第一章 基因组和染色体
- 格式:ppt
- 大小:6.57 MB
- 文档页数:137
基因组与染色体组的区别基因组与染色体组的区别1 基因组简介:目前在不同的学科中,对基因组含义的表述有所不同,概括为如下:①从细胞遗传学的角度来看,基因组是指一个生物物种单倍体的所有染色体数目的总和;②从经典遗传学的角度来看,基因组是一个生物物种的所有基因的总和;③从分子遗传学的角度来看,基因组是一个生物物种所有的不同核酸分子的总和;④从现代生物学的角度来看,基因组是指导一个生物物种的结构和功能的所有遗传信息的总和,包括全部的基因和调控元件等核酸分子。
在中学教材中关于基因组就是一个细胞中遗传物质的总量。
人类基因组是指人体DNA分子所携带的全部遗传信息。
人的单倍体基因组由24条双链的DNA分子组成(包括1~22号染色体DNA与X、Y染色体DNA),上边有30亿个碱基对,估计有3~5万个基因。
人类基因组计划就是分析测定人类基因组的核苷酸序列。
其主要内容包括绘制人类基因组的四张图,即遗传图、物理图、序列图和转录图。
绘制这四张图好比是建立一个“人体地图”,沿着地图中一个个路标,如“遗传标记”、“物理标记”等,可以一步步地找到每一个基因,搞清楚每一个基因的核苷酸序列。
不同生物基因组大小及复杂程度不同,具有物种差异性。
一般来说,从原核生物到真核生物,其基因组大小和DNA含量是随着生物进化复杂程度的增加而逐步上升的。
随着生物结构和功能复杂程度的增加,需要的基因数目和基因产物种类越多,因而基因组也越大。
但不同生物的基因组间有一定的相关性,表现为基因特性的相似、结构及组成的雷同、遗传信息的传递方式及遗传密码的趋同性等。
动物基因组的主要成分是核基因组,它与细胞质分开。
组成核基因组和线粒体基因组的序列形式与原核生物显著地不同,在不同物种中也有一些差异,有些序列是单拷贝的,而另一些序列是多拷贝的;另外还有大量的不编码蛋白质的DNA序列。
基因组学是研究生物基因组的结构和功能的科学,即从整体水平上来研究一个物种的基因组的结构、功能及调控的一门科学。
高一生物染色体重组知识点染色体是携带遗传信息的基本单位,它们通过重组来实现基因的改变。
本文将介绍高一生物学中关于染色体重组的知识点,从基本概念到相关技术,帮助同学们更好地理解这一重要的生物过程。
1. 染色体重组的基本概念染色体重组是指在遗传物质的染色体中,两条染色体之间或同一条染色体上基因的重新组合。
它是遗传学中重要的基因变异方式之一。
染色体重组的主要形式有交叉互换、缺失和重复、倒位等。
2. 染色体与基因的关系染色体是由DNA和蛋白质组成的,其中携带着遗传信息的单位是基因。
基因位于染色体上,通过染色体重组产生新的基因组合,从而影响个体的遗传性状。
3. 交叉互换交叉互换是染色体重组中最常见的方式。
在有丝分裂的过程中,同源染色体的一对互为同源染色体的一部分在某些区域发生交叉,交换DNA片段。
这样,交叉互换导致了染色体上的基因重新组合,形成新的基因组合。
4. 缺失和重复染色体的缺失和重复是另一种重要的染色体重组形式。
当染色体上的一部分基因缺失或多次重复时,会导致基因型的改变,进而影响个体表现型的变化。
这种重组方式可能会导致一些遗传性疾病的发生。
5. 倒位倒位是染色体上两段基因顺序颠倒的一种重组方式。
染色体倒位可能导致遗传信息丧失或重新组合,进而对个体性状产生影响。
在一些情况下,染色体倒位还可能导致染色体稳定性的改变,甚至引发染色体异常。
6. 染色体重组的意义染色体重组在进化中起到了重要的作用。
通过重组,基因组得以多样性的增加,增强了物种的适应性和生存能力。
同时,染色体重组也为基因的突变提供了基础,促进了生物多样性的产生。
7. 相关技术现代生物学已经发展出一系列技术以研究和探索染色体重组。
其中包括分子标记、限制酶切和基因工程等技术。
这些技术不仅为我们解开染色体重组的奥秘提供了工具,还应用于农业、医学和生物工程等领域。
总结:染色体重组是生物学中重要的遗传现象,它通过交叉互换、缺失和重复、倒位等方式,使基因组发生改变。
细胞和分子遗传学第一章绪论1. 遗传:生物信息从上代往下代传递2. 遗传学:研究遗传规律的科学3. 基因组Genome : 一整套染色体上的所有遗传物质4. 基因组学Genomics: 研究基因组的科学,包括研究分析核酸序列、基因成分、基因结构和基因数目.5. 细胞遗传学: 从细胞学和遗传学发展起来的交叉学科,它涉及染色体的形态、结构、数目、功能和运动等特征,以及这些特征的各种变异对遗传传递、重组、表达与调控的作用和影响,也涉及染色体外的遗传因子。
以染色体遗传为研究核心。
6. FISH(fluorescent in situ hybridization):荧光原位杂交7. 原位杂交:是一项利用标记的DNA或RNA探针直接在染色体、细胞或组织水平定位特定靶核酸序列的分子细胞遗传学技术。
8. FISH工作原理:用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行特异性结合,形成可被检测的杂交双链核酸。
由于DNA分子在染色体上是沿着染色体纵轴呈线性排列,因而可以将探针直接与染色体进行杂交从而将特定的基因在染色体上定位。
与传统的放射性标记原位杂交相比,荧光原位杂交具有快速、检测信号强、杂交特性高和可以多重染色等特点。
9. FISH的应用:⑴位点特异性探针:能与染色体的特定部位杂交;已经分离出一段基因的一小部分,若要确定这段基因位于哪个染色体,就准备这段基因的探针并观察该探针与哪个染色体杂交。
⑵整个染色体探针:能分别与染色体纵轴的不同序列杂交的很短的探针的集合。
用这些探针库能画出全部染色体并产生核型谱带,再进行核型分析,用于检测染色体异常10.原位杂交的种类:⑴GISH(Genomic in situ hybirdization)——以基因组为探针(整个染色体)。
⑵FISH(Fragment in situ hybridization)——以特定的基因为探针(基因片段)。
⑶mFISH (multicolor FISH)——利用不同颜色的荧光素标记不同的探针。
简述基因,染色体与基因组的相互关系基因、染色体和基因组是遗传学中常用的概念,它们之间有着密切的相互关系。
基因是生物体内传递遗传信息的基本单位,它位于染色体上,可以决定个体的性状和性状传递。
基因由DNA序列编码,可以转录成mRNA,在翻译过程中编码蛋白质。
染色体是细胞内的一种结构,它包含了大量的基因,并通过其特殊的形态和结构来存储、维护和传递遗传信息。
染色体由DNA、蛋白质和其他分子组成,可以在有丝分裂和减数分裂中实现遗传信息的传递。
基因组是一个生物体内的全部基因组成的集合,可以包括单倍体的基因组或多倍体的基因组。
基因组包括了所有的DNA序列,其中大部分是非编码序列,只有少部分是编码序列,但它们都对生物体的生理和表现产生着重要的影响。
总之,基因、染色体和基因组是互相联系的,它们共同决定了生物个体的遗传信息和性状传递。
对它们的深入了解,可以帮助我们更好地理解生命的本质和遗传的规律。
- 1 -。
名词解释:第一章基因组遗传图(连锁图):指基因或DNA标记在染色体上的相对位置与遗传距离。
单位是厘摩cM (基因或DNA片段在染色体交换过程中分离的频率)。
物理图:以已知核苷酸序列的DNA片段(序列标签位点,sequence-tagged site, STS)为“路标”,以碱基对作为基本测量单位(图距)的基因组图。
转录图:以EST(expressed sequence tag ,表达序列标签)为标记,根据转录顺序的位置和距离绘制的图谱。
EST:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分cDNA的5'或3'端序列称为表达序列标签(EST),一般长300-500 bp左右。
序列图(分子水平的物理图):序列图是指整个人类基因组的核苷酸序列图,也是最详尽的物理图。
既包括可转录序列,也包括非转录序列,是转录序列、调节序列和功能未知序列的总和。
基因:合成有功能的蛋白质或RNA所必需的全部DNA序列,即一个基因不仅包括编码蛋白质或RNA的核酸序列,还应包括为保证转录所必需的调控序列。
基因组(genome):生物所具有的携带遗传信息的遗传物质的总和。
基因组学(genomics):涉及基因组作图、测序和整个基因组功能分析的一门学科。
C值:单倍体基因组的DNA总量,一个特定种属具有特征C值C值矛盾(C value paradox):指一个有机体的C值和其编码能力缺乏相关性。
单一序列:基因组中单拷贝的DNA序列。
重复序列:基因组中多拷贝的DNA序列。
复杂性(complexity):基因组中不同序列的DNA总长。
高度重复序列(highly repetitive sequence):重复片段的长度单位在几个到几百个碱基对(base pair,bp)之间(一般不超过200 bp),串联重复频率很高(可达106以上),高度重复后形成的这类重复顺序称为高度重复顺序。
中度重复序列(intermediate repetitive sequence ):重复长度300~7000 bp不等,重复次数在102~105左右。
第一章基因的结构第一节基因和基因组一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列.一个典型的真核基因包括①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR)④调控序列(可位于上述三种序列中)绝大多数真核基因是断裂基因(split-gene),外显子不连续。
二、基因组(genome)一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。
人基因组3X1 09(30亿bp),共编码约10万个基因。
每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。
人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。
蛋白质组(proteome)和蛋白质组学(proteomics)第二节真核生物基因组一、真核生物基因组的特点:,①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中.②真核基因组中,编码序列只占整个基因组的很小部分(2—3%),二、真核基因组中DNA序列的分类?(一)高度重复序列(重复次数>lO5)卫星DNA(Satellite DNA)(二)中度重复序列1.中度重复序列的特点①重复单位序列相似,但不完全一样,②散在分布于基因组中.③序列的长度和拷贝数非常不均一,④中度重复序列一般具有种属特异性,可作为DNA标记.⑤中度重复序列可能是转座元件(返座子),2.中度重复序列的分类①长散在重复序列(long interspersed repeated segments.) LINES②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度<500bp,拷贝数>105.如人Alu序列LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl(三)单拷贝序列(Unique Sequence)包括大多数编码蛋白质的结构基因和基因间间隔序列,三、基因家族(gene family)一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。
基因和染色体的关系知识点总结基因和染色体是遗传学中两个重要的概念,它们之间存在密切的关系。
基因是生物体遗传信息的基本单位,染色体则是基因的载体。
下面是关于基因和染色体关系的知识点总结。
1. 基因的定义:基因是在染色体上的一段DNA序列,它携带着生物个体遗传信息的基本单位。
每个基因编码一种特定的蛋白质或RNA分子,通过控制蛋白质的合成来发挥作用。
2. 染色体的定义:染色体是细胞中可见的染色体材料,主要由DNA和蛋白质组成。
染色体结构上分为线型染色体和环状染色体两种。
3. 染色体的组成:染色体由DNA和蛋白质组成。
DNA是遗传物质,它携带着生物体的遗传信息;蛋白质则对染色体的结构和功能起到重要作用。
4. 染色体的数量:不同物种的染色体数量不同,人类有46条染色体,也就是23对。
其中,22对为体染色体,另外一对为性染色体(男性为XY,女性为XX)。
5. 基因和染色体的关系:一个染色体上可以包含多个基因,这些基因以线性的方式排列在染色体上。
不同的染色体上的基因可以编码不同的蛋白质和RNA分子。
6. 染色体的位置和功能:染色体上的基因分布不均匀,有些位置上可寻找到多个基因,而其他位置上可能没有基因。
这与基因的功能有关,一些位置上的基因是关键基因,而其他位置上的基因则可能是辅助性的。
7. 基因组:基因组是指一个生物体所有基因的集合,它包括了生物体的全部遗传信息。
基因组可以分为核基因组和线粒体基因组两部分。
8. 染色体的复制和分离:在细胞分裂过程中,染色体会进行复制,从而形成一对完全一样的染色体。
在有丝分裂过程中,染色体会被分离到两个新的细胞中。
9. 基因的表达:基因的表达是指基因产生的蛋白质或RNA分子在细胞中进行功能发挥的过程。
基因的表达受到染色体结构和外部环境的调控。
10. 染色体异常:染色体异常是指染色体结构或数量发生变化的现象。
这可能会导致一系列遗传疾病的产生,如唐氏综合征、染色体畸变等。
总结:基因和染色体是起着重要作用的遗传学概念。
基因组与染色体组的区别基因组与染色体组的区别1 基因组简介:目前在不同的学科中,对基因组含义的表述有所不同,概括为如下:①从细胞遗传学的角度来看,基因组是指一个生物物种单倍体的所有染色体数目的总和;②从经典遗传学的角度来看,基因组是一个生物物种的所有基因的总和;③从分子遗传学的角度来看,基因组是一个生物物种所有的不同核酸分子的总和;④从现代生物学的角度来看,基因组是指导一个生物物种的结构和功能的所有遗传信息的总和,包括全部的基因和调控元件等核酸分子。
在中学教材中关于基因组就是一个细胞中遗传物质的总量。
人类基因组是指人体DNA 分子所携带的全部遗传信息。
人的单倍体基因组由24条双链的DNA分子组成(包括1~22号染色体DNA与X、Y染色体DNA),上边有30亿个碱基对,估计有3~5万个基因。
人类基因组计划就是分析测定人类基因组的核苷酸序列。
其主要内容包括绘制人类基因组的四张图,即遗传图、物理图、序列图和转录图。
绘制这四张图好比是建立一个“人体地图”,沿着地图中一个个路标,如“遗传标记”、“物理标记”等,可以一步步地找到每一个基因,搞清楚每一个基因的核苷酸序列。
不同生物基因组大小及复杂程度不同,具有物种差异性。
一般来说,从原核生物到真核生物,其基因组大小和DNA含量是随着生物进化复杂程度的增加而逐步上升的。
随着生物结构和功能复杂程度的增加,需要的基因数目和基因产物种类越多,因而基因组也越大。
但不同生物的基因组间有一定的相关性,表现为基因特性的相似、结构及组成的雷同、遗传信息的传递方式及遗传密码的趋同性等。
动物基因组的主要成分是核基因组,它与细胞质分开。
组成核基因组和线粒体基因组的序列形式与原核生物显著地不同,在不同物种中也有一些差异,有些序列是单拷贝的,而另一些序列是多拷贝的;另外还有大量的不编码蛋白质的DNA序列。
基因组学是研究生物基因组的结构和功能的科学,即从整体水平上来研究一个物种的基因组的结构、功能及调控的一门科学。
生物高一下册遗传学知识点遗传学是生物学的一个重要分支,研究遗传现象和遗传规律。
在高一下册生物课程中,我们将学习关于遗传学的一些基本知识,以下是一些重要的遗传学知识点。
一、基因和基因型1. 基因是指决定个体遗传性状的分子单位,存在于染色体上。
2. 一个个体的基因组合称为基因型,决定着个体的遗传特征。
3. 基因的表现形式称为表型,表现出来的特征称为性状。
4. 基因按照孟德尔定律的分离规律进行遗传,隐性基因需要在表现型上有两份才能表现。
二、孟德尔定律1. 孟德尔定律是遗传学的基石,分为两个定律:显性定律和性状分离定律。
2. 显性定律:在杂交中,显性特征会表现出来,而隐性特征会被掩盖,但仍存在于基因中传给后代。
3. 性状分离定律:在F2代,显性和隐性特征会以3:1的比例出现。
三、基因组和染色体1. 基因组指一个个体完整的基因组合。
2. 染色体是基因的携带者,位于细胞核内。
3. 人类细胞中有23对染色体,其中有一对性染色体决定个体的性别。
4. 染色体携带的基因按照一定的位置和顺序排列。
四、遗传的分离和联合1. 遗传的分离指在孟德尔杂交中,隐性基因和显性基因在生殖过程中分开,单独传递给后代。
2. 遗传的联合指两个或多个基因位点相互连接,往往同时遗传给后代。
五、遗传的变异1. 遗传的变异是遗传学中普遍存在的现象,使得个体在同一物种内呈现出多样性。
2. 遗传变异主要由突变和基因重组引起。
六、基因的突变1. 突变是基因在DNA分子水平发生的突发性变化。
2. 可以分为点突变、缺失、倒位、倒位、易位等多种类型。
七、DNA的重组1. DNA重组是指两个不同个体的DNA序列在重组过程中发生互换。
2. 重组使得染色体上的基因排列顺序发生改变。
八、遗传的规律及应用1. 根据遗传规律及其应用,可以预测和改良物种的性状,提高农作物和家禽的产量与品质。
2. 遗传规律的研究也为人类疾病的发病机理和治疗方法提供了理论依据。
以上是高一下册生物课程中的一些重要的遗传学知识点,通过学习这些知识,我们可以更好地了解生物遗传的规律和应用。
染色体和基因组的结构与进化关系染色体和基因组是生命体系中最重要的组成部分之一。
它们在生物进化、物种形态及功能方面扮演着重要角色。
本文将探讨染色体和基因组的结构与进化关系。
一、染色体结构染色体是由DNA和蛋白质组成的复杂结构,可以被视为遗传信息的储存器。
在雄性和雌性的动物中,染色体数量和形状有所不同。
比如哺乳动物中,雄性拥有XY染色体,而雌性拥有XX染色体。
人类的染色体数量为46条,其中23对成对存在。
我们的染色体可以被划分为两个区域:中心着丝粒区和端部区。
着丝粒是染色体的标志性结构,有助于染色体在细胞分裂中保持稳定。
二、基因组结构基因组是指一个生物所有基因的总和,包括DNA中所有基因以及可区分的非编码序列。
非编码序列是不会直接编码蛋白质的DNA片段,但是它们仍然可能对基因的表达发挥重要作用。
在不同物种中,基因组的大小和复杂性有所不同。
在人类基因组中,大约有3亿个碱基对,其中只有大约2%的区域编码蛋白质,其余的区域属于非编码序列。
三、染色体和基因组的进化关系染色体和基因组在生物界的进化中扮演着重要角色。
基因组的进化由于基因组大小、基因数量和基因结构的改变而发生。
而染色体的数目、结构和组成以及染色体位置的改变则催生了广泛的基因组差异。
在染色体和基因组发生突变的一系列过程中,染色体倒位和基因家族进行强有力演化。
染色体倒位是指染色体片段发生颠倒,常见于不同的生物种群中。
基因家族则是指由共同祖先演化成的、相似或相同序列的基因。
此外,折叠以及RNA拷贝也是染色体和基因组进化的重要内容。
折叠是指染色体的三维结构和功能变化,RNA拷贝则是染色体转录成RNA过程中暗示基因组一系列增量的方法。
总结染色体和基因组在生物体中具有不可替代的作用。
他们的结构和演化互为影响,共同作用于物种的进化和形态。
识别和研究进化过程,在基因组和染色体这两个多事之秋的区域里探寻奥秘,则是生物学领域的重要研究方向,也是许多生物学家努力的方向。