专题3-平差数学模型与最小二乘原理(实习用—概论与开始统讲)概论
- 格式:ppt
- 大小:890.01 KB
- 文档页数:13
授课题目:第二章 平差数学模型与最小二乘原理教学方法:理论讲授 教学手段:多媒体课件教学;以电子课件为主,投影及板书相结合为辅,使学生能够充分利用课堂有效的时间了解尽可能多的相关知识。
本章教学时数:4学时内容提要:主要介绍必要观测、多余观测、不符值、独立参数概念;测量平差的函数模型及两种平差的基本方程:条件方程和误差方程式;其它函数模型:附有参数的条件平差、附有限制条件的间接平差,以及平差的随机模型的概念及形态;平差基本方程的线性化,最小二乘原理。
教学要求:理解必要观测、多余观测、不符值、独立参数概念,掌握条件方程和误差方程式含义和最小二乘原理,会进行平差基本方程--条件方程和误差方程式的线性化。
本章重点:重点掌握测量平差数学模型的类型、建立方法,平差随机模型的意义和形态,以及最小二乘原理在测量平差中的应用。
教学难点:教学难点是对平差函数与随机模型含义与建立方法的理解。
本章教学总的思路:地理空间几何图形内部存在着严格的数学关系,测绘获得的是地理空间几何图形的基本元素,如角度(或方向值)、边长、高差的最佳估值,必须满足地理空间几何图形的基本数学关系,这是建立测量平差基本方程--条件方程和误差方程式的基础,在讲清楚这一点的基础上讲解基础方程的建立,进而推开讲解附有参数的条件方程、附有限制条件误差方程模型,并说明平差的随机模型的概念。
为解算的需要必须线性化条件方程式和误差方程式,其基本方法是利用泰勒级数展开基本方程并取其至一次项,从而完成线性化;在解释天然的平差模型为什么没有唯一解的原因基础上,讲解最小二乘原理,并举例验证,以此突破本课程难点内容的教学。
最后对教学重点内容作概括性总结,使学生加深理解与认知的程度。
§1测量平差概述本节教学时数:0.5学时本节重点:(1)测量元素-—角度(方向)、长度、高差、几何图的数学关系(2)观测值个数、必要观测数、多余观测数及其作用;(3)观测值、改正数、最优改正数、最优估值,平差的概念本节教学思路:以日常生活中最常见到的简单几何图三角形为例,说明测量观测值、平差值、几何图数学关系,平差模型与平差的概念,为下一节的讲讲解作好知识铺垫。