六年级数学上册第1-6单元全部知识点汇总
- 格式:doc
- 大小:296.34 KB
- 文档页数:7
(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6.表示: 6个512相加是多少.还表示:512的6倍是多少。
2.一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数.所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量512 例如:6×512,表示:6的是多少。
的27×512.27 表示: 512 是多少。
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数、求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找.注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思.那么谁比谁多,应该是“多比少多”,“多”的是指800千克.“少”的是指750千克.即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
数学六年级上册一到六单元知识点总结以下是数学六年级上册1-6单元的知识点总结:第一单元:分数乘法1. 分数乘法的意义:表示求几个相同分数的和的简便运算。
2. 分数乘法的计算法则:分数乘整数,分母不变,分子乘整数,能约分的先约分;分数乘分数,用分子乘分子作分子,分母乘分母作分母,能约分的先约分。
3. 乘积是1的两个数互为倒数。
4. 分数乘法的意义、计算法则、倒数的知识点与整数乘法的意义、计算法则、倒数的知识点相同。
第二单元:分数除法1. 分数除法的意义:表示求一个数的几分之几是多少。
2. 分数除法的计算法则:除以一个数(0除外),等于乘上这个数的倒数。
3. 当被除数小于除数时,商小于1;当被除数等于除数时,商等于1;当被除数大于除数时,商大于1。
4. 有两个数相除,可以先把“两个数相除商是几”转化为“两个数的几分之几相除是几”,再根据分数除法的意义转化为乘法算式进行计算。
5. 分数除法中的有关公式:被除数÷除数=被除数×除数的倒数。
第三单元:分数四则混合运算1. 分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。
2. 一个算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第一级运算,后做第二级运算;如果有括号,要先算括号里面的,再算括号外面的。
3. 一个算式里,如果有加、减、乘、除四则运算,要首先进行乘、除运算,然后进行加、减运算;如果有括号,要先算括号里面的,再算括号外面的。
4. 分数四则混合运算中的解题关键在于确定运算的顺序。
第四单元:百分数1. 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫百分比或百分率。
2. 百分数与分数的意义不同。
百分数只表示两个数的倍比关系,不能带单位名称;分数既可以表示具体的数量,又可以表示两个数的倍比关系,可以带单位名称。
3. 百分数的读法:读百分数时,先读“百分之”,再读百分号前面的数字。
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
六年级上册数学知识点归纳第一单元分数乘法 (1)(一)分数乘法意义: (1)(二)分数乘法计算法则: (1)(三)积与因数的关系: (2)(四)分数乘法混合运算 (2)(五)倒数的意义:乘积为1的两个数互为倒数。
(2)(六)分数乘法应用题——用分数乘法解决问题 (3)第二单元位置 (4)原理: (4)第三单元分数除法 (5)一、分数除法的意义: (5)分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
(5)二、分数除法计算法则: (5)除以一个数(0除外),等于乘上这个数的倒数。
(5)三、分数除法混合运算 (5)第四单元比 (5)第五单元圆 (7)一、圆的特征 (7)二、圆的周长: (8)围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
(8)三、圆的面积 S=πr² (8)第六单元、百分数 (9)一、百分数的意义:表示一个数是另一个数的百分之几。
(9)二、百分数应用题 (10)第七单元、统计 (11)扇形统计图的意义: (11)常用统计图的优点: (12)第八单元、数学广角 (12)一、研究中国古代的鸡兔同笼问题。
(12)第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
例如:3253⨯表示: 求53的32是多少? 544⨯表示: 求4的54是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1,则a、b互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算。
分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数。
人教版小学数学六年级(上下册)知识点梳理归纳上册第一单元《分数乘法》知识点归纳(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
新版PEP小学数学六年级上册1-6单元
知识点总结
1单元 - 从整百数中提取整十整百数
- 了解整百数的特点;
- 掌握将整百数分解成整十数和整百数的方法;
- 学会在计算中应用整百数的分解。
2单元 - 带数字的图形或图形的变换关系
- 认识带数字的图形;
- 通过观察图形的数字规律来找出未知数字;
- 掌握图形的变换关系并应用于解题。
3单元 - 除法的意义和特点
- 了解除法的含义和作用;
- 理解除法的特点,如相除数可以是连续数、零、单位数等;- 学会用图形和实物模型解决除法问题。
4单元 - 在圆、长方形中测量
- 掌握圆的直径、半径、周长和面积的概念;
- 学会在图中给出直径、半径和周长进行测量;
- 了解长方形的长度、宽度、周长和面积的关系,并能进行测量。
5单元 - 分数的概念和简单应用
- 了解分数的定义和概念;
- 掌握分子和分母的含义及其关系;
- 学会在实际问题中应用分数的概念进行计算。
6单元 - 倍数和倍数关系的应用
- 熟悉倍数和倍数关系的概念;
- 掌握倍数的判断方法及其应用;
- 学会在生活中应用倍数进行计算。
以上是新版PEP小学数学六年级上册1-6单元的知识点总结。
希望这份总结能够帮助你更好地理解和掌握这些数学知识。
六年级上册第一单元数学知识点汇总一、数的认识1.1 整数1.1.1 知识要点- 理解整数的意义,掌握整数的分类(自然数、负整数、整数)。
- 掌握整数的加法、减法、乘法、除法的运算规则。
- 理解整数的大小比较方法。
1.1.2 重点解析- 整数的加法、减法、乘法、除法运算规则是数学中的基础,需要熟练掌握。
- 整数的大小比较方法包括:比较两个整数的绝对值大小,以及考虑它们的符号。
1.2 小数1.2.1 知识要点- 理解小数的意义,掌握小数的分类(有限小数、无限小数、循环小数)。
- 掌握小数的加法、减法、乘法、除法的运算规则。
- 理解小数的大小比较方法。
1.2.2 重点解析- 小数的加法、减法、乘法、除法运算规则与整数类似,需要注意小数点的对齐。
- 小数的大小比较方法包括:比较两个小数的整数部分大小,以及考虑它们的小数部分。
1.3 分数1.3.1 知识要点- 理解分数的意义,掌握分数的分类(正分数、负分数、真分数、假分数)。
- 掌握分数的加法、减法、乘法、除法的运算规则。
- 理解分数的大小比较方法。
1.3.2 重点解析- 分数的加法、减法、乘法、除法运算规则需要熟练掌握,特别是通分的概念。
- 分数的大小比较方法包括:比较两个分数的分子和分母的大小,以及考虑它们的符号。
二、几何图形2.1 平面图形2.1.1 知识要点- 掌握常见平面图形的名称和特征,如三角形、四边形、五边形、六边形等。
- 掌握平面图形的周长、面积的计算方法。
- 理解平面图形的对称性、旋转性。
2.1.2 重点解析- 平面图形的周长、面积计算方法是数学中的基础,需要熟练掌握。
- 平面图形的对称性、旋转性是几何中的重要概念,有助于解决实际问题。
2.2 立体图形2.2.1 知识要点- 掌握常见立体图形的名称和特征,如正方体、长方体、球体等。
- 掌握立体图形的表面积、体积的计算方法。
- 理解立体图形的展开图、剖面图。
2.2.2 重点解析- 立体图形的表面积、体积计算方法是数学中的基础,需要熟练掌握。
新课标人教版六年级数学上册各单元知识点归纳第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5 表示求5 个65 的和是多少? 1/3×5 表示求5 个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7 表示求1/3的4/7 是多少。
4×3/8 表示求4 的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0 除外)乘大于1 的数,积大于这个数。
一个数(0 除外)乘小于1 的数(0 除外),积小于这个数。
一个数(0 除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a ×b = b ×a乘法结合律:( a ×b )×c = a ×( b ×c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c 二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
六年级上册概念汇总班级:姓名:第一单元长方体和正方体1.两个面相交的线叫做棱,三条棱相交的点叫做顶点。
形体相同点不同点关系面棱顶点面的形状面的大小棱长长方体 6 12 8 一般都是长方形,有时也有两个相对的面是正方形。
相对的面的面积相等平行的四条棱长度相等正方体是特殊的长方体正方体 6 12 8 六个面都是正方形六个面的面积相等六条棱长都相等长方体的12条棱有3组,每组的四条棱长度相等。
长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4长方体放桌面上,最多只能看到3个面。
3.正方体的展开(不能出现田字格)1).“141型”,中间一行4个图:作侧面,上下两个各作为上下底面,•共有6种基本图形。
2).“231型”,中间3个作侧面,共3种基本图形。
见上图3).“222”型,两行只能有1个正方形相连。
4).“33”型,两行只能有1个正方形相连。
4.长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积= 长×宽×2+长×高×2+宽×高×2 =(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积= 棱长×棱长×65.在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
http: //www. 通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
(注意:一般是最小的口通风)(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。
6(1)体积:物体所占空间的大小(2)容积:容器所能容纳物体的体积像这个长方体木箱的体积除了里面能容纳物体的体积外,还有做成木箱的木板的体积。
一个物体的体积要比一个物体的容积大,因为体积还包括自身材料的体积。
7.体积(容积)单位。
(1)用列表的形式来表述体积单位的大小,以利于记忆。
体积与容积单位之间的关系:1立方厘米=1毫升1立方分米=1升升和毫升之间的进率是1000,因为1升是1立方分米,1毫升是1立方厘米。
升和毫升相比,升是高级单位,毫升是低级单位,把高级单位的数量换算成低级单位的数量,都要乘相应的进率。
8.因为长方体的体积都是由它的长、宽、高决定的,它的体积=长×宽×高。
正方体是特殊的长方体,长=宽=高,因而它的体积是由棱长决定的,体积=棱长×棱长×棱长。
因为长方体和正方体的底面积是两条棱长决定的,即长方体底面积=长×宽;正方体的底面积=棱长×棱长;所以长方体和正方体的体积又可以说是由底面积和高决定的,它们的体积=底面积×高。
(1)长方体的体积=长×宽×高(2)正方体的体积=棱长×棱长×棱长(3)长方体的体积=底面积×高9.求这根长方体木料的体积要用“底面积×高”,从中间截成两段,表面积实质上增加了两个底面,如图。
两个面的面积和是12平方分米,一个面的面积是6平方分米。
本题求体积用的公式是“底面积×高”,也可以说用的是“横截面积×长”。
另外对于把一个长方体截成两段,截了一次,增加了两个面,如果是截成三段,就是截了两次,增加了四个面。
也就是说每截一次,增加两个面。
10.综合运用体积单位、长度单位的知识。
将一个大的形体分成一个小的形体。
将小正方体紧紧地排成一排,能排多少米,实际上就是将这些小正方体的棱长加起来,看有多长。
棱长是1米的正方体,它的体积是1立方米,棱长是1分米的正方体,它的体积是1立方分米,1立方米= 1000立方分米,所以能分成1000个。
顺次紧紧地排成一排,那么就能排成1000分米,1000分米= 100米。
11、正方体的棱长扩大n倍,表面积就扩大n²倍,体积就扩大n³倍。
12、表面涂色的正方体把一个涂色正方体的每条棱n等分,切成同样大的小正方体(1)三面涂色的正方体有8个,都在大正方体顶点位置;(2)两面涂色的正方体有12×(n-2),都在大正方体棱的位置,所以个数一定是12的倍数(3)一面涂色的正方体有6×(n-2)2,都在大正方体面的位置,所以个数一定是6的倍数(4)没有涂色的正方体有(n-2)3,都在大正方体的内部。
(5)在大正方体顶点处挖去小正方体,表面积不变(6)在大正方体棱上挖去小正方体,表面积变大,每挖去一个小正方体就比原来多2个面。
(7)在大正方体面上挖去小正方体,表面积变大,每挖去一个小正方体就比原来多4个面第二单元分数乘法1.分数和整数相乘,可以表示求几个几分之几相加的和。
2.求一个数的几分之几是多少,可以用乘法计算。
3.分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变。
如果整数能与分数的分母约分,要先约分,再计算。
4.在解答有关分数乘法的实际问题时要找准单位“1”的量。
数量关系式是:单位“1” ×分率 = 分率对应的量5.求一个数的几分之几(几倍)是多少的分数应用题的解题思路和解答方法完全相同:用一个数乘几分之几。
解题思路中是把一个数看作单位“1”,这也就提示我们解答分数应用题时先要找准单位“1”。
同样,我们在画线段图时,也应该先画出单位“1”的量。
在解答分数应用题的过程中,不仅仅要找准单位“1”的量,还要知道分率对应的量是什么?一般来讲,题目中分率如果是多(少)的分率,那么分率对应的量就是多的部分(少)。
6.根据“实际产量比计划节约了54”,写出一个数量关系式 计划产量×54 = 实际产量比计划节约的产量 7.分数和分数相乘,表示求一个数的几分之几相加的和,分数和分数相乘,用分子相乘的积作分子,用分母相乘的积作分母。
8.因为整数可以看成分母是1的假分数,所以分数和分数相乘的计算方法适用于分数和整数相乘。
9.三个数相乘,先把前两个数相乘,得出的积再和第三个数相乘。
但为了简便,可以先把所有分数的分子和分母约分,再把约分后的分子和分母相乘。
10.一个数和真分数相乘,所得的积小于这个数;一个数和假分数相乘,所得的积大于或等于这个数。
11.解答分数乘法应用题时,可以借助于线段图来分析数量关系。
在画线段图时,先画单位“1”的量。
数量关系式是:单位“1” ×分率 = 分率对应的量。
12.乘积为1的两个数互为倒数,求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
13.1的倒数是1,0没有倒数,真分数的倒数都大于1,自然数的倒数都是分子为1的真分数,假分数的倒数小于或等于1。
14.典型例题 例1、公顷,请你在图中表示出21公顷的32,结果是多少公顷?分析与解:(1)21公顷是1公顷的21(1公顷的一半);(2)21公顷的32,就是将21公顷部分平均分成3份,表示出2第一种解法21公顷21322公顷的321公顷的32是大长方形的62,21×32 = 62(公顷)或21×32 = 31(公顷) 例2、一袋大米重25千克,先吃去这袋大米的51,又吃去51千克,两次一共吃去多少千克? 分析与解:求两次共吃去多少千克,要用第一次吃的千克数加上第二次吃的千克数;第一次吃了这袋大米的51,是把这袋大米看作单位“1”,即吃去25千克的51;第二次吃去51千克。
先求出第一次吃去多少千克。
25 ×51 = 5(千克) 5 + 51 = 551(千克) 答:两次一共吃去551千克。
点评:这一题的关键就是正确理解题目中两个51所表示的不同含义,第一个51表示是一个数的几分之几,是分率;而第二个51表示的是51千克,是具体的量。
要先求出第一天的51所对应的量再直接加上第二天吃的51千克就可以了。
在解题过程中,一定要注意区分,并作出正确的判断,再进行解答。
例3、填空。
( )× 94 = 7 × ( )= ( )× 165 = 0.8 × ( ) 分析与解:这是一道连等式填空。
从题中可以看出,四道乘法算式的积都要相等,但是都等于几呢?题目中没有明确的要求,说明有多种填法。
但是要解答得又对又快,可以从倒数的意义入手,即考虑每个算式的积都是1,这样,在相应的括号里只填上与之相乘的那个数的倒数就可以了。
如果题目中明确给出了一个确定的数值作为积,那么解答此题时就只能一道一道地去思考解答了。
( 49 )× 94 = 7 × ( 71 )= ( 116 )× 165 = 0.8 × ( 45 ) 已知a ×373 =1112 ×b=1515×c ,并且a 、b 、c 都不等于0,把a 、b 、c 这三个数按从小到大的顺序排列, 并说明理由。
假设a ×373 =1112 ×b=1515 ×c = 1 那么a =163 、b=1112 、c= 1 那么 a <c <b 例4、(1)一根钢管截成两段,第一段占53,第二段长53米。
哪一根长? 分析与解:可以用画图的方法,把题意表示出来。
线段图如下: 第一段占53 第二段长53米通过线段图可以看出,第一段占53,第二段占 1 - 53 = 52 , 53 > 52 。
答:第一段长一些。
(2)两根一样长的钢管,第一根截去53,第二根截去53米。
哪一根剩下的长?(无法比较) (3)两根1米长的钢管,第一根截去53,第二根截去53米。
哪一根剩下的长?(一样长)第三单元 分数除法1.分数除以整数可以用分数的分子除以整数,但不能总得到整数的商,所以通常把分数除以整数转化成分数乘这个整数的倒数。
2.分数除以整数(0除外),等于分数乘这个整数的倒数。
3.一个数除以分数,等于乘这个分数的倒数。
4.甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5.一个数除以真分数所得的商大于这个数;一个数除以假分数,所得的商小于或等于这个数。
65÷2表示的意义是( 已知两个因数的积是65,与其中一个因数是2,求另一个因数是多少? 一台榨油机53小时榨油2524吨,平均每小时榨油多少吨?榨1吨油要多少小时? 2524÷53 = 58(吨) 1 ÷58 = 85(小时)答:平均每小时榨油58吨,榨1吨油要85小时。