工作面推进过程中上覆岩层移动与瓦斯运移规律的研究
- 格式:pdf
- 大小:773.51 KB
- 文档页数:3
上覆岩层在采煤工作面推进方向上的运动发展规律(续三)
三、影响岩层运动的因素
影响岩层运动的主要因素包括岩层的强度特征、采动条件和采空区处理方法。
1、岩层的强度特征由岩层的力学性质、厚度和节理裂隙情况决定的岩层强度特征,是影响岩层运动发展的内在因素。
强度高厚度大的岩梁,周期来压步距c将较大,相对稳定步距b也较大,显著运动步距a则较小(即岩梁显著运动发展迅速)。
相反,强度低、厚度小的岩梁,周期来压步距c和相对稳定步距b则较小,显著运动步距a相对而言要较前者大(即显著运动发展较慢)。
如果岩梁在推进方向上裂隙相当发育,不仅周期来压步距c小,而且有时很难找出划分岩梁处于相对稳定和显著运动的界限。
2、采动条件采高和推进速度等采动条件对岩梁的运动发展过程也会产生重要影响。
如加大采高,而工作面垮落高度不变,则岩梁显著运动的空间增加,岩梁的显著运动则会更明显。
当岩层的强度较低时,突然提高推进速度有可能导致岩梁运动步距扩大。
有些矿井在日常推进速度条件下采煤工作面来压不明显,高产后出现大面积来压现象就是这个原因。
此时如不注意加强支护,就容易发生区域性冒顶事故。
3、采空区处理方法采用强制放顶措施处理采空区,可减岩梁厚度及运动步距(包括c值和b值)。
采用充填法处理采空区,可减少岩梁运动空间,使运动不明显。
因此采空区处理方法必须根据所控制的顶板类型和需要加以选择。
大倾角采煤工作面覆岩运动规律研究摘要:由于煤体的开采形成了自由空间,围岩应力产生重新分布,导致采场周围岩体向采空部分产生位移、破坏、冒落。
工作面上覆岩层的运动规律是矿压控制技术研究的重点,因此,研究大倾角煤层工作面上覆岩层的运动规律,对于弄清大倾角煤层的矿压显现规律及其控制具有重要的意义。
关键词:大倾角;工作面;覆岩;规律大倾角煤层与缓斜煤层在回采时产生的矿压显现规律大体上是一致的,在进行回采时由于煤层被采出从而引起工作面周围岩层的移动、破碎以及垮落,导致工作面周围岩层的原岩应力发生改变,使工作面的巷道发生变形破坏现象,支架的支撑压力增大造成支架受损。
但是在进行大倾角煤层的开采时又会受到倾角大的影响,围岩的垂直应力与水平应力之间所形成的夹角减小,导致垂直应力在水平方向上大大的增加,使得大倾角煤层在开采过程中引起的工作面上覆岩层的移动,顶板岩层的破碎垮落以及支架的承载能力等特征,在与缓斜煤层工作面相比较时又有了一些不一样的特性。
1大倾角煤层工作面覆岩变形与破坏分析大倾角煤层开采后,顶板岩层在没有垮落之前位移量不大,但一旦垮落其围岩的变形与破坏将十分剧烈,大倾角煤层工作面上覆岩层的移动、变形和破坏的分带性与缓斜煤层类似,也是由下至上依次分为冒落带、断裂带和弯曲下沉带,但是大倾角煤层由于倾角较大,地质条件特殊,除了要形成上述的三个带以外,在工作面上侧的顶板岩层中沿层面还形成剪切滑移带,剪切滑移带位于工作面上侧煤体的上方,由于顶板的冒落和倾角较大,造成了采空区上侧处于空洞状态,给剪切滑移带的岩层造成了活动空间,倾角较大而使重力产生的沿层面的分力加大,又给该带岩层的活动提供了可能,剪切滑移带是大倾角煤层区别于缓斜煤层的重要特征。
大倾角煤层上覆岩层运动还具有不对称性,沿工作面倾向方向上的采空区上下两侧顶板垮落不一致,采空区上部顶板垮落相对下部较充分。
顶板岩层虽然被破断但是还能保持一定的连续性,其最大沉降值位于工作面的中上部。
第三章采煤工作面上覆岩层移动规律第一节概述一、煤层顶底板岩层的构成煤层处于各种岩层的包围之中。
处于煤层之上的岩层称为煤层的顶扳;处于煤层之下的岩层称为煤层的底板。
依据顶、底板岩层离煤层的距离及对开采工作的影响程度不同,煤层的顶、底板岩层可分为:(l)伪顶。
紧贴在煤层之上,极易垮落的薄岩层称为伪顶。
通常由炭质页岩等脆弱岩层组成,厚度一般小于0.5m,随采随冒。
(2)直接顶。
位于伪顶或煤层之上,具有肯定的稳定性,移架或回柱后能自行垮落的岩层称为直接顶。
通常由泥质页岩、页岩、砂质页岩等不稳定岩层组成,具有随回柱放顶而垮落的特征。
直接顶的厚度一般相当于冒落带内的岩层的厚度。
(3)老顶。
位于直接顶或煤层之上坚硬而难垮落的岩层称为老顶。
常由砂岩、石灰岩、砂砾岩等坚硬岩石组成。
(4)直接底。
直接位于煤层下面的岩层。
如为较坚硬的岩石时,可作为采煤工作面支柱的良好支座;如为泥质页岩等松软岩层时,则常造成底臌和支柱插入底板等现象。
二、采煤工作面上覆岩层移动及其破坏在承受长壁采煤法时,随着采工作面的不断向前推动,暴露出来的上覆岩层在矿山压力的作用下,将产生变形、移动和破坏。
依据破坏状态不同,上覆岩层可划分为三个带(图3-l)。
冒落带。
指承受全部垮落法治理顶板时,采煤工作面放顶后引起的煤层直接顶的破坏范围(图3-l,Ⅰ)。
该局部岩层在采空区内已经垮落,而且越靠近煤层的岩石就越紊乱、裂开。
在采煤工作面内这局部岩层由支架临时支撑。
裂隙带。
指位于冒落带之上、弯曲带之下的岩层。
这局部岩层的特点是岩层产生垂直于层面的裂缝或断开,但仍能整齐排列(图3-l,Ⅱ)。
弯曲下沉带。
一般是指位于裂隙带之上的岩层,向上可进展到地表。
此带内的岩层将保持其整体性和层状构造(图3-l,Ⅲ)。
生产实践和争论说明,采煤工作面支架上受到的力远远小于其上覆岩层的重量。
只有接近煤层的一局部岩层的运动才会对工作面四周的支承压力和工作面支架产生明显的影响。
所谓采煤工作面矿山压力掌握,也就是对这局部岩层的掌握。
王庄煤矿大采高工作面覆岩运移规律研究论文标题:研究王庄煤矿大采高工作面覆岩运移规律摘要:本文旨在分析王庄煤矿大采高工作面覆岩运移规律,以期为工程实践提供参考。
首先,完成了对煤矿的地质分布和覆岩特征的研究,包括岩性、物性和结构特征等。
其次,利用试验研究对覆岩运移规律进行了模拟,并观测到了覆岩运移的规律性及其动力学特征。
然后,根据覆岩运移机理,提出了能够更好地控制覆岩运移的相关技术措施,以保障煤矿安全生产。
最后,总结了相关矿山经验,以及煤矿安全开采工作的总体要求。
关键词:王庄煤矿;大采高工作面;覆岩运移;规律性正文:一、研究背景王庄煤矿位于某省的东南部,呈片状分布,其煤储量丰富,具有良好的开发前景。
2002年,该煤矿进行了大采高工作,以优化煤的采出率和产量。
在此过程中,由于覆岩层的特殊性和结构特征,其运移规律受到了极大影响。
因此,王庄煤矿大采高工作面覆岩运移规律研究显得尤为重要。
二、地质和覆岩特征1. 煤矿地质分布:王庄煤矿位于东南部,属新近系沉积,其主要构造是断裂-构造-充填构造体,分布规律具有规则性。
2. 覆岩层特征:煤矿覆岩厚度均匀,主要由砂岩和灰岩组成,岩性结构特征差异性较大,以硬度较大的砂岩、泥岩、泥质灰岩为主,具有较大的抗压强度,综合稳定性较好。
三、覆岩运移机理1. 模型试验:针对特定岩性结构特征,采用基于Stribeck参数的FEM弹性模型,进行模拟试验。
结果表明,块状覆岩的运移规律是先运动小块,再小块与小块组合,再组合成大块,最后是大块的运动。
2. 动力学特征:通过模型试验,发现覆岩的运动受多种因素的影响,特别是重力、末端接触力等因素的共同作用,使覆岩在不同深度有不同的动力学特征。
四、技术措施1. 抗剪支护技术:采用抗剪支护技术,可以有效地改变覆岩层应力状态,改善其稳定性,以期控制覆岩的运移。
2. 充填料填筑技术:采用充填料填筑技术,可以有效地增强覆岩层的稳定性,有利于改善覆岩运移规律。
浅埋深薄基岩工作面矿压显现规律研究李艳君,杨维帅,许力峰,郭文砚,李家伦,刘建(中国矿业大学(北京)资源与安全工程学院,北京100083)[摘要]为了研究浅埋深薄基岩煤层工作面上覆岩层的运动规律及工作面矿压显现规律,运用UDEC 数值模拟软件对神华李家壕煤矿的上覆岩层的运移规律进行了模拟分析,并进行了现场实测。
结果表明,模拟所得的初次来压步距为40m ,实测值为36.4m ;模拟周期来压步距为20m ,与现场实测的周期来压平均为20.5m 步距基本一致;关键层来压时表现为动载现象明显,整个上覆岩层全厚度切落,地表出现急剧下沉,工作面覆岩将不存在“三带”,基本上为垮落带和裂隙带“两带”。
[关键词]浅埋煤层;矿压显现;覆岩移动规律;数值模拟[中图分类号]TD325.1[文献标识码]A[文章编号]1006-6225(2012)03-0086-03Underground Pressure Behavior Rule of Shallow-buried Mining Face under Thin Base RockLI Yan-jun ,YANG Wei-shuai ,XU Li-feng ,GUO Wen-yan ,LI Jia-lun ,LIU Jian(Resources &Safety Engineering School ,China University of Mining &Technology (Beijing ),Beijing 100083,China )Abstract :Applying UDEC to simulating movement rule of overlying strata in Lijiahao Colliery and combining on-site observation ,this paper researched underground pressure behavior rule of shallow-buried mining face under thin base rock.First weighting pace by simu-lation was 40m ,observation value was 36.4m.Periodical weighting pace by simulation was 20m and observation value was 20.5m.Dy-namic load was obvious at time of key strata weighting ,whole overlying strata fell down and surface sharp subsidence occurred.There was only caving-zone and crack-zone in overlying strata.Key words :shallow-buried coalseam ;underground pressure behavior ;movement rule of overlying strata ;numerical simulation[收稿日期]2012-03-09[基金项目]国家自然科学基金委员会与神华集团有限公司联合资助项目:浅埋深薄基岩采动岩体破断及渗流基础(51134018);中央高校基本科研业务费资助项目(2011Y205)[作者简介]李艳君(1987-),男,黑龙江鹤岗人,在读硕士研究生,主要从事矿压及放顶煤方面的研究。
上覆岩层在采煤工作面推进方向上的运动发展规律随着采煤工作面的推进,煤壁前方的支承压力及支架上显现的压力都在不断的变化,采煤工作面矿压显现的发展变化规律是由对其有影响的上覆各岩层的运动发展规律决定的,除岩层运动的纵向发展规律影响外,还受推进方向的发展规律所影响,因此必须进一步研究岩层运动在推进方向上的发展规律。
一、采煤工作面上覆岩层运动的发展阶段采煤工作面在推进过程中,由于上覆各岩层承受的矿山压力大小不同支承(约束)条件的差别,就其运动发展状态来说可分为初次运动和周期性运动阶段。
1、初次动动阶段从岩层由开切眼开始悬露,到对工作面矿山压力显现有明显影响的一两个传递岩梁初次裂断运动结束为止为初次运动阶段(图2-a、图2-b)。
其中包括直接顶岩层初次垮落和基本顶的初次来压。
该阶段岩层两端由煤壁支撑,其受力状态可视为两端嵌固梁。
采煤工作面各岩层初次运动在采煤工作面的压力显现称为初次来压。
由于任何岩层初次运动步距相对正常情况下的运动步距要大得多,因此初次来压运动来压面积大,强度高,并且可能伴随有动压冲击,在控制岩层运动和矿压显现时,一定要十分注意动压的冲击,以保证采煤工作面在初次来压期间的安全。
2、周期性运动阶段从岩层初次运动结束到工作面采完,顶板岩层按一定周期有规律的断裂运动,称为周期性运动阶段(图2-c、图2f)。
在此发展阶段,岩层的约束条件发生了根本性变化,直接顶岩层在采煤工作面里为一端固定的悬壁梁,直接顶上方各岩梁为一端由煤壁支承,另一端则为由采空区矸石支承的不等高的传递岩梁。
此时,运动步距较初次运动步距小得多。
岩层周期性运动在采煤工作面引起的矿压显现称为采煤工作面的周期来压。
这个阶段岩层的完整性比初次运动前差,运动步距又比较小,因此控制岩层运动和矿压显现和要求也不同。
当两种运动来压强度差别很大时,不仅要尽可能扩大推进方向上的距离,而且支架的选型和设计必须分别处虑。
显然,如果按初次来压设计和选择支架,周期来压阶段支架的阻力不能充分发挥,将带来较大浪费。
大众煤矿12081工作面上覆岩层运移规律研究摘要:大众煤矿12081采场围岩运移是一个动态的过程,动态过程有两层内容,一是随着时间变化的动态过程,二是随支护力不同而变化的动态过程。
关键词:围岩运移支护控制大众煤矿12081采场围岩运移是一个动态的过程,动态过程有两层内容,一是随着时间变化的动态过程,二是随支护力不同而变化的动态过程。
如图1为合理支护条件下围岩运移状态,平衡结构下方岩层厚度为15m~19m,距离支柱较远,支柱上方顶板发生离层的可能性较小,采场处于安全状态下。
如图2所示为低支护载荷条件下围岩运移状态,支护顶板距平衡结构8m~12m,平衡结构对采场的影响较大,由于支护力过小,顶板易发生离层,支护状态差。
钻孔资料表明:二1煤直接顶板多为砂质泥岩、泥岩和少量粉砂岩及细中粒砂岩。
直接顶厚1.03m~11.81m。
直接顶之上为细、中粒砂岩老顶,局部为粉砂岩,多为浅灰色,成分以石英为主,长石、岩屑次之,厚层状,硅、钙质胶结,局部裂隙发育。
把电镜分析、力学特性测试、数值模拟结果、矿井钻孔资料相比较可见:二1煤层直接顶板多为砂质泥岩和泥岩,岩石抗压强度较高,属易管理顶板。
必须控制好支柱上方顶板8m~15m岩层,保持其稳定性,最大限度地阻止其发生离层,或者使离层的幅度及其可能性达到最小。
(如图1图2)1 生产过程顶板移动规律1.1 落煤和放顶落煤和放顶是影响12081工作面顶板动态的主要生产过程(或工序),可得采煤时顶底板移近量平均值较小,为199mm,其影响范围中下部60m。
放顶时顶底板移近量平均值较大,为270mm,其影响范围上部60m。
距煤壁4.1m处,顶底板移近量,在放顶过测点时最大平均值为430mm。
国内外单体液压柱工作面的统计资料表明:采煤时,顶板移动速度可达0.5~0.4m/h,是平时的数倍;放顶时的影响通常是采煤时的3~4倍,生产准备时的20~30倍。
因此,在放顶时,对工作面顶板的影响最大。
上覆岩层在采煤工作面推进方向上的运动发展规律(续四)
四、岩梁运动的基本参数
为了深入细致地研究岩层运动的发展规律,必须建立一套既符合岩层运动客观实际,又易于生产中标记的参数,对岩梁在各个运动阶段的运动状态进行描述。
(一)初次运动阶段的基本参数
1、表达岩梁运动过程的基本参数这些基本参数包括岩梁的相对稳定步距b0、岩梁的显著运动步距a0和岩梁的初次来压步距c0其相互关系为
C0=a0+b0
2、表达来压结束时刻(显著运动结束时)岩梁位置状态的参数1)来压结束时的采煤工作面下沉量△h0A
该下沉量取决于支架对顶板的工作状态(控制程度)。
当支架对岩梁运动不进行限制(即采取“给定变形”工作状态)时,来压结束时的采煤工作面顶板下沉量以△h0A表示,其大小与岩梁的初来压步距c0、采高、直接顶厚度等有关。
当支架对岩梁来压结束时的位置进行限制(即采取“限定变形”要作状态)时,以△h0表示,其大小由工作面支护强度决定。
2)来压结束时的岩梁跨度
来压结束时的岩梁跨度同样也是由支架对顶板的工作状态决定。
在“给定变形”条件下,来压结束时的岩梁跨度以L 0A 表示,其大小由岩梁运动步距决定;在“限定变形”条件下以 L 0表示,其大小由支护强度决定。
在”给定变形”条件下,来压结束时采煤工作面顶板下沉量△h 0A 和岩梁跨度L 0A 存在下列关系,即
△h 0A =
A L kA mz h Lk 0)]1([--≈0)]1([2C kA mz h Lk --
式中 h-采高,m
m z -直接顶厚度,m
3)表达来压前夕岩梁的位态参数
包括初次来压前夕岩梁的最大跨度(L 0′=b 0′)和初次来压前夕采煤工作面最小顶板下沉量h 0′。
浅析综放工作面初采期间瓦斯运移规律随着现代科技的不断发展,采掘机械化水平日益提升。
综采放顶煤开采作为其中一种采煤方式具有其特殊性。
而随着开采方式的不同,工作面瓦斯涌出规律也有所不同,所采取的措施也应相应的进行改进。
为此,针对潞安集团司马煤业有限公司1210工作面在采用综采放顶煤开采方式时瓦斯涌出规律及防治措施进行分析,掌握综放工作面初采期间瓦斯运移规律。
标签:总放工作面;初采期间;瓦斯1 概况1.1 工作面基本情况1210工作面总体地势东南高西北低,总体呈一西北倾的单斜构造,工作面东部坡度较大,西部较缓,局部地方底板出现起伏变化,形成小型褶曲,在褶曲转折端会造成煤层及顶板裂隙发育,煤层破碎,出现淋滴水现象,向斜轴部还会形成积水区。
1.2 瓦斯状况1.3 工作面通风系统1210综放工作面通风系统采用全风压独立通风系统,“U+L”后退式通风方式。
即1210运巷进风、1210回风巷与1210瓦排巷回风,在瓦排巷和风巷间每隔50m施工一通风横贯联络巷,工作面推进至横贯时将其打开,同时将上一个已过横贯进行永久密闭。
工作面的风流一部分进入回风巷,一部分风流则经工作面上隅角进入瓦排巷,能有效的控制采空区的瓦斯流向,不仅排除了上隅角瓦斯,同时能有效降低回风巷的瓦斯浓度。
该工作面设计风量为2660m3/min,实际配风量为3230m3/min。
2.2 瓦斯涌出量分析2.2.1 整体规律结合表1可以看出初采期间采煤工作面绝对瓦斯涌出量呈现以下规律:随着工作面整体不断推进,在老顶初次来压之前工作面瓦斯涌出量呈现逐步增高趋势,特别是在老顶初次来压时达到最高值;待老顶来压过后工作面瓦斯涌出量整体呈现稳步减小趋势,中间出现4个峰值分别分布在四个周期来压期间。
2.2.2 原因分析在老顶初次来压之前采空区会形成多个空顶,其间积聚有少量的瓦斯,并随着工作面不断推进,这些空顶会不断增多。
与此同时这些空顶内的瓦斯也会随着老顶的局部跨落加剧不断向工作面涌出,致使工作面瓦斯涌出量逐渐增大,特别是在老顶初次来压全部跨落时,大量采空区积聚瓦斯向工作面涌出导致工作面瓦斯涌出量急剧增大。
《切顶留巷条件下采动覆岩裂隙发育及瓦斯运移规律研究》篇一一、引言随着煤炭资源的不断开采,采矿工程中的安全问题日益突出,尤其是瓦斯灾害的预防与控制已成为煤炭工业的重要课题。
在切顶留巷的采矿条件下,覆岩的裂隙发育及瓦斯运移规律的研究显得尤为重要。
本文旨在探讨切顶留巷条件下采动覆岩裂隙的发育特征,以及瓦斯在其中的运移规律,为煤矿的安全生产和瓦斯灾害的预防提供理论依据。
二、研究背景与意义煤炭开采过程中,由于岩层的采动影响,覆岩会产生裂隙。
这些裂隙不仅影响岩层的稳定性,同时也对瓦斯的运移产生重要影响。
切顶留巷是一种常见的采矿方法,其特点是开采过程中保留一定的巷道空间,以支撑上覆岩层。
然而,这种采矿方法会导致覆岩裂隙的发育和瓦斯的运移变得更加复杂。
因此,研究切顶留巷条件下采动覆岩裂隙的发育及瓦斯运移规律,对于预防瓦斯灾害、保障煤矿安全生产具有重要意义。
三、研究内容与方法(一)研究内容1. 切顶留巷条件下覆岩裂隙发育特征的研究;2. 瓦斯在切顶留巷条件下的运移规律研究;3. 覆岩裂隙发育与瓦斯运移的相互影响研究。
(二)研究方法1. 理论分析:通过查阅相关文献,分析切顶留巷条件下覆岩裂隙发育及瓦斯运移的机理;2. 现场观测:在煤矿现场进行观测,记录覆岩裂隙的发育情况和瓦斯的运移情况;3. 数值模拟:利用数值模拟软件,模拟切顶留巷条件下的采动过程,分析覆岩裂隙的发育和瓦斯的运移;4. 实验室研究:在实验室进行相关实验,研究瓦斯在覆岩裂隙中的运移规律。
四、研究结果与分析(一)覆岩裂隙发育特征在切顶留巷条件下,覆岩裂隙的发育受到多种因素的影响,包括开采方法、岩性、地质构造等。
研究表明,切顶留巷条件下覆岩裂隙的发育呈现出一定的规律性,主要表现为裂隙的数量和宽度随着开采深度的增加而增加。
同时,裂隙的分布也受到地质条件和采矿方法的影响,呈现出一定的空间分布特征。
(二)瓦斯运移规律在切顶留巷条件下,瓦斯的运移受到覆岩裂隙的影响。