案】(Ⅰ)当1a =时,()f x 为偶函数;当1a ≠时,()f x 为非奇非偶函数;(Ⅱ)314a -<< 【试题解答】试题分析:(Ⅰ)易求得函数()f x 的定义域为R ,是关于原点对称的.当1a =时,2()||.f x x x =+ 易得()(),f x f x -=所以()f x 为偶函数;当1a ≠时,因为(0)|1|0f a =-≠,所以()f x 不是奇函数;因为22(1)(1),(1)(1)2|1|,f a a f a a a -=--=-+-所以(1)(1)f a f a -≠-,故()f x 不是偶函数.故当1a ≠时,()f x 为非奇非偶函数.(Ⅱ)对任意x R ∈,使不等式()2||f x x a ≤-恒成立等价于“对任意x R ∈,使不等式()2||0f x x a --≤恒成立”,设()()2||g x f x x a =--,即max ()0()0g x g x ≤⇔≤,分类讨论去绝对值,再求函数()g x 的最大值即可.试题解析:(Ⅰ)易求得函数()f x 的定义域为R ,是关于原点对称的.当1a =时,2()||.f x x x =+ 22()()||||(),f x x x x x f x -=-+-=+=所以()f x 为偶函数;当1a ≠时,因为(0)|1|0f a =-≠,所以()f x 不是奇函数;因为22(1)(1),(1)(1)2|1|,f a a f a a a -=--=-+-所以(1)(1)f a f a -≠-, 故()f x 不是偶函数.综合得()f x 为非奇非偶函数.综上所述,当1a =时,()f x 为偶函数;当1a ≠时,()f x 为非奇非偶函数.(Ⅱ)(1)当1x a ≤-时,不等式化为212(),x x a a x --+>-即21x x a +->,215().24x a +-> 若112a -≥-,即12a ≥,则54a <-矛盾.若112a -<-,即12a <,则2(1)(1)1,a a a <-+--即2210,a a -->解得1a >+或1a <所以1a <-(2)当1a x a -<≤时,不等式化为212(),x x a a x ++->-即2313x x a ++>,235().24x a +-> 若312a a -<-≤即3122a -≤<-,553,.412a a <-<-结合条件,得31.22a -≤<-若312a -≥-即12a ≥-,23(1)3(1)1,a a a ≤-+-+即2210,a a --≥解得1a ≥+或1a ≤结合条件及(1),得112a -≤<若32a <-,2331a a a <++恒成立. 综合得1a < (3)当x a >时,不等式化为212(),x x a x a ++->-即21x x a -+>-,213().24x a -+>-得3,4a -<即34a >-。
2019-2020学年高一数学上学期期中试题(含解析)一、选择题1. 设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()A. A⊆BB. A∩B={2}C. A∪B={1,2,3,4,5}D. A∩()={1}【答案】D【解析】试题分析:因为但,所以A不对,因为,所以B不对,因为,所以C不对,经检验,D是正确的,故选D.考点:集合的运算.2.设函数,则的值为A. 0B. 1C. 2D. 3【答案】C【解析】因为f(x)=,则f[f(2)]=f(1)=2,选C3.当且时,函数的图象一定过点( )A. B. C. D.【答案】C【解析】【分析】计算当时,得到答案.【详解】函数,当时,故函数图像过点故选:【点睛】本题考查了函数过定点问题,意在考查学生的观察能力.4.设,且,则 ( )A. B. 10 C. 20 D. 100【答案】A【解析】【分析】将指数式化为对数值,然后利用对数运算公式化简,由此求得值.【详解】由得,所以,,故选A.【点睛】本小题主要考查指数式和对数式互化,考查对数运算,属于基础题.【此处有视频,请去附件查看】5.若,则的取值范围是( )A. B. C. D.【答案】B【解析】【分析】根据题目条件得到不等式计算得到答案.【详解】,则满足:解得故选:【点睛】本题考查了解不等式,意在考查学生对于函数定义域和单调性的应用.6.函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上的最大值和最小值之和为a,则a的值为()A. B. C. 2 D. 4【答案】B【解析】【分析】由,且在上单调性相同,可得函数在的最值之和为,解方程即可得结果.【详解】因为,且在上单调性相同,所以函数在的最值之和为,即有,解得,故选B.【点睛】本题考查指数函数和对数函数的单调性及应用,考查运算能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.【此处有视频,请去附件查看】7.设a=,b=,c=,则a,b,c的大小关系是( )A. a>c>bB. a>b>cC. c>a>bD. b>c>a【答案】A【解析】试题分析:∵函数是减函数,∴;又函数在上是增函数,故.从而选A考点:函数的单调性.【此处有视频,请去附件查看】8.已知函数,则关于的不等式的解集为( )A. B. C. D.【答案】C【解析】【分析】先判断函数为奇函数和增函数,化简得到不等式解得答案.【详解】,函数为奇函数.均为单调递增函数,故函数单调递增.即故选:【点睛】本题考查了利用函数的单调性和奇偶性解不等式,意在考查学生对于函数性质的灵活运用.9.函数f(x)=ln(x+1)-的零点所在的大致区间是()A. (3,4)B. (2,e)C. (1,2)D. (0,1)【解析】【详解】单调递增所以零点所在的大致区间是(1,2),选C.10.函数的零点个数为()A. 0B. 1C. 2D. 3【答案】B【解析】函数的零点,即令,根据此题可得,在平面直角坐标系中分别画出幂函数和指数函数的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数【此处有视频,请去附件查看】11.函数的值域是( )A. B. C. D.【答案】C【解析】换元,变换得到,根据函数的单调性得到函数值域.【详解】,设变换得到函数在单调递增.故,即故选:【点睛】本题考查了函数的值域,利用换元法再判断函数的单调性是解题的关键.12.已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.二、填空题13.设,则=__________.【答案】【解析】【分析】换元变换得到得到答案.【详解】设,则,,即故答案为:【点睛】本题考查了换元法求函数表达式,忽略掉定义域是容易发生的错误.14.函数f(x)=log5(2x+1)的单调增区间是.【答案】(﹣,+∞)【解析】【详解】因为函数u=2x+1,y=log5u在定义域上都是递增函数,所以函数f(x)=log5(2x+1)的单调增区间,即为该函数的定义域,即2x+1>0,解得x>-,所以所求单调增区间是,故答案为.【此处有视频,请去附件查看】15.已知且,则___________.【答案】26【解析】【分析】代入计算得到,再计算得到答案.【详解】,故答案为:【点睛】本题考查了函数值的计算,意在考查学生的计算能力.16.若函数是偶函数,是奇函数,则________.【答案】【解析】【分析】根据是偶函数得到,根据是奇函数得到,计算得到答案.【详解】是偶函数,则.是奇函数,则,故答案为:【点睛】本题考查了函数的奇偶性,意在考查学生对于函数性质的灵活运用.三、解答题17.设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.(1)求a的值及A、B;(2)设全集I=A∪B,求(∁IA)∪(∁IB);(3)写出(∁IA)∪(∁IB)的所有子集.【答案】(1)(2)(3)【解析】试题分析:(1)将代入即可求出,再分别代入即可求得 .(2)根据并集定义即求根据补集定义求出,再由并集定义求出.(3)根据子集定义写出所求子集.试题解析:(1)因为,所以,得,所以,.(2)因为,所以,所以 .(3) 的所有子集为 .18.已知函数.(1)求函数的单调区间;(2)求函数的值域.【答案】(1)函数在上是减函数;在上是单调递增函数;(2)函数的值域为【解析】【分析】(1)根据定义域得到,化简得到,根据函数的单调性得到函数的单调区间.(2)先计算,计算得到值域.【详解】(1) ,定义域满足解得考虑函数,函数在是单调递减,在上单调递增.故在单调递减,在上单调递增.(2)根据(1),故的值域为【点睛】本题考查了函数的单调性和值域,意在考查学生对于复合函数的性质和方法的应用.19.解答下列各题(1)(2)解方程: (a>0且a≠1)【答案】(1);(2)【解析】【分析】(1)直接利用对数运算法则得到答案.(2)先求对应函数定义域得到,再解方程得到答案.【详解】(1)(2),定义域满足:解得即解得或(舍去),故【点睛】本题考查了对数的运算和对数方程,忽略定义域是容易发生的错误.20.函数的定义域为且满足对任意,都有.(1)求的值;(2)如果,且在上是增函数,求的取值范围.【答案】(1); (2)且【解析】【分析】(1)取和解得答案.(2)先计算,再判断函数为偶函数,根据函数的单调性解得答案.【详解】(1),取得到取得到(2),取得到取得到函数为偶函数,在上是增函数且解得且【点睛】本题考查了抽象函数的函数值,利用函数的奇偶性和单调性解不等式,意在考查学生对于抽象函数知识方法的掌握情况.21.已知函数.(1)若的一根大于,另一根小于,求实数的取值范围;(2)若在内恒大于,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)确定二次函数开口向上,只需满足即可,计算得到答案.(2)化简得到,函数最值在端点处,代入计算得到答案.【详解】(1)开口向上,的一根大于,另一根小于只需满足:即可,即(2),看作为变量函数,恒大于,即最小值大于0.最值在端点处取得,则解得【点睛】本题考查了根据函数的零点求参数,恒成立问题,将恒成立问题转化为最值问题是解题的关键.22.已知函数,(且).()求函数的定义域.()判断的奇偶性,并说明理由.()确定为何值时,有.【答案】(1);(2)奇函数;(3)见解析【解析】试题分析:(1)根据题意可得,解不等式组得到函数定义域;(2)经计算可得,故其为奇函数;(3)对底数分为和进行讨论,根据对数函数单调性得不等式解.试题解析:(),定义域为,解得,∴,∴定义域为.()定义域关于对称,,∴奇函数.(),即,当时,,即,∴,当时,,即,∴,∴综上,当时,的解为,当时,的解为.2019-2020学年高一数学上学期期中试题(含解析)一、选择题1. 设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()A. A⊆BB. A∩B={2}C. A∪B={1,2,3,4,5}D. A∩()={1}【答案】D【解析】试题分析:因为但,所以A不对,因为,所以B不对,因为,所以C不对,经检验,D是正确的,故选D.考点:集合的运算.2.设函数,则的值为A. 0B. 1C. 2D. 3【答案】C【解析】因为f(x)=,则f[f(2)]=f(1)=2,选C3.当且时,函数的图象一定过点( )A. B. C. D.【答案】C【解析】【分析】计算当时,得到答案.【详解】函数,当时,故函数图像过点故选:【点睛】本题考查了函数过定点问题,意在考查学生的观察能力.4.设,且,则 ( )A. B. 10 C. 20 D. 100【答案】A【解析】【分析】将指数式化为对数值,然后利用对数运算公式化简,由此求得值.【详解】由得,所以,,故选A.【点睛】本小题主要考查指数式和对数式互化,考查对数运算,属于基础题.【此处有视频,请去附件查看】5.若,则的取值范围是( )A. B. C. D.【答案】B【解析】【分析】根据题目条件得到不等式计算得到答案.【详解】,则满足:解得故选:【点睛】本题考查了解不等式,意在考查学生对于函数定义域和单调性的应用.6.函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上的最大值和最小值之和为a,则a 的值为()A. B. C. 2 D. 4【答案】B【解析】【分析】由,且在上单调性相同,可得函数在的最值之和为,解方程即可得结果.【详解】因为,且在上单调性相同,所以函数在的最值之和为,即有,解得,故选B.【点睛】本题考查指数函数和对数函数的单调性及应用,考查运算能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.【此处有视频,请去附件查看】7.设a=,b=,c=,则a,b,c的大小关系是( )A. a>c>bB. a>b>cC. c>a>bD. b>c>a【答案】A【解析】试题分析:∵函数是减函数,∴;又函数在上是增函数,故.从而选A考点:函数的单调性.【此处有视频,请去附件查看】8.已知函数,则关于的不等式的解集为( )A. B. C. D.【答案】C【解析】【分析】先判断函数为奇函数和增函数,化简得到不等式解得答案.【详解】,函数为奇函数.均为单调递增函数,故函数单调递增.即故选:【点睛】本题考查了利用函数的单调性和奇偶性解不等式,意在考查学生对于函数性质的灵活运用.9.函数f(x)=ln(x+1)-的零点所在的大致区间是()A. (3,4)B. (2,e)C. (1,2)D. (0,1)【解析】【详解】单调递增所以零点所在的大致区间是(1,2),选C.10.函数的零点个数为()A. 0B. 1C. 2D. 3【答案】B【解析】函数的零点,即令,根据此题可得,在平面直角坐标系中分别画出幂函数和指数函数的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数【此处有视频,请去附件查看】11.函数的值域是( )A. B. C. D.【答案】C【解析】【分析】换元,变换得到,根据函数的单调性得到函数值域.【详解】,设变换得到函数在单调递增.故,即【点睛】本题考查了函数的值域,利用换元法再判断函数的单调性是解题的关键.12.已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.13.设,则=__________.【答案】【解析】【分析】换元变换得到得到答案.【详解】设,则,,即故答案为:【点睛】本题考查了换元法求函数表达式,忽略掉定义域是容易发生的错误.14.函数f(x)=log5(2x+1)的单调增区间是.【答案】(﹣,+∞)【解析】【详解】因为函数u=2x+1,y=log5u在定义域上都是递增函数,所以函数f(x)=log5(2x+1)的单调增区间,即为该函数的定义域,即2x+1>0,解得x>-,所以所求单调增区间是,故答案为.【此处有视频,请去附件查看】15.已知且,则___________.【答案】26【解析】【分析】代入计算得到,再计算得到答案.【详解】,故答案为:【点睛】本题考查了函数值的计算,意在考查学生的计算能力.16.若函数是偶函数,是奇函数,则________.【答案】【解析】【分析】根据是偶函数得到,根据是奇函数得到,计算得到答案.【详解】是偶函数,则.是奇函数,则,故答案为:【点睛】本题考查了函数的奇偶性,意在考查学生对于函数性质的灵活运用.三、解答题17.设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.(1)求a的值及A、B;(2)设全集I=A∪B,求(∁IA)∪(∁IB);(3)写出(∁IA)∪(∁IB)的所有子集.【答案】(1)(2)(3)【解析】试题分析:(1)将代入即可求出,再分别代入即可求得 .(2)根据并集定义即求根据补集定义求出,再由并集定义求出 .(3)根据子集定义写出所求子集.试题解析:(1)因为,所以,得,所以,.(2)因为,所以,所以 .(3) 的所有子集为 .18.已知函数.(1)求函数的单调区间;(2)求函数的值域.【答案】(1)函数在上是减函数;在上是单调递增函数;(2)函数的值域为【解析】【分析】(1)根据定义域得到,化简得到,根据函数的单调性得到函数的单调区间.(2)先计算,计算得到值域.【详解】(1) ,定义域满足解得考虑函数,函数在是单调递减,在上单调递增.故在单调递减,在上单调递增.(2)根据(1),故的值域为【点睛】本题考查了函数的单调性和值域,意在考查学生对于复合函数的性质和方法的应用.19.解答下列各题(1)(2)解方程: (a>0且a≠1)【答案】(1);(2)【解析】【分析】(1)直接利用对数运算法则得到答案.(2)先求对应函数定义域得到,再解方程得到答案.【详解】(1)(2),定义域满足:解得即解得或(舍去),故【点睛】本题考查了对数的运算和对数方程,忽略定义域是容易发生的错误.20.函数的定义域为且满足对任意,都有.(1)求的值;(2)如果,且在上是增函数,求的取值范围.【答案】(1); (2)且【解析】【分析】(1)取和解得答案.(2)先计算,再判断函数为偶函数,根据函数的单调性解得答案.【详解】(1),取得到取得到(2),取得到取得到函数为偶函数,在上是增函数且解得且【点睛】本题考查了抽象函数的函数值,利用函数的奇偶性和单调性解不等式,意在考查学生对于抽象函数知识方法的掌握情况.21.已知函数.(1)若的一根大于,另一根小于,求实数的取值范围;(2)若在内恒大于,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)确定二次函数开口向上,只需满足即可,计算得到答案.(2)化简得到,函数最值在端点处,代入计算得到答案.【详解】(1)开口向上,的一根大于,另一根小于只需满足:即可,即(2),看作为变量函数,恒大于,即最小值大于0.最值在端点处取得,则解得【点睛】本题考查了根据函数的零点求参数,恒成立问题,将恒成立问题转化为最值问题是解题的关键.22.已知函数,(且).()求函数的定义域.()判断的奇偶性,并说明理由.()确定为何值时,有.【答案】(1);(2)奇函数;(3)见解析【解析】试题分析:(1)根据题意可得,解不等式组得到函数定义域;(2)经计算可得,故其为奇函数;(3)对底数分为和进行讨论,根据对数函数单调性得不等式解.试题解析:(),定义域为,解得,∴,∴定义域为.()定义域关于对称,,∴奇函数.(),即,当时,,即,∴,当时,,即,∴,∴综上,当时,的解为,当时,的解为.。
高 一 年 级 月 考 一数 学 试 题 2019.9时间:120分钟 满分:150分一.选择题(共12小题,每小题5分,共计60分)1. 设集合A ={3,5,6,8},集合B ={4,5,7,8},则A ∩B 等于( ) A .{3,4,5,6,7,8} B .{3,6} C .{4,7} D .{5,8}2.把x 2-m 2+6mn-9n 2分解因式为( )A.(x+m+3n)(x-m+3n)B.(x+m-3n)(x-m+3n)C. (x-m-3n)(x-m+3n)D.(x+m+3n)(x+m-3n) 3、下列各组函数表示同一函数的是( )A .f (x )g (x )=)2B .f (x )=1,g (x )=x 0C .,0,(),0,x x f x x x ≥⎧=⎨-<⎩g (t )=|t |D .f (x )=x +1,g (x )=211x x --4、已知集合则A .B .C .D .5.将函数()2213y x =+-的图像向左平移1个单位长度,再向上平移3个单位长度所得图像对应的函数解析式为( ) A. 22(2)y x =+ B. ()=+-2y 2x 26 C. -=2y 2x 6 D. 22y x =6.设函数f (x )=(2a -1)x +b 在R 上是增函数,则有( )A .a ≥12B .a ≤12C .a >-12D .a >127、函数01()()2f x x =-+( )A. 1(2,)2-B. [2,)-+∞C. 11[2,)(,)22-+∞D. 1(,)2+∞8.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或9.当0≤x ≤2时,a<-x 2 +2x 恒成立,则实数a 的取值范围是( ) A.(-∞,1] B.(-∞,0] C.(-∞,0) D.(0,+∞)10.奇函数f (x )在(0,+∞)上的解析式是f (x )=x (1-x ),则在(-∞,0)上,函数f (x )的解析式是( ) A .f (x )=-x (1-x ) B .f (x )=x (1+x ) C .f (x )=-x (1+x ) D .f (x )=x (x -1)11.函数y =f(x)在区间[0,2]上单调递增,且函数f(x +2)是偶函数,则下列结论成立的是 ( )A. f(1)<f 52⎛⎫ ⎪⎝⎭<f 72⎛⎫ ⎪⎝⎭B. f 72⎛⎫ ⎪⎝⎭<f(1)<f 52⎛⎫⎪⎝⎭C. f 72⎛⎫ ⎪⎝⎭<f 52⎛⎫ ⎪⎝⎭<f(1)D. f 52⎛⎫ ⎪⎝⎭<f(1)<f 72⎛⎫⎪⎝⎭12.设为奇函数且在内是减函数,,则的解集为A .B .C.D .二.填空题(共4小题,每小题5分,共计20分)13.计算42(2)(2)(416)a a a a +-++= .14. (112)0-(1-0.5-2)÷(278)23的值为 .15.已知实数a ≠0,函数 ,若f(1-a)=f(1+a),则a的值为________. 16.有下列几个命题:①函数221y x x =++在(0,)+∞上是增函数; ②函数11y x =+在()(),11,-∞-⋃-+∞上是减函数;③函数y =[2,)-+∞;④已知()f x 在R 上是增函数,若0a b +>,则有()()()()f a f b f a f b +>-+-. 其中正确命题的序号是__________.三. 解答题(本大题共6小题,共计70分;解答写出文字说明、证明过程或演算步骤)17.(本题满分10分) 解下列不等式: (1) x 2-2x-8>0(2) 2440x x -+≤(3) 220x x -+<18.(本题满分12分)已知集合{|2101}A x m x m =-<<-,{|26}B x x =<<. (1)若4m =,求A B ; (2)若A B ⊆,求m 的取值范围.19.(本题满分12分)若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +;(3) 12(5)(5)x x --20.(本题满分12分)已知函数35,0,()5,01,28, 1.x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩(1)求32f ⎛⎫⎪⎝⎭,1πf ⎛⎫⎪⎝⎭,f (-1)的值; (2)画出这个函数的图象; (3)求f (x )的最大值.21、(本题满分12分)已知{}(){}222|40,|2110A x x x B x x a x a =+==+++-=,其中a R ∈,如果A B A = ,求实数a 的取值范围.22.(本题满分12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值范围.高一月考一数学答案 2019.91D 2B 3C 4D 5A 6D 7C 8A 9C 10B 11B 12A 13.a 6-64 14.73 15.16.①④17解:(1) 不等式可化为(x+2)(x-4)>0∴ 不等式的解是x<-2或x>4 (2) 不等式可化为2(2)0x -≤∴ 不等式的解是2x =(3) 不等式可化为217()024x -+<.∴ 不等式无解.18.【答案】(1){}|23x x <<;(2)67m ≤≤或9m ≥.试题分析:(1)由题意,代入4m =,得到集合,A B ,利用交集的运算,即可得到答案;(2)由题意,集合A B ⊆,分A φ=和A φ≠两种情况讨论,即可得到答案. 【详解】(1)由题意,代入m 4=,求得结合{}{}A x 2x 3,B x 2x 6=-<<=<<,所以{}A B x 2x 3⋂=<<.(2)因为A B ⊆①当A ,2m 10m 1∅=-≥-即,解得m 9≥,此时满足题意.②A ,2m 10m 1,m 9∅≠-<-<当即且,则210216m m -≥⎧⎨-≤⎩ 则有6m 7≤≤,综上:6m 7≤≤或m 9≥.19.分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂的计算.这里,可以利用韦达定理来解答.解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=- (1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---= (2)121212112220072007x x x x x x +-+===- (3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-20.解:(1)32f ⎛⎫ ⎪⎝⎭=(-2)×32+8=5,11ππf ⎛⎫= ⎪⎝⎭+5=5π1π+,f (-1)=-3+5=2.(2)作出函数f (x )的图象如图所示.(3)由函数图象可知,当x =1时, f (x )的最大值为6.21.【答案】1a =或者1a ≤-.试题分析:化简得{}0,4A =-,由AB B =得B =∅时,{}{}04B =-或时{}0,4B =-时,解出并验证即可得出结果.试题解析:化简得{}0,4A =-, 集合B 的元素都是集合A 的元素,B A ∴⊆. (1)当B =∅时,()()2241410a a ∆=+--<,解得1a <-.(2)当{}{}04B =-或时,即B A ⊆时,()()2241410a a ∆=+--=,解得1a =-,此时{}0B =,满足B A ⊆.(3)当{}0,4B =-时,()()()2224141021410a a a a ⎧∆=+--=⎪⎪-+=-⎨⎪-=⎪⎩,解得1a =.综上所述,实数a 的取值范围是1a =或者1a ≤-.22.解:(1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1,故可设f (x )=a (x -1)2+1, 由f (0)=3,得a =2.故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1,则0<a <12.(3)由已知,即2x 2-4x +3>2x +2m +1, 化简得x 2-3x +1-m >0,设g (x )=x 2-3x +1-m ,则只要g (x )min >0, ∵x ∈[-1,1],∴g (x )min =g (1)=-1-m ,得m <-1.。
数学试题2016.10应县一中高一年级期中考试时间:120分钟满分:150分命题人:许厅厅一、选择题:(本大题共12小题,每小题5分,共60分,每小题给出的四个选项,只有一项是符合题目要求的).1.已知全集U ={0,1,2,3,4},集合A = {1,2,3},B = {2,4},贝lJ(QA) U B为()A. {1,2,4}B.{4} C・{0,2,4} D・{0,2,3,4}2.下列函数中,在其定义域内,既是奇函数又是减函数的是()A. /(x) = x3B・ /(x) = C・f(x) = 2-x-2xD./W = -lg|x|3. A = {—4,2a — l,/}, B={a —5,1 —a,9},且AcB = {9},则a的值是( )A. a = 3B・a = -3 C・a = ±3 D・a = 5或a = ±34.已知函数f(x)的定义域为(-1,0),则函数f(2x+l)的定义域为()A. (-1, -*) B・( —1,1) C・( — l,0)5.已知lga + lgb = 0,则函数/(x) = a x与函数g(x) = -log/?x在同一坐标系内的图像可能6.三个数0.76,6°-7,log0,6的大小关系为(A. 0.76 < log0 7 6 < 6°7B・0.7&V 607 < log07 6logo.7 6 < 60-7< 0.76 D. log()7 6 < 0.76 < 6°77.函数/(X)= ^X + 10g2X的零点所在区间为()15.已知函数fM =(6-a)x-4a, log 。
X, X < 1 ^>1 是人上的增函数,则实数。
的范8.已知函数 /(X )= -% + 10g2 — +1 ,则 /(£) + /(_£)的值为()JL 十 X 2 L9.设奇函数f(x)在(0, +oo)上是增函数,且f(l)=0,则不等式x[f(x)-f(-x)]<0的解集为()10.已知函数/(^) = log 2(x 2 -ax + 3a)满足:对任意实数%,,x 2,当2 < %, < x 2时,总有/(^)-/(%2)<0,那么a 的取值范围是() B. (-4,4] C. (―,-4)U[2,+oo)D ・[-4,2) 11・已知函数/(x) = log9(9“ +1)一㊁兀的图象与直线y = 没有交点,则b 的取值范围是( )二、填空题(共4小题,每小题5分,共20分)13・已知集合A = {x|x>4},函数g(x)= Vl-x + tz 的定义域为B,若ADB=0,则实数a 的取值范围是 ________________ .14.函数y = 2V_2 + 7的图象恒过定点A,且点A 在幕函数f (x )的图象上,则f(3)=A. [0,|] oC. 0D. 21og 2|A. {x| —l<x<0 或 x>l}C ・{x|x<— 1 或 x>l}B. {x|x<—1 或 0<x<l} D ・{x| —l<x<0 或 0<x<l}A.(―汽4) A. (-oo, 0]B.(—汽 1]C- (0,1) D ・(1,+x)12.已知函数/(劝=<| lgx|,0< x< 10,1 —兀 + 6,兀 > 10. I 2若abc 互不相等,且/⑷二f(b) = /(c),则 abc 的取值范围是() A. (1,10) B. (5,6) C. (10,12) D. (20,24)围是 _________________ ・16.已知函数y = /(x)是定义域为 R 的偶函数,当x>0时, 5 7—x , 0 5兀52(丄广+1, x>2若关于%的方程[/(^)]2 + af(x) + b = 0,a,bE R 有且仅有6个不同的实数根, 则实数G 的取值范围是 _______________________ ・三、解答题(共6小题,共70分,要求在答题卡上写出详细的解答过程。
2019-2020年高一上学期期中数学考试试卷含答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间为120分钟.第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在客观题答题卡上.1.设全集是实数集,,则()A.B.C.D.2.已知是集合A到集合B的映射,若,则()A.{0} B.{1} C.D.3.将函数向左平移一个单位,再向上平移3个单位后可以得到()A.B.C.D.4.若,则的值为()A.2 B.8 C.D.5.已知,则的解析式为()A.B.C.D.6.已知函数的定义域为,则函数的定义域为()A.B.C.D.7.函数的值域是()A. B.C.D.8.函数的零点个数是()A.3个B.2个C.1个D.0个9.函数的单调递增区间是()A.B.C.D.10.已知函数,若,则()A.B.C.D.11.若函数在区间上为减函数,则的取值范围为()A.(0,1)B.C.D.12.若奇函数在上是增函数,那么的大致图像是()第II卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分,请将答案写在答题纸指定的位置上. 13.已知集合,若,则实数 .14.设集合}0|{},054|{2<-=<--=a x x Q x x x P ,若,则实数的范围是.15.函数的定义域为 .16.已知实数满足等式,下列五个关系式:(1),(2),(3),(4),(5)其中不可能成立的关系式有 .三、解答题:本题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分,每小题5分)(1)(1);(2).18.(本题满分10分)已知集合}03|{},023|{22=+++==+-=a ax x x B x x x A ,若,求实数的取值范围.19.(本题满分12分)已知函数(1)判断并证明函数在其定义域上的奇偶性;(2)判断并证明函数在上的单调性;(3)解不等式.20.(本题满分12分)已知函数在区间[0,1]上有最小值-2,求的值.21.(本题满分12分)已知函数.(1)求函数的值域;(2)当时,的最小值为,求的值并求函数在此范围内的最大值.22.(本题满分14分)已知函数恒过定点(3,2),(1)求实数;(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式;(3)对于定义在[1,9]的函数,若在其定义域内,不等式恒成立,求m 的取值范围.期中考试参考答案一、选择题1—6ADACBD 7—12 CADBCC二、填空题13.1 14. 15. 16.(3)(4)三、解答题17.(1)0 (2)318.解:因为A=,且所以(1)当B=时,610124)3(422<<-∴<--=+-=∆a a a a a(2)当B=时,此时符合。
数 学 试 题 2019.10时间:120分钟 满分:150分一.选择题(本大题共12小题,每小题5分,共60分.在每个题给出的四个选项中,有且只有一项是符合题目要求的,请将答案填写在答卷纸上). 1. 若集合2{|02},{|1}A x x B x x =≤≤=>,则A B =()A .{|01}x x ≤≤B .{|0x x >或1}x <-C .{|12}x x <≤D .{|02}x x <≤2.函数y =( )A. [0,)+∞B. (,0]-∞C. [1,)+∞D. (,)-∞+∞ 3.下列各式:①nn a a=; ②(322--a a )0=1; ③33-=()623-;④22log 18log 33=-.其中正确的个数是( )A .3B .2C .1D .0 4.根据下表,用二分法求函数在区间上的零点的近似值(精确度)是( )A .B .C .D .5.设f (x )=⎩⎪⎨⎪⎧x +3,x,f x +,x ,则f (5)的值为 ( )A .16B .18C .21D .24 6.函数R x x x y ∈=|,|,满足( )A .是奇函数又是增函数B .是奇函数又是减函数C .是偶函数又是增函数D .是偶函数又是减函数7. 已知幂函数y =f(x)的图象过点(9,3),则log 4f(2)的值为( )ABC .2D .-28. 函数y =()234lgx x -+的单调增区间为( )A .(-∞,32)B .(32,+∞)C .(-1,32]D .[32,4)9.已知f (x )是定义在R 上的偶函数,且在(0,+∞)上是增函数,设a =f (-3),b =⎪⎭⎫ ⎝⎛21log 3f ,c =⎪⎭⎫⎝⎛34f ,则a ,b ,c 的大小关系是( ) A .a <c <bB .b <a <cC .c <b <aD .b <c <a10. 已知0a >,1a ≠,函数xy a =,log ()a y x =-的图象大致是下面的( )A .B . C.D .11.定义在R 上的偶函数f(x)在[0,+∞)上是增函数,则方程f(x)=f(2x -3)的所有实数根的和为( ) A .1B.2C. 3D.412.能够把圆O (圆心在坐标原点,半径为r 的圆)的周长和面积同时分为相等的两部分的 函数称为圆O 的“和谐函数”,下列函数①()3x x f =;②()x x x f =;③3()4f x x x =+;④()xxx f --=22;⑤()x x f x e e -=+是圆O 的“和谐函数”的是( )A .①②③④B .①②③⑤C .①②④⑤D .①③④⑤ 二.填空题(本大题共4小题,每小题5分,共20分, 请将答案填写在答卷纸上)13.已知集合M 满足{1,2}⊆M ⊂{1,2,3,4,5},那么这样的集合M 的个数为 . 14.函数11xy a -=+(0a >,1a ≠)的图象恒过定点P ,则点P 的坐标为 .15. 的零点有两个,则实数m 的取值范围是 .16. 若集合{|2}x My y ==,2{|}N y y x ==,则下列结论①()(){2,2,4,16}MN =;②{2,4}MN =;③{4,16}M N =;④M N =;⑤M N ;⑥[0,)M N =+∞.其中正确的结论的序号为_____________.三. 解答题:(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤. 把答案填在答题卷上)17.(本小题满分10分)已知集合{|2101}A x m x m =-<<-,{|26}B x x =<<. (1)若4m =,求AB ;(2)若A B ⊆,求m 的取值范围.18. (本小题满分12分) 计算题:(1)21134320212)12(])2[(])73(2[)25.0(--+-⨯⨯---;(2)3log 15.222ln 2001.0lg 25.6log +-++e .19.(本小题满分12分)二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求a 的取值范围.20.(本小题满分12分)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=()1log 2+x .(1)求当x <0时,f (x )的解析式;(2)作出函数f (x )的图象,并指出其单调区间.21.(本小题满分12分)()x f 是定义在R 上的函数,对y x ,∈R 都有()()()y f x f y x f +=+,且当x >0时,()x f <0,且f (-1)=1.(1)求()()2,0-f f 的值;(2)求证:()x f 为奇函数; (3)求()x f 在[-2,4]上的最值.22.(本小题满分12分)已知函数2()2f x x x =+-,(1)写出函数()g x 的解析式;(2)若直线1y ax =+与曲线()y g x =有三个不同的交点,求a 的取值范围;(3)若直线y ax b =+与曲线()y f x =在[2,1]x ∈-内有交点,求22(1)(3)a b -++的取值范围.高一期中数学答案2019.10一.选择题1.因为2{|1}{|11}B x x x x x =>=<->或,所以{|12}A B x x=<≤.选C .3.[解析] 当n 为偶数时,na n=|a |,故①错;a=-1或3时,(322--a a)0无意义,故②错;632=33,3-3=-33,故③错;④对.4.【解析】, 函数在区间上的零点为区间上的任何一个值,故选D .5. f (5)=f (5+5)=f (10)=f (15)=15+3=18.答案:B7.【解析】设幂函数为f(x)=x α,则有3=9α,得αf(x)f(2)以log 4f(2)=log log 9.解析 a =f (-3)=f (3),b =f (log 312)=f (log 32),c =⎪⎭⎫⎝⎛34f .∵0<log 32<1,1<43<3,∴3>43>log 32.∵f (x )在(0,+∞)上是增函数,∴a >c >b .10.【解析】∵ay log x =(﹣)的定义域为{x|x <0}故排除选项A ,D ;C 中y=a x单调递增,01a <<,此时a y log x =(﹣)应该单调递增和图中图象矛盾排除,故选B .点睛:本题要理解并记忆指数函数和对数函数的图象.指数函数和对数函数当底数大于1时单调递增,当底数大于0小于1时单调递减,这是指数、对数函数最重要的性质之一. 11.【解析】由于函数f(x)为偶函数,则f(|x|)=f(|2x -3|),又函数f(x)在[0,+∞)上是增函数,则|x|=|2x -3|,整理得x 2-4x +3=0,解得x 1=1,x 2=3,故x 1+x 2=4. 12.提示:可以通过判断函数奇偶性完成 二.填空题13.7 14.(12), 15.0m >或1m =- 16.⑤⑥13.用列举法可知M ={1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}共7个.14.【解析】因为当1x =时,12y a =+=,所以函数图象恒过点(1,2),故填(1,2). 15.的图象(红色部分)和直线y m =有2个交点,数形结合求得m 的范围.(红色部分)和直线y m =有2个交点,如图所示:故有0m >或1m =-.16.【解析】:{|20}(0,)xM y y ==>=+∞;2{|0}[0,)N y y x ==≥=+∞ 三.解答题 17.【答案】(1){}|23x x <<;(2)67m ≤≤或9m ≥.试题分析:(1)由题意,代入4m =,得到集合,A B ,利用交集的运算,即可得到答案; (2)由题意,集合A B ⊆,分A φ=和A φ≠两种情况讨论,即可得到答案. 【详解】(1)由题意,代入m 4=,求得结合(2)因为A B ⊆①当A ,2m 10m 1∅=-≥-即,解得m 9≥,此时满足题意.②A ,2m 10m 1,m 9∅≠-<-<当即且,则210216m m -≥⎧⎨-≤⎩则有6m 7≤≤, 综上:6m 7≤≤或m 9≥.18.解:(1)1252-……………………6分 (2)【解析】由对数的换底公式和运算性质直接求解; 【详解】321016lg -=++-=2﹣316+-6=-……………………12分19.解:(1)∵f (x )为二次函数且f (0)=f (2), ∴对称轴为x =1.又∵f (x )最小值为1,∴可设f (x )=a (x -1)2+1 (a >0) ∵f (0)=3,∴a =2,∴f (x )=2(x -1)2+1, 即f (x )=2x 2-4x +3. ……………………6分(2)由条件知2a <1<a +1,∴0<a <12.……………………12分20.解:(1)当x <0时,-x >0,∴f (-x )=()[]()x x -=+-1log 1log 22,又f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ), ∴当x <0时,f (x )()x -=1log 2. ……………………6分(2)由(1)知,()()()()()⎨⎧<-≥+=01log 01log 2x x x x x f 作出f (x )的图象如图所示:10分由图得函数f (x )的递减区间是(-∞,0],递增区间是[0,+∞).……………………12分21. [解析] (1)f (x )的定义域为R ,令x =y =0,则f (0)=f (0)+f (0), ∴f (0)=0, ∵f (-1)=1,∴f (-2)=f (-1)+f (-1)=2,……………………3分 (2)令y =-x ,则f (x -x )=f (x )+f (-x ), ∴f (-x )+f (x )=f (0)=0, ∴f (-x )=-f (x ),∴f (x )是奇函数.……………………6分 (3)设x 2>x 1,f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)∵x 2-x 1>0,∴f (x 2-x 1)<0, ∴f (x 2)-f (x 1)<0, 即f (x 2)<f (x 1),∴f (x )在R 上为减函数.…………………10分 ∵f (x )为奇函数, ∴f (2)=-f (-2)=-2, ∴f (4)=f (2)+f (2)=-4, ∵f (x )在[-2,4]上为减函数, ∴f (x )max =f (-2)=2,f (x )min =f (4)=-4. …………………12分22.【答案】(1)20,()2,g x x x ⎧=⎨--+⎩2121x x x ≤-≥-<<或(2)11,0)(0,)2(3)[2,)+∞ 试题分析:(1)先分类讨论求出|f(x)|的解析式,即得函数()g x 的解析式;(2)当0a =时,直线1y =与曲线()y g x =只有2个交点,不符题意.当0a ≠时,由题意得,直线1y ax =+与曲线()y g x =在2x -…或1x …内必有一个交点,且在21x -<<的范围内有两个交点.由21,2,21,y ax y x x x =+⎧⎨=--+-<<⎩消去y 得2(1)10x a x ++-=.令2()(1)1x x a x ϕ=++-,写出a 应满足条件解得;(3)由方程组2,2,y ax b y x x =+⎧⎨=+-⎩消去y 得2(1)20x a x b +---=.由题意知方程在[2-,1]内至少有一个实根,设两根为1x ,2x ,不妨设1[2x ∈-,1],2x R∈.由根与系数关系得121x x a +=-,122x x b =--.代入22(1)(3)a b -++求解即可.【详解】(1)当2()20f x x x =+-≥,得1x ≥或2x -≤,此时()0g x =; 当2()20f x x x =+-<,得21x -<<,此时∴20,()2,g x x x ⎧=⎨--+⎩2121x x x ≤-≥-<<或 (2)当0a =时,直线1y =与曲线()y g x =只有2个交点,不符题意.当0a ≠时,由题意得,直线1y ax =+与曲线()y g x =在2x -≤或1x ≥内必有一个交点,且在21x -<<的范围内有两个交点.由212,21y ax y x x x =+⎧⎨=--+-<<⎩,消去y 得2(1)10x a x ++-=.令2()(1)1x x a x ϕ=++-,则a 应同时满足以下条件:解得10a -<<或,所以a 的取值范围为11,0)(0,)2(3)由方程组22y ax b y x x =+⎧⎨=+-⎩,消去y 得2(1)20x a x b +---=.由题意知方程在[2,1]-内至少有一个实根,设两根为12,x x , 不妨设1[2,1]x ∈-,2x R∈,由根与系数关系得121x x a +=-,122x x b =--∴()()22221212(1)(3)1a b x x x x -++=++-222212121x x x x =+++()()221211x x =++212≥⨯=当且仅当121,0x x ==时取等.所以22(1)(3)a b -++的取值范围为[2,)+∞.【点睛】本题考查了函数与方程,涉及了分段函数、零点、韦达定理等内容,综合性较强,属于难题.。
2019-2020学年高一数学上学期期中试题(含解析)(本试卷满分150分考试时间120分钟)一、选择题(共12小题,每小题5分,共60分)1.已知全集,,,那么集合是()A. B. C. D.【答案】D【解析】【分析】分别求解,,,,即可得出答案.【详解】故选:D.【点睛】本题考查了集合的补集,并集和交集运算,掌握集合运算基本知识是解题关键,属于基础题.2.设,且,则 ( )A. B. 10 C. 20 D. 100【答案】A【解析】【分析】将指数式化为对数值,然后利用对数运算公式化简,由此求得的值.【详解】由得,所以,,故选A.【点睛】本小题主要考查指数式和对数式互化,考查对数运算,属于基础题.【此处有视频,请去附件查看】3.若函数满足,则的解析式是( )A. B.C. D. 或【答案】B【解析】【详解】试题分析:设,故选B.考点:换元法求解析式4.已知为偶函数,则在区间上为()A. 增函数B. 增函数C. 先增后减D. 先减后增【答案】C【解析】试题分析:因为为偶函数,所以,即,根据对应系数相等可得,,.函数的图像是开口向下对称轴为轴的抛物线,所以此函数在上单调递增,在上单调递减.故C正确.考点:1偶函数;2二次函数的单调性.【方法点睛】本题重点考查偶函数和二次函数的单调性,难度一般.本题可以根据偶函数的定义由对应系数相等求得的值,也可以根据偶函数图像关于轴对称求得的值,但此方法前须验证时不满足题意.二次函数的单调性由图像的开口方向和对称轴决定,根据这两点即可求得二次函数的单调性.5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p%为()A. 10% B. 12% C. 20% D. 25%【答案】D【解析】【分析】欲求税率,只须求出去年的总收入即可,而总收入由两部分构成:去年的利润,广告费超支.根据税率公式计算即得答案.【详解】由题意得,去年的利润为:(万元)广告费超支:(万元)税率为:故选:D.【点睛】根据题意列出利润,广告费超支和税率是解题关键,考查运算求解能力,解决实际问题的能力,属于基础题.6.已知,则为()A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据自变量范围代入对应解析式,解得结果.【详解】故选:A【点睛】本题考查分段函数求值,考查基本分析求解能力,属基础题.7.若,则等于()A. 0B. 2或0C. 2D. -2或0【答案】B【解析】【分析】根据对数的运算性质,可将原方程化为,通过换元法求解的值,即可得到答案.【详解】,令,则解得:或或故选:B.【点睛】解对数方程时,要将方程化为同底数对数形式,利用真数相等求解方程,这是解本题的关键.8.函数f(x)=log3x-8+2x的零点一定位于区间A. B. C. D.【答案】B【解析】试题分析:根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理9.已知,则方程实数根个数是()A. 2B. 3C. 4D. 与a无关【答案】A【解析】【分析】画出和的函数图像,根据图像即可得出交点个数.【详解】画出和的函数图像由图像可知两函数图像有两个交点,故方程有两个根.故选:A.【点睛】将求解实数根个数转化为求解和的函数交点个数,数形结合是解本题的关键.10.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)( )A. 在[-7,0]上是增函数,且最大值是6B. 在[-7,0]上是减函数,且最大值是6C. 在[-7,0]上是增函数,且最小值是6D. 在[-7,0]上是减函数,且最小值是6【答案】B【解析】【详解】∵函数是偶函数,而且在[0,7]上为增函数,∴函数在[-7,0]上是减函数.又∵函数在x=7和x=-7的左边是增函数,右边是减函数,且f(7)=f(-7),∴最大值为f(7)=f(-7)=6.故选B.11.已知y=f(x)与y=g(x)的图像如下图:则F(x)=f(x)·g(x)的图像可能是下图中的()A. B.C. D.【答案】A【解析】试题分析:在时,沿轴正方向f(x)先为负值后为正值,而g(x)恒为正值,所以F(x)=f(x)·g(x)也必须先为负值,后为正值,可能选项为A,D,同理在时,f(x)先为负值后为正值,而g(x)恒为负值,所以F(x)=f(x)·g (x)也必须先为正值,后为负值,可能选项为A;综上所述,正确选项应该为A.考点:函数的图象.【方法点睛】本题主要考查函数的图象,判断函数的大致图像是否正确,主要从以下几点取判断:1、函数的零点(多适用于某函数零点已知);2、函数正负值所对区间(多适用于两函数相乘);3、函数的单调性区间(适合于两函数求和或者求差).本题为f(x)·g(x)所以选用函数正负值所对区间这一方法.12.若函数f(x)=lg(10x+1)+ax是偶函数,是奇函数,则a+b的值是A. B. 1 C. D. -1【答案】A【解析】【分析】利用函数的奇偶性求得a,b的值,然后计算a+b的值即可.【详解】偶函数满足,即:,解得:,奇函数满足,则,解得:,则.本题选择A选项.【点睛】本题主要考查奇函数的性质,偶函数的性质等知识,意在考查学生的转化能力和计算求解能力.二、填空题(共4小题,每小题5分,共20分)13.若函数的定义域为[0,2],则函数的定义域是_______.【答案】【解析】【详解】由,得0≤x<1,即定义域是[0,1),故答案为.14.函数y=lnx的反函数是__________.【答案】【解析】分析】由函数解得,把与互换即可得出【详解】函数把与互换可得:原函数的反函数为:故答案为:【点睛】在求解反函数时,要先求出原函数的值域,因为原函数的值域是反函数的定义域,这是解本题关键.15.函数的递增区间是__________.【答案】【解析】【分析】令,当,是增函数;当,是减函数.对于在定义域上是减函数, 根据复合函数单调性同增异减,即可得出函数的递增区间.【详解】令当是增函数当是减函数对于在定义域上是减函数根据复合函数单调性同增异减在上是单调递增.故答案为:.【点睛】对于复合函数单调性的判断要掌握同增异减,对函数的内层和外层分别判断,即可得出单调性.16.函数与函数的图像有四个交点,则的取值范围是____________.【答案】【解析】试题分析:函数的图象如下图所示,结合图象可得:当时,函数与的图象有四个交点,所以实数的取值范围是.考点:方程根的存性及根的个数的判定.【方法点晴】本题主要考查了方程根存在性及根的个数的判定,着重考查了一元二次函数的图象与性质,函数与方程关系等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化思想和数形结合思想的应用,本题解答的关键在于作出函数的图象,借助数形结合法求解.属于中档试题.三、解答题(共6小题,共70分)17.(1)计算:(2)解方程【答案】(1) (2)【解析】【分析】(1)利用指数的运算法则即可得出答案.(2)将化简为,即可得出答案.【详解】(1)(2)由方程得,经检验,是原方程的解,故原方程的解为【点睛】本题考查了指数的运算和求解对数方程.解对数方程时,要将方程化为同底数对数形式,利用真数相等求解方程,这是解本题的关键,属于基础题.18.讨论函数(a>0)在的单调性并证明.【答案】答案见解析【解析】【分析】根据定义法证明函数单调性,即在函数的定义域内任取,且,可通过作差法比较和大小,即可得到单调性【详解】在函数的定义域内任取,且则故故在上是单调增函数.【点睛】本题考查了用定义法证明函数单调性.在用定义法证明函数单调时要注意在所给定义内要任取两个自变量,化简表达式, 时单调递增, 时单调递减.19.已知奇函数.(1)求实数的值;(2)做的图象(不必写过程);(3)若函数在区间上单调递增,求的取值范围.【答案】(1)2;(2)图象见解析;(3).【解析】【分析】(1)求出当x<0时,函数的解析式,即可求得m的值;(2)分段作出函数的图象,即可得到y=f(x)的图象;(3)根据图象,利用函数f(x)在区间[﹣1,a﹣2]上单调递增,建立不等式,即可求a的取值范围.【详解】(1)设x<0,则﹣x>0,∴f(﹣x)=﹣x2﹣2x∵函数是奇函数,∴f(x)=﹣f(﹣x)=x2+2x(x<0)∴m=2;(2)函数图象如图所示:(3)要使在区间上单调递增,结合图象可知,﹣1<a﹣2≤1,∴1<a≤3.所以实数a的取值范围是.【考点】利用奇函数的定义求解析式,从而确定m值;利用函数的单调性确定参数a的取值范围.【点睛】利用数形结合的方法是解决本题的关键.20.已知函数的定义域为集合,函数的值域为集合,且,求实数的取值范围.【答案】.【解析】【详解】试题分析:根据函数的定义域和指数函数的性质,得到集合,再利用,即可求解实数的取值范围.试题解析:由题意得由,得即,,,得考点:函数的定义域与值域;集合的运算.21.已知集合.(1)若是空集,求的取值范围;(2)若中只有一个元素,求的值,并把这个元素写出来.【答案】(1)(2)时,;时,【解析】【详解】试题分析:(1)有由是空集,可得方程无解,故,由此解得的取值范围;(2)若中只有一个元素,则或,求出的值,再把的值代入方程,解得的值,即为所求.试题解析:(1)要使为空集,方程应无实根,应满足解得.(2)当时,方程为一次方程,有一解;当,方程为一元二次方程,使集合只有一个元素的条件是,解得,.∴时,,元素为:;时,.元素为:22.若f(x)是定义在(0,+∞)上的增函数,且(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)−f()<2.【答案】(1) (2)【解析】分析】(1)令,即可求得.(2)利用和对,结合单调性即可求出答案.【详解】(1)令得:故:(2)化简为:即又可得:是定义在(0,+∞)上的增函数则:解①得解②得解③:当得:得方程的解为:综上所述,原不等式的解集为 .【点睛】利用函数单调性解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉" ",转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.2019-2020学年高一数学上学期期中试题(含解析)(本试卷满分150分考试时间120分钟)一、选择题(共12小题,每小题5分,共60分)1.已知全集,,,那么集合是()A. B. C. D.【答案】D【解析】【分析】分别求解,,,,即可得出答案.【详解】故选:D.【点睛】本题考查了集合的补集,并集和交集运算,掌握集合运算基本知识是解题关键,属于基础题.2.设,且,则 ( )A. B. 10 C. 20 D. 100【答案】A【解析】【分析】将指数式化为对数值,然后利用对数运算公式化简,由此求得的值.【详解】由得,所以,,故选A.【点睛】本小题主要考查指数式和对数式互化,考查对数运算,属于基础题.【此处有视频,请去附件查看】3.若函数满足,则的解析式是( )A. B.C. D. 或【答案】B【解析】【详解】试题分析:设,故选B.考点:换元法求解析式4.已知为偶函数,则在区间上为()A. 增函数B. 增函数C. 先增后减D. 先减后增【答案】C【解析】试题分析:因为为偶函数,所以,即,根据对应系数相等可得,,.函数的图像是开口向下对称轴为轴的抛物线,所以此函数在上单调递增,在上单调递减.故C正确.考点:1偶函数;2二次函数的单调性.【方法点睛】本题重点考查偶函数和二次函数的单调性,难度一般.本题可以根据偶函数的定义由对应系数相等求得的值,也可以根据偶函数图像关于轴对称求得的值,但此方法前须验证时不满足题意.二次函数的单调性由图像的开口方向和对称轴决定,根据这两点即可求得二次函数的单调性.5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p%为()A. 10%B. 12%C. 20%D. 25%【答案】D【解析】【分析】欲求税率,只须求出去年的总收入即可,而总收入由两部分构成:去年的利润,广告费超支.根据税率公式计算即得答案.【详解】由题意得,去年的利润为:(万元)广告费超支:(万元)税率为:故选:D.【点睛】根据题意列出利润,广告费超支和税率是解题关键,考查运算求解能力,解决实际问题的能力,属于基础题.6.已知,则为()A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据自变量范围代入对应解析式,解得结果.【详解】故选:A【点睛】本题考查分段函数求值,考查基本分析求解能力,属基础题.7.若,则等于()A. 0B. 2或0C. 2D. -2或0【答案】B【解析】【分析】根据对数的运算性质,可将原方程化为,通过换元法求解的值,即可得到答案.【详解】,令,则解得:或或故选:B.【点睛】解对数方程时,要将方程化为同底数对数形式,利用真数相等求解方程,这是解本题的关键.8.函数f(x)=log3x-8+2x的零点一定位于区间A. B. C. D.【答案】B【解析】试题分析:根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理9.已知,则方程实数根个数是()A. 2B. 3C. 4D. 与a无关【答案】A【解析】【分析】画出和的函数图像,根据图像即可得出交点个数.【详解】画出和的函数图像由图像可知两函数图像有两个交点,故方程有两个根.故选:A.【点睛】将求解实数根个数转化为求解和的函数交点个数,数形结合是解本题的关键.10.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)( )A. 在[-7,0]上是增函数,且最大值是6B. 在[-7,0]上是减函数,且最大值是6C. 在[-7,0]上是增函数,且最小值是6D. 在[-7,0]上是减函数,且最小值是6【答案】B【解析】【详解】∵函数是偶函数,而且在[0,7]上为增函数,∴函数在[-7,0]上是减函数.又∵函数在x=7和x=-7的左边是增函数,右边是减函数,且f(7)=f(-7),∴最大值为f(7)=f(-7)=6.故选B.11.已知y=f(x)与y=g(x)的图像如下图:则F(x)=f(x)·g(x)的图像可能是下图中的()A. B.C. D.【答案】A【解析】试题分析:在时,沿轴正方向f(x)先为负值后为正值,而g(x)恒为正值,所以F (x)=f(x)·g(x)也必须先为负值,后为正值,可能选项为A,D,同理在时,f (x)先为负值后为正值,而g(x)恒为负值,所以F(x)=f(x)·g(x)也必须先为正值,后为负值,可能选项为A;综上所述,正确选项应该为A.考点:函数的图象.【方法点睛】本题主要考查函数的图象,判断函数的大致图像是否正确,主要从以下几点取判断:1、函数的零点(多适用于某函数零点已知);2、函数正负值所对区间(多适用于两函数相乘);3、函数的单调性区间(适合于两函数求和或者求差).本题为f(x)·g(x)所以选用函数正负值所对区间这一方法.12.若函数f(x)=lg(10x+1)+ax是偶函数,是奇函数,则a+b的值是A. B. 1 C. D. -1【答案】A【解析】【分析】利用函数的奇偶性求得a,b的值,然后计算a+b的值即可.【详解】偶函数满足,即:,解得:,奇函数满足,则,解得:,则.本题选择A选项.【点睛】本题主要考查奇函数的性质,偶函数的性质等知识,意在考查学生的转化能力和计算求解能力.二、填空题(共4小题,每小题5分,共20分)13.若函数的定义域为[0,2],则函数的定义域是_______.【答案】【解析】【详解】由,得0≤x<1,即定义域是[0,1),故答案为.14.函数y=lnx的反函数是__________.【答案】【解析】分析】由函数解得,把与互换即可得出【详解】函数把与互换可得:原函数的反函数为:故答案为:【点睛】在求解反函数时,要先求出原函数的值域,因为原函数的值域是反函数的定义域,这是解本题关键.15.函数的递增区间是__________.【答案】【解析】【分析】令,当,是增函数;当,是减函数.对于在定义域上是减函数, 根据复合函数单调性同增异减,即可得出函数的递增区间.【详解】令当是增函数当是减函数对于在定义域上是减函数根据复合函数单调性同增异减在上是单调递增.故答案为:.【点睛】对于复合函数单调性的判断要掌握同增异减,对函数的内层和外层分别判断,即可得出单调性.16.函数与函数的图像有四个交点,则的取值范围是____________.【答案】【解析】试题分析:函数的图象如下图所示,结合图象可得:当时,函数与的图象有四个交点,所以实数的取值范围是.考点:方程根的存性及根的个数的判定.【方法点晴】本题主要考查了方程根存在性及根的个数的判定,着重考查了一元二次函数的图象与性质,函数与方程关系等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化思想和数形结合思想的应用,本题解答的关键在于作出函数的图象,借助数形结合法求解.属于中档试题.三、解答题(共6小题,共70分)17.(1)计算:(2)解方程【答案】(1) (2)【解析】【分析】(1)利用指数的运算法则即可得出答案.(2)将化简为,即可得出答案.【详解】(1)(2)由方程得,经检验,是原方程的解,故原方程的解为【点睛】本题考查了指数的运算和求解对数方程.解对数方程时,要将方程化为同底数对数形式,利用真数相等求解方程,这是解本题的关键,属于基础题.18.讨论函数(a>0)在的单调性并证明.【答案】答案见解析【解析】【分析】根据定义法证明函数单调性,即在函数的定义域内任取,且,可通过作差法比较和大小,即可得到单调性【详解】在函数的定义域内任取,且则故故在上是单调增函数.【点睛】本题考查了用定义法证明函数单调性.在用定义法证明函数单调时要注意在所给定义内要任取两个自变量,化简表达式, 时单调递增, 时单调递减.19.已知奇函数.(1)求实数的值;(2)做的图象(不必写过程);(3)若函数在区间上单调递增,求的取值范围.【答案】(1)2;(2)图象见解析;(3).【解析】【分析】(1)求出当x<0时,函数的解析式,即可求得m的值;(2)分段作出函数的图象,即可得到y=f(x)的图象;(3)根据图象,利用函数f(x)在区间[﹣1,a﹣2]上单调递增,建立不等式,即可求a的取值范围.【详解】(1)设x<0,则﹣x>0,∴f(﹣x)=﹣x2﹣2x∵函数是奇函数,∴f(x)=﹣f(﹣x)=x2+2x(x<0)∴m=2;(2)函数图象如图所示:(3)要使在区间上单调递增,结合图象可知,﹣1<a﹣2≤1,∴1<a≤3.所以实数a的取值范围是.【考点】利用奇函数的定义求解析式,从而确定m值;利用函数的单调性确定参数a的取值范围.【点睛】利用数形结合的方法是解决本题的关键.20.已知函数的定义域为集合,函数的值域为集合,且,求实数的取值范围.【答案】.【解析】【详解】试题分析:根据函数的定义域和指数函数的性质,得到集合,再利用,即可求解实数的取值范围.试题解析:由题意得由,得即,,,得考点:函数的定义域与值域;集合的运算.21.已知集合.(1)若是空集,求的取值范围;(2)若中只有一个元素,求的值,并把这个元素写出来.【答案】(1)(2)时,;时,【解析】【详解】试题分析:(1)有由是空集,可得方程无解,故,由此解得的取值范围;(2)若中只有一个元素,则或,求出的值,再把的值代入方程,解得的值,即为所求.试题解析:(1)要使为空集,方程应无实根,应满足解得.(2)当时,方程为一次方程,有一解;当,方程为一元二次方程,使集合只有一个元素的条件是,解得,.∴时,,元素为:;时,.元素为:22.若f(x)是定义在(0,+∞)上的增函数,且(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)−f()<2.【答案】(1) (2)【解析】分析】(1)令,即可求得.(2)利用和对,结合单调性即可求出答案.【详解】(1)令得:故:(2)化简为:即又可得:是定义在(0,+∞)上的增函数则:解①得解②得解③:当得:得方程的解为:综上所述,原不等式的解集为 .【点睛】利用函数单调性解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉"",转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.。
山西省应县第一中学校2018-2019学年高一数学上学期第一次月考(9月)试题一、选择题:(本大题共12小题,每小题5分,共60分,每小题给出的四个选项,只有一项是符合题目要求的).1.设集合{|23,}A x x x Z =-<<∈,{2,1,0,1,2,3}B =--,则集合AB 为( )A .{2,1,0,1,2}--B .{1,0,1,2}-C .{1,0,1,2,3}-D .{2,1,0,1,2,3}-- 2.若322=+-y x y x ,则=yx( ) A.1 B54 C.45 D.563.函数y =3+2x -x 2(0≤x ≤3)的最小值为( ) A .-1 B .0 C .3 D .44、已知集合{}{}22|22,|22A x y x x B y y x x ==-+==-+,则A B ⋂=( ) A. (],1-∞ B. [)1,+∞ C. [2,+∞) D. ∅5.将函数y =2(x +1)2-3的图像向左平移1个单位长度,再向上平移3个单位长度所得图像对应的函数解析式为( )A .y =2(x +2)2B .y =2(x +2)2-6 C .y =2x 2-6 D .y =2x 26.分解因式,结果是把多项式1222+--b a a ( ) A.(a+b-1)(a+b+1) B.(a-b-1)(a+b+1) C.(a-b-1)(a+b-1) D.(a-b-1)(a-b+1) 7.不等式:x 2-2x-3<0的解集( ) A.(-∞,-1)(3,+∞) B.(-∞,-3)(1,+∞)C.(-3, 1)D.(-1,3)8、设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,则不等式ax 2+bx+c ≥0的解集为( )A 、RB 、φC 、{a b x x 2-≠} D 、{ab2-} 9、集合{}{}|04|02A x x B y y ≤≤≤≤=,=,下列不表示从A 到B 的函数的是( )10、集合U , M , N , P 如图所示,则图中阴影部分所表示的集合是( )A. ()M N P ⋂⋃B. ()C U M N P ⋃⋃C. ()C U M N P ⋃⋂D. ()C U M N P ⋂⋃11、若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为( ) A.2B.20-C.220-或D.220或12. 已知函数f (x )=x 2-2x +4在区间[0, m ](m >0)上的最大值为4,最小值为3,则实数m 的取值范围是( ) A .[1,2] B .(0,1] C .(0,2] D .[1,+∞) 二、填空题(共4小题,每小题5分,共20分)13、已知集合M={(x ,y )|x+y=3},N={(x ,y )|x ﹣y=5},则M∩N 等于______.14、记集合A ={2},已知集合B ={x|a -1≤x≤5-a ,a∈R},若A∪B=A ,则实数a 的取值范围是 . 15.已知4,4=++=++bc ac ab c b a ,则=++222c b a 。
应 县 一 中 高 一 年 级 期 中 考 试数 学 试 题 2017.10时间:120分钟 满分:150分 命题人:一.选择题(本大题共12小题,每小题5分,共60分.在每个题给出的四个选项中,有且只有一项是符合题目要求的,请将答案填写在答卷纸上). 1. []643log log (log 81)的值为( ).A .-1B .1C .0D .2 2.函数y =的定义域是( ).A .(,0]-∞B .[1,)+∞C .[0,)+∞D .(,)-∞+∞3.下列函数在区间(0,+∞)上是增函数的是 ( ).A .x y 1=B . f(x)=xe C .x y )31(= D .1522--=x x y4. 如果偶函数()f x 在区间[],a b 上有最大值M ,那么()f x 在区间[],b a --上( ).A .有最小值-MB .没有最小值C .有最大值MD .没有最大值5.下列各式:①n na a =; ②(322--a a )0=1; ③33-=()623-;④22log 18log 33=-.其中正确的个数是( )A .3B .2C .1D .06.设()()()()⎩⎨⎧≥-<+=0203x x f x x x f ,则f (3log 2)的值为 ( ).A .3log 2B .6log 2C .33log 2+D .07.函数b a y x+=()10≠>a a 且与b ax y +=的图象有可能是( ) .8.函数y =()234lg x x -+的单调增区间为( ).A .(-∞,32)B .(32,+∞)C .(-1,32]D .[32,4)9.设集合A={}c b a ,,,B={}1,0.则从A 到B 的映射共有( ).A .3个B .6个C .8个D .9个10.已知f (x )是定义在R 上的偶函数,且在(0,+∞)上是增函数,设a =f (-3),b =⎪⎭⎫ ⎝⎛21log 3f ,c =⎪⎭⎫ ⎝⎛34f ,则a ,b ,c 的大小关系是( ).A .a <c <bB .b <a <cC .c <b <aD .b <c <a11.能够把圆O (圆心在坐标原点,半径为r 的圆)的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数①()x x f 3=;②||x x y =; ③3()4f x x x =+;④()x x x f --=22是圆O 的“和谐函数”的是( ).A .①②③④B .①②③C .①②D .① 12.若函数()log ()m f x m x =-在区间[]5,4上的最大值比最小值大1,则实数m =( ).A .53±B .53±或255± C .53+或25-5 D .53+二.填空题(本大题共4小题,每小题5分,共20分, 请将答案填写在答卷纸上) 13. 函数3xy a =+()10≠>a a 且恒过定点 .14. 若143log <a ,则a 的取值范围是 .15. 若集合{|2}xM y y ==,2{|}N y y x ==,则下列结论①()(){2,2,4,16}MN =;②{2,4}M N =;③{4,16}MN =;④M N =;⑤MN ;⑥[0,)MN =+∞.其中正确的结论的序号为_____________.16. 已知()()2122+-+=x a x x f 在[1,5]上的最大值为()1f ,则a 的取值范围是 .三、解答题:(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤. 把答案填在答题卷上)取值范围 17.(本小题满分10分)计算题:(1)21134320212)12(])2[(])73(2[)25.0(--+-⨯⨯---; (2)已知3log 2a =,35b=,用a 、b 表示 30log 3.18. (本小题满分12分) 已知函数2()1f x x=-. (1)若()()g x f x a =-为奇函数,求a 的值;(2)试判断()f x 在(0,)+∞内的单调性,并用定义证明.19.(本小题满分12分)二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求a 的取值集合.20.(本小题满分12分)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=()1log 2+x .(1)求当x <0时,f (x )的解析式;21. (本小题满分12分) 设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.22.(本小题满分12分)()x f 是定义在R 上的函数,对y x ,∈R 都有()()()y f x f y x f +=+,且当x >0时,()x f <0,且f (-1)=1. (1)求()()2,0-f f 的值; (2)求证:()x f 为奇函数; (3)求()x f 在[-2,4]上的最值.高一期中数学答案2017.101—5 CABCC 6—10 BDCCD 11-12 AD1.因为2{|1}{|11}B x x x x x =>=<->或,所以{|12}A B x x =<≤.选C .6.B [解析] 当n 为偶数时,na n=|a |,故①错;a =-1或3时,(322--a a)0无意义,故②错;632=33,3-3=-33,故③错;④对.8.D [解析] 1125333(log 3)(log 3)log 2log 5log 10x --=+=+=,333log 9log 10log 27<<.10.D 解析 a =f (-3)=f (3),b =f (log 312)=f (log 32),c =⎪⎭⎫⎝⎛34f .∵0<log 32<1,1<43<3,∴3>43>log 32.∵f (x )在(0,+∞)上是增函数,∴a >c >b .12.D 显然0m x ->,而[4,5]x ∈,则5m >,得[4,5]是函数()log ()m f x m x =-的递减区间∴max ()log (4)m f x m =-,min ()log (5)m f x m =-,即log (4)log (5)1m m m m ---=,得2640m m -+=,3m =±1m >,则3m =+13.(0,4) 14.()+∞⎪⎭⎫⎝⎛,143,0 15.③,⑤ 16.(]2,-∞-15.解析:{|20}(0,)xM y y ==>=+∞;2{|0}[0,)N y y x ==≥=+∞17.解:(1)1252-……………………5分 (2)∵35b =, 3log 5b =∴30log 331log 302==331(log 5log 21)2++=1(1)2a b ++……………………10分18.解:(Ⅰ)由已知()()g x f x a =-得:2()1g x a x=--,∵()g x 是奇函数,∴()()g x g x -=-对定义域任意x 成立,即221(1)()a a x x--=----, 解得 1.a =……………………6分 (Ⅱ)设120x x <<, 则121222()()1(1)f x f x x x -=---12122()x x x x -=.∵120x x <<,∴12120,0x x x x -<>,从而12122()0x x x x -<,即12()()f x f x <.所以函数()f x 在(0,)+∞内是单调增函数. (12)分19.解:(1)∵f (x )为二次函数且f (0)=f (2), ∴对称轴为x =1.又∵f (x )最小值为1,∴可设f (x )=a (x -1)2+1 (a >0) ∵f (0)=3,∴a =2,∴f (x )=2(x -1)2+1, 即f (x )=2x 2-4x +3. ……………………6分 (2)由(1)知抛物线的对称轴是1=x , ∴要使f (x )在区间[2a ,a +1]上不单调,则2a <1<a +1,∴0<a <12.∴a 的取值集合为⎭⎬⎫⎩⎨⎧<<210a a ……………………12分或写成a ∈(0,12)20.解:(1)当x <0时,-x >0,∴f (-x )=()[]()x x -=+-1log 1log 22, 又f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ),∴当x <0时,f (x )()x -=1log 2. ……………6分(2)由(1)知,()()()()()⎩⎨⎧<-≥+=01log 01log 22x x x x x f 作出f (x )的图象如图所示:…………10分由图得函数f (x )的递减区间是(-∞,0],递增区间是[0,+∞).……………12分21.【答案】a =13或3解:令t =a x(a >0且a ≠1),则原函数化为y =(t +1)2-2(t>0),在t ∈()1--,∞上是增函数,在()+∞-∈,1t 上是减函数.……………………4分 当0<a <1时,x ∈[-1,1],t =a x∈1,a a⎡⎤⎢⎥⎣⎦,此时f(t)在1,a a⎡⎤⎢⎥⎣⎦上为增函数.所以f(t)max =f 1a ⎛⎫ ⎪⎝⎭=11a ⎛⎫+⎪⎝⎭2-2=14. 所以11a ⎛⎫+⎪⎝⎭2=16, 所以a =-15或a =13. 又因为0<a <1,所以a =13.……………………8分 ②当a >1时,x ∈[-1,1],t =a x∈1,a a ⎡⎤⎢⎥⎣⎦,此时f(t)在1,a a ⎡⎤⎢⎥⎣⎦上是增函数.所以f(t)max =f(a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或3. ……………………12分 22. [解析] (1)f (x )的定义域为R ,令x =y =0,则f (0)=f (0)+f (0),。