第一篇 医学遗传学基础 第一章 人类基因和基因组
- 格式:ppt
- 大小:2.26 MB
- 文档页数:5
医学遗传学Medical genetics第一章 绪论遗传现象(遗传基础问题)先天禀赋、其子类父、男女同姓、其生不蕃;一母生九子、连娘十个样。
古希脂亚里斯多德——“类生类”。
英皇维多利亚家族(XR),皇室病——即血友病。
遗传与变异 1、遗传:亲代将自己的特性相对稳定的传给子代。
2、变异:即子代与亲代不同之处。
3、遗传与变异的关系:遗传是稳定的,遗传保证了生物物种的稳定和种族的延续,变异为遗传提供了新的材料,使生物物种得以进化,它们既对立又统一。
健康:指受遗传结构控制的代谢方式与人体环境保持平衡。
健康:机体代谢与周围环境保持平衡受遗传控制疾病:由于遗传结构缺陷或环境的显著改变,打破平衡。
疾病:代谢异常或环境改变打破平衡——遗传缺陷 转基因:从基因库中筛选“目的”基因,以分子克隆方法扩增、鉴定以及转移到不具该基因的细胞、组织和整合到植物中去, 并能在相应的部位表达出目的基因产物,即转基因技术。
转基因动物:携带外源基因,并将外源基因遗传给子代的动物,又能在这些动物体内检查到相应的基因产物或相应症状,这类动物就是转基因动物。
转基因技术本质上是DNA 重组技术; 而“克隆”实际上是无性繁殖。
医学遗传学的任务(临床层次):在于揭示各种遗传性疾病的传递规律、发病机制、诊断和防治措施;遗传医学则为遗传病患者提供临床服务,包括:遗传病的诊断,治疗、筛选、预防、咨询、随访等。
21世纪医学遗传学研究的重点(研究层次):将是多基因复杂病和癌肿,因为随着人类基因组测序的完成,所有的单基因病的致病基因必将全部得到鉴定。
发展史 1859 报道第一例先天性代谢病1866 分离律、自由组合律 Mendel 1869 首次分离DNA Miescher 1903 遗传因子在染色体上 Sutton & Boveri 1909 遗传因子改称“基因” Johannsen1910 连锁与互换定律 Morgan 1944 证明DNA 是遗传物质 Avery 1953 DNA 双螺旋结构 Watson & Crick 1956 确定人体细胞染色体数为46条 蒋有兴 Levan 1966 阐明DNA 遗传密码 Nirenberg, Ochoa ,Khorana 1970 试管内合成基因 Khorana 1972 DNA 克隆技术 1975 DNA 测序 1985 PCR 技术 1990 临床基因治疗 1991 人类基因组研究15年规划启动 1994 人类基因内阻连锁图 1998 人类基因组物理图 2000 人类基因组序列工作草图 2001 人类基因组94%序列草图作出初步分析 2003 人类基因组测序完成:即“人类基因组计划”(HGP )。
医学遗传学中的人类基因组变异研究引言医学遗传学是研究人类疾病与遗传因素之间关系的学科。
人类基因组的变异是研究疾病遗传基础的重要组成部分。
本文将从基础知识、常见变异类型以及研究方法三个方面来介绍医学遗传学中的人类基因组变异研究。
一、基础知识1. 基因组和基因基因组是指一个生物体细胞内包含的所有基因的总和。
人类基因组中包含了大约30000个基因,每个基因都是由DNA序列编码的。
2. 基因组变异基因组变异指的是基因组中出现的变异现象。
人类基因组变异包括两种类型:单核苷酸多态性(SNP)和结构变异。
SNP是指基因组中单个核苷酸的变异,可以导致个体间DNA 序列的差异。
SNP在个体间的分布具有很高的个体差异性,有些SNP与疾病的风险相关。
结构变异是指包括缺失、插入、倒位等变异,可以导致整条染色体上的DNA序列改变。
结构变异是人类基因组中变异最大的部分,也是一些遗传疾病的重要原因之一。
二、常见的基因组变异类型1. 单核苷酸多态性单核苷酸多态性指的是基因组中单个核苷酸位置的变异。
类似于人类基因组的拼图,SNP就像是其中的一个拼图块。
SNP的存在是每个人基因组中的标志之一。
它可以导致个体间的DNA序列的差异,也可能导致对疾病易感性的影响。
在医学遗传学中,通过研究SNP的分布和功能,可以揭示某些疾病的发生机制和风险。
2. 复杂重排变异复杂重排变异是指包括缺失、插入和倒位在内的复合结构变异。
这类变异通常涉及多个基因的改变。
复杂重排变异对人类基因组的影响是复杂的。
有时,它们会导致某些遗传疾病的发生。
因此,对这类变异进行深入的研究,可以为诊断和预防这些疾病提供重要依据。
三、研究方法1. 基因组测序基因组测序是人类基因组变异研究的重要方法之一。
通过测定个体的核酸序列,可以全面地了解其基因组组成和变异情况。
最初的基因组测序方法是Sanger测序。
随着新一代测序技术的发展,如Illumina测序等,基因组测序的时间和成本得到了大幅度降低,使得大规模基因组测序成为可能。