光模块接收电路原理_图文.
- 格式:doc
- 大小:1.93 MB
- 文档页数:17
主要内容■前置放人电路匸作原理■限幅放大器电路工作原理■误码率测试和接收灵敏度评估■时钟数据恢复(CDR)电路匸作原理■ APD及APD偏首电压的升压电路原理电流一电压转换电路■电流诫过电阳R就会产生电JKiR-l^(a)■运口放人器构诫的l・V变换电路一图(b)任这种l・V咬换电路中.接入个负反馈电RIRf.所以乂被称做跨阳放人器(TIA—Trammpedance Amplifier )■跨阻放人器的优点:减小了放人器输入瑞的电容.使电路的通频带紂到扩展.以适应岛速率便用对TIA的技术要求■低的等效输入噪声电流■高输入阻抗,低输入电容■足够宽的通频帯faO.75X工作速率■宽动态范围■ Rf要足够人,以保证有足够人的输岀电压跨阻放大器典型电路■右图是分离元件构成的TIA典型电路■ Q1也町以采用高频FET, 这样输入阻抗町以做得很高■因为采用分离尤件,寄生参数的彤响就很严用,所以电路的匸作速率不高,通常在早期低速模块中采用一个跨阻放大器IC 原理电路 ■上图是一个低速差分输出的集成电路TIA 的内部原 理电路自动增益控制 (AGC)电路■放大器对大信号足双 向限幅的■光信号足单向的(0、 1)■光信号过大时就会产 牛脉冲失真(单边削 波),OS'判别就会 出错一出现误码■ TIA 就必须冇AGC 功能,以保证足够的信 号动态范围In VottAGC 电路(1) 一可变跨阻AGC 电路(2)_消直流和二极管限幅k Mn SUU VaTAGE AUHFfR 0UTPU 1 BIHER OUTHJ I HLTEA MlTFR IMNSWKOWCt iMFUFtB WCAMCilLATIO N CfICUlTGND消直流电路原理3AGC电路(3)-混合方案TIA应用■TIA和探测器偏置(Vpd)必须通过良好的去耦滤波电路供电■PD和TIA必须冇良好的屏蔽■TIA的通频带(・3db高频截II:频率):fH=(0.7 〜0.75)X 数据率也过小,会产生码间干扰;过高,会降低信噪比■选用低的等效输入噪声电流、高的跨阻抗的TIA,才能得较高灵敏度限幅放大器■ TIA输出的是模拟信号,耍把它转换成数字信号才能被信号处理电路识别■限幅放大器起的作川就是把TIA输出的幅度不同的信号处理成等幅的数字信号■限幅放大器Limiting Amplifier 主放大器Post Amplifier量化器Quantizer限幅放大器工作原理和典型电路■限幅放人器匸要有三部分组成:直流耦合多级放大器氏流漂移补偿(自动调零)电路光功率检测告警电路(有滞回的比较器)接收灵敏度■接收灵皈度指光接收机满足指定 比待误码率(如L o 或1012 )时町 接收的址小卩均比功率(dBm ) 这足光接收机的乖要折标之・■噪声是礙制接收乂敏度的址上婴 因素■右图就是误码率和仁噪比的关系 曲线■只耍知道JFA 的竽效输入喙声 电流•Signal lo Noise Ratio (SNR)38} ouflabtUJ.±m应用此曲线就可推算出接收杲放度接收灵敏度测量什么是比特误码率?■比特误码率(BER—Bit Error Ratio)是衡量一个光接收机性能的最基本的参数DC:O —接收的误码比特数_在测虽时间内误码数旷匕被接收到的比特数-比特率X测彊时间■ BER的表示形式:1X10-N或者1.0E-N(N是正整数)影响误码率的因素■光功率(和消光比)的大小■信号噪声比(SNR)■传输速率(数据比特率)■抖动■信号码型■工作波长■码间干扰■模块中元器件性能劣化或故障误码仪但ERT)■误码仪(Bit Error Ratio Tester)il]图案发生器和误码分析仪组成■它通过比较图案发生器产生的数据码和光接收机收到并转换成电信号的数据码來测试待测光接收机在不同输入光功率时的误码率(R KWVR)伪随机二进制序列(PRBS)■PRBS: Pseudo Random Binary Sequenee 序列氏度2M,即每隔2M个比特就重复■FRBS的特点:1. PRBS町以由n个移位寄存器串接并加上反馈产生2 在2"比持长度内,O和T是随机分冇的(类似噪卅),R 中0和1的个数是相等的3.在PRBS码型中包含最大n个连T码和"个连O码(反转后就是n・1个连T码和n个连O'码)伪随机码的产生刃PRBS GcncmtionXOK为何采用PRBS?■PRBS柑当尸随机数据”,因此它的频谱特征(在有限频带内)与白噪声接近,所以它适合用于测试通信系统的性能■这种数据的排列规则足确定的■一个PRBS序列町以串/并转换成务路(2、4、8、16…路),每路输出的速率降低,但仍然保持原序列的一切特征:反之,同一时钟源低速率筋路(2、4、8、16…路)同一n数的PRBS可以经并/串转换成高速率的n阶PRBS。
光模块工作原理
光模块是一种将光信号转换为电信号或者将电信号转换为光信号的设备。
它包括一个光接收器和一个光发射器。
光接收器的工作原理是利用光电效应将光信号转换为电信号。
当光信号到达光接收器时,光信号会被感光材料吸收,这会激发其中的电子。
这些电子会被外加电场推动并形成电流。
电流的大小和光信号的强度成正比。
光发射器的工作原理是利用电流通过半导体材料产生光信号。
当电流通过半导体材料时,它会激发材料中的电子。
这些电子在激发后会通过跃迁的方式释放能量,并且这些能量以光子的形式发射出来。
光的波长可以通过控制电流的频率和强度来调节。
为了使光模块能够正常工作,还需要配备光纤来传输光信号。
光纤是一种特殊的光导材料,它能够将光信号沿着其长度传输。
光纤内部通常由一个或多个包层和一个中心芯构成。
光信号会在中心芯内部一直传输,并且在接收端或发射端与光模块相连。
总之,光模块通过光接收器和光发射器实现光信号和电信号的相互转换。
光接收器利用光电效应将光信号转换为电信号,而光发射器利用电流通过半导体材料产生光信号。
光纤用于传输光信号,使得光模块能够在不同设备之间进行远距离的光通信。
光模块工作原理简介目录摘要 (2)关键词 (2)1引用的文档和参考标准说明 (2)2缩写说明 (2)3正文 (2)摘要以SFP光模块为例,介绍光模块内部的组成和工作原理。
关键词SFP光模块1引用的文档和参考标准说明2缩写说明SFP:Small Form-factor Pluggable 小型化可插拔3正文光模块是我们群路科都要用到的PHY层的器件,虽然封装,速率,传输距离有所不同,但是其内部组成基本是一致的。
SFP收发合一Transceiver因其小型化,热插拔方便,支持SFF8472标准,模拟量读取方便(IIC读取),且检测精度高(+/-2dBm以内)而逐渐成为运用的主流,下面就以SFP光模块为例,介绍其内部的组成和相关的工作原理。
SFP内部结构图SFP光模块的内部结构:由上图可见,光模块主要部分是由光发射组件,激光驱动器,光接收组件(L16.2光模块光接收部分使用APD接收机,还需要升压电路),限幅放大器和控制器组成的。
驱动芯片和限幅放大器一般都支持从155Mb/s到2.67Gb/s多速率。
速率不同,传输距离不同的光模块有很多只是前端光组件的差别,高速率SFP光模块BOM成本的90%都集中在光组件上。
由上图还可以看出,为了保证上电顺序,SFP光模块的金手指部分的长度是不一样的,最长的是信号地,其次是电源,最短的是信号,这样在插拔的时候就保证了地-电源-信号的顺序。
光发射组件 TOSA(Transmiter Optical Sub-Assembly):常用的光发射组件由两大类,一类是采用发光二极管LED封装的TOSA,一类是采用半导体激光二极管LD封装的TOSA。
前者谱线宽,耦合效率低(虽然LED可以发出几毫瓦的光功率,但是方向性差,能耦合到光纤中用于传输的部分只占1%-2%),但是价格低,使用寿命长,在低速短距的情况下还是有少量的运用,常用于百兆以太网多模光纤中短距离的数据传输,波长一般是1300nm。
光模块工作原理
光模块是一种用来转换电信号和光信号的设备,它通过光电效应来实现光的发射和接收。
光模块一般由发光器件(例如激光二极管)和光电子器件(例如光电二极管)组成。
在光模块中,当电信号输入时,发光器件会产生相应的光信号。
发光器件接收到电信号后,会产生电流,这个电流会通过发光材料产生电子的跃迁从而产生光。
发光器件产生的光信号会经过适当的光学元件(如透镜)进行整形和调节,然后通过光纤传输。
当光信号到达目标位置时,光电子器件会接收到光信号。
在光电子器件中,光信号会产生电流。
光电二极管是常用的光电子器件之一,当光信号照射到光电二极管上时,能量激发了光电二极管内的电子,使其从价带跃迁到导带,产生电流。
光电二极管输出的电信号可以通过一系列的电器元件(如放大器)进行放大和处理。
通过发光器件和光电子器件的组合,光模块能够在电信号和光信号之间进行互相转换。
当电信号输入时,光模块会将其转换成光信号输出;当光信号输入时,光模块会将其转换成电信号输出。
这种转换过程可以实现高速、低损耗的信号传输,广泛应用于光通信和光网络等领域。