解二元一次方程组方法
- 格式:ppt
- 大小:3.52 MB
- 文档页数:17
二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(x-m)2=n(n>0)的方程,其解为x=土根号F n+m.例 1.解方程(1) (3x+1)2=7 (2) 9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2, 右边=11>0,所以此方程也可用直接开平方法解。
⑴解:(3x+1)2=7X・ *. (3x+1 )2=5•••3x+仁土 (注意不要丢解)/. x=.••原方程的解为x1=,x2=(2) 解:9x2-24x+16=11.•.(3x-4)2=11A3x-4=±/. x=原方程的解为x1=,x2=2. 配方法:用配方法解方程ax2+bx+c=0(aH0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1: x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b"2-4ac20 时,x+=±.••x=(这就是求根公式)例2.用配方法解方程3x"2-4x-2=0(注:X"2是X的平方)解:将常数项移到方程右边3x A2-4x=2将二次项系数化为1: x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±/.x=•••原方程的解为x1=,x2=.3. 公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac 20 时,把各项系数a,b,c 的值代入求根公式x=[-b±(b A2-4ac)A(1 /2)]/(2a),(b24ac20) 就可得到方程的根。
例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0.°.a=2,b=-8,c=5b A2-4ac=(-8)2-4X2X5=64-40=24>0/.x=[(-b±(b A2-4ac)A(1/2)]/(2a)二原方程的解为x1=,x2=.4. 因式分解法:把方程变形为一边是零,耙另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
二元一次方程组的常见解法
二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.
一、代入法
2x+5y=-21
例1、解方程组
x+3y=8
3x-4y=9
例2、解方程组
9x-10y=3
※解题方法:
①编号:②变形③代入④求x(或y):;⑤求y(或x):⑥联立:
三、加减消元法
2x+3y=14
例3、解方程组
4x-5y=6
3(x+2)+(y -1)=4 例4 解方程组
3(x+2)+(1-y)=2
※解题方法:
①编号 ②系数相等
③相加(或相减) ④求值 ⑤求另值 ⑥联立
3.精选真题强化练习:
解二元一次方程组:
(1)⎩⎨⎧=+=+52y x 4
y 2x
(2)⎩⎨⎧==+112y -3x 12y x。
解二元一次方程组的基本方法是消元,而我们熟知的方法就是代入消元法和加减消元法,但这两种方法都比较繁琐.下面通过加减消元法的解答过程探讨更简单直接的方法.例.解方程组的解.加减消元法解答过程:······························①两式作差,得···························②··························③将③代入,得··························④所以,原方程组的解为:【解析】由方程组的解可知,,的分母均为,我们可先求二者的分母,而该值亦是②式中的系数,再由①式形式,我们可以通过把原方程组中的两个方程的,的系数写成如下形式:·····························⑤交叉相乘相减,得到二者的分母.再求的分子,即②式右边的数值,可由得到.事实上,用替换⑤中计算可得.即求的值时,用常数列相应替换的系数列.同样地,求的分子,可由得到.即求的值时,则在⑤中用常数列相应替换的系数列计算可得.通过上述推导,我们得到解二元一次方程组的简单方法:,.其中,,,.【注】作为,的分母,因此要求方程组才有解.事实上,二元一次方程组的解可看成两直线和的交点的横纵坐标,而条件“”告诉我们两直线相交,因此方程组有唯一解.而当时,则两直线平行或重合,相应地,方程组要么有无穷多解要么无解.。
二元一次方程怎么解详细过程
二元一次方程的解法:代入消元法
例题:
{x-y=3 ①
{3x-8y=4②
由①得x=y+3③
③代入②得
3(y+3)-8y=4
y=1
把y=1带入③
得x=4
则:这个二元一次方程组的解为
x=4
y=1
代入消元法的知识点:
1、选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
2、将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);
3、解这个一元一次方程,求出未知数的值;
4、将求得的未知数的值代入变形后的方程中,求出另一个未知数的值;
5、用“{”联立两个未知数的值,就是方程组的解;
6、最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。
二元一次方程组的常见解法二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.一、代入法即由二元一次方程中的一个方程变形,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程中,实现消元,进而求解.一般情况下用代入法解方程组时,选择变形的方程要尽可能的简单,表示的代数式也要尽可能的简单,以利于计算.2x+5y=-21 ①例1、解方程组x+3y=8 ②解由②得:x=8-3y ③把③代入①得2(8-3y)+5y=-21解得:y=37把y=37代入③得:x=8-3×37=-103x=-103所以这个方程组的解是y=37二、整体代入法当方程组中的两个方程存在整数倍数关系时,用代入法解可将整数倍数关系数中较小的一个变形,用另一个字母代数式表示它后代入另一个方程.3x-4y=9 ①例2、解方程组9x-10y=3 ②解由①得3x=4y+9 ③把③代入②得3(4y+9)-10y=31/3解得y=-12把y=-12代入③得3x=4×(-12)+9解得x=-13x=-13所以方程组的解是y=-12三、加减消元法即方程组中两个二元一次方程中的同一个未知数的系数相等时,让两个方程相减.如果方程组中两个二元一次方程中的同一个未知数的系数互为相反数时则让两个方程相减.消去一个未知数,得到一个一元一次方程,这种方法叫加减消元法.2x+3y=14 ①例3、解方程组4x-5y=6 ②解由①×2得4x+6y=28 ③③-②得:11y=22解得y=2把y=2代入②得4x-5×2=6解得x=4x=4所以方程组的解为y=2四、整体运用加减法即当两个二元一次方程中的某一部分完全相同或符号相反时,可以把这两个方程两边相加或相减,把相同的部分整体消去.3(x+2)+(y-1)=4 ①例4解方程组3(x+2)+(1-y)=2 ②解①-②得(y-1)-(1-y)=4-2整理得2y=4解得y=22/3把y=2代入①得3(x+2)+(2-1)=4整理得3x+7=4解得x=-1x=-1所以方程组的解为y=2解二元一次方程组的主要方法有代入法和消元法,因为方程的形式是多种多样的.所以在解方程中一定要仔细观察方程中各部分以及各个未知数和它们的系数之间的关系的找到最简便的解题方法.3/3。
初中数学:二元一次方程组的几种简便解法1、整体代入法整体代入法是用含未知数的表达式代入方程进行消元.有些方程组并不一定能直接应用这种解法,不过,我们可以创造条件进行整体代入.解析:这道题中的系数较繁,按常规方法去解比较麻烦.我们可以先将②式有目的地进行变形,再将①式中的看成一个整体代入求解.由②式可得.化简,得.③将①代入③,得.解得,代入①可得.故方程组的解为2、换元法换元法就是设出一个辅助未知数,分别用含有这个未知数的代数式表示原方程组中未知数的值,把二元一次方程组转化为一元一次方程组进行求解.换元有一定的技巧性.有代数式整体换元,还有设比值换元等多种方法,下面举例说明.解析:我们可以分别尝试整体换元和设比值换元.方法1:设,则.代入②,得.解得.从而可得方程组的解为方法2:设.由①得,所以.③由②得.④③÷④,得.解得.从而可得3、直接加减法直接加减法有别于课本中的加减消元法,它通过将方程组中的方程相加减后把较繁的题目转化得相对简单.解析:若用一般方法去解这个方程组,其复杂程度可想而知,我们采用直接加减法.①+②,得,即.③①-②,得.④由③④可得4、消常数项法解析:可将两式消去常数项,直接得到与的关系式,而后代入消元.①-②,得,即.将代入②,得,即.从而可得5、相乘保留法解析:去分母时,如果把两数相乘得出结果,不仅数值变大,而且给下面的解题过程带来麻烦,所以有时我们暂时保留相乘的形式.由①,得.③由②,得.④④-③,得.从而可得6、科学记数法当方程组中出现比较大的数字时,可用科学记数法简写.例6、解方程组解析:这个数比较大,可用科学记数法写成.由②,可得.③将①代入③,得.从而可得7、系数化整法若方程组中含有小数系数,一般要将小数系数化为整数,便于运算.解析:利用等式的性质,把①式变形为.③利用分子、分母相除,把②式变形为.④③-④,得.从而可得8、对称法例8、解方程组解析:这个方程组是对称方程组,其特点是把某一个方程中的互换即可得到另一个方程.由对称性可知,则可得解得9、拆数法例9、解方程组解析:我们可以有目的地将常数项进行变形,通过观察得出方程组的解.原方程组可变形为从而可得。
二元一次方程的解法二元一次方程是指形如ax+by=c的方程,其中a、b、c分别是已知实数系数,x、y是未知数。
解二元一次方程的方法包括代入法、消元法和相减法。
代入法是指将一个方程的一个变量表示成另一个方程的变量的形式,然后再将其代入到另一个方程中求解。
下面举一个例子来说明代入法的解法步骤。
例子:解方程组2x + 3y = 73x - 4y = 10首先,可以选择其中一个方程(假设选第一个方程)将其中的一个变量(假设选择x)表示成另一个方程的变量的形式,然后代入另一个方程中:2x = 7 - 3yx = (7 - 3y) / 2将x代入第二个方程中,得到:3(7 - 3y) / 2 - 4y = 1021 - 9y - 8y = 20-17y = -1y = 1/17将y的值代入第一个方程中,得到:2x + 3(1/17) = 72x + 3/17 = 72x = 7 - 3/17x = (7 - 3/17) / 2因此,这个方程组的解为x = (7 - 3/17) / 2,y = 1/17。
消元法则是通过相加或相减两个方程,使其中一个变量的系数相等,从而消去这个变量,然后解剩下的一个一元方程。
下面通过一个例子来说明消元法的解法步骤。
例子:解方程组2x + 3y = 73x - 4y = 10为了消去y,可以将两个方程的系数相乘:2(3x - 4y) = 3(2x + 3y)6x - 8y = 6x + 9y-8y - 9y = 0-17y = 0y = 0将y = 0代入第一个方程中,得到:2x = 7x = 7/2因此,该方程组的解为x = 7/2,y = 0。
相减法是通过将两个方程相减,消去一个变量,然后解剩下的一个一元方程。
下面通过一个例子来说明相减法的解法步骤。
例子:解方程组2x + 3y = 73x - 4y = 10为了消去x,可以将两个方程相减:(2x + 3y) - (3x - 4y) = (7) - (10)2x + 3y - 3x + 4y = 7 - 10-y + 7y = -36y = -3y = -1/2将y = -1/2代入其中一个方程中(假设选择第一个方程),得到:2x + 3(-1/2) = 72x - 3/2 = 72x = 7 + 3/2因此,该方程组的解为x = (7 + 3/2) / 2,y = -1/2。
解二元一次方程组的方法二元一次方程组是指含有两个未知数的一次方程组,通常形式为:ax + by = c。
dx + ey = f。
要解这样的方程组,我们可以使用多种方法,下面将介绍几种常用的解法。
方法一,代入法。
代入法是解二元一次方程组常用的一种方法。
我们可以通过将一个方程中的一个未知数表示成另一个方程中的未知数的形式,然后代入到另一个方程中,从而得到另一个未知数的值。
举个例子,对于方程组:2x + 3y = 8。
x y = 1。
我们可以将第二个方程中的x表示成x = 1 + y,然后代入到第一个方程中,得到:2(1 + y) + 3y = 8。
2 + 2y + 3y = 8。
5y = 6。
y = 6/5。
将y的值代入到x y = 1中,得到:x 6/5 = 1。
x = 11/5。
因此,方程组的解为x = 11/5,y = 6/5。
方法二,消元法。
消元法是解二元一次方程组的另一种常用方法。
通过将两个方程相减或相加,消去一个未知数,然后解得另一个未知数的值。
以方程组。
2x + 3y = 8。
x y = 1。
为例,我们可以将两个方程相加,得到:3x + 2y = 9。
然后将这个新得到的方程与原来的其中一个方程相减,消去一个未知数,得到另一个未知数的值。
方法三,克莱姆法则。
克莱姆法则是一种利用行列式来解二元一次方程组的方法。
对于方程组。
ax + by = e。
cx + dy = f。
如果ad bc ≠ 0,那么方程组有唯一解,且解为:x = (ed bf) / (ad bc)。
y = (af ec) / (ad bc)。
方法四,图解法。
图解法是通过在坐标系中画出两个方程的图像,从而找到它们的交点来求解方程组的方法。
通过观察图像的交点坐标,我们可以得到方程组的解。
总结。
解二元一次方程组的方法有很多种,上面介绍的只是其中的几种常用方法。
在实际应用中,我们可以根据具体情况选择合适的方法来解方程组,以便高效地求得未知数的值。
二元一次方程组的解法二元一次方程组是指包含两个未知数的一组线性方程,可以表示成如下形式:```ax + by = cdx + ey = f```其中,a、b、c、d、e、f为已知常数。
解二元一次方程组的方法有数种,下面将介绍几种常见的解法。
1. 消元法消元法是解二元一次方程组的常用方法之一。
其基本思想是通过将一个方程的系数乘以另一个方程的某个倍数,使得两个方程之间的系数相等而得到一个新的方程,从而消去其中一个未知数。
假设给定的二元一次方程组为:```ax + by = c (1)dx + ey = f (2)```1) 首先选择一个系数相等的方程,比如两个方程中x的系数:```a/d = b/e = k```2) 将方程(2)的x系数变为ka,并减去方程(1)的相应部分,得到新的方程:```(ka * dx + ka * ey) - (ax + by) = (ka * f) - (c)(kad-kadx) + (kabe-by) = kaf - c-kadx + kabe - by = kaf - c```3) 然后重新整理方程,消去未知数x,得到一个只包含未知数y的方程:```(y * (ka-b)) = (kaf - c - kad)```4) 最后求解方程,得到y的值。
将y的值代入方程(1)或方程(2),即可求得x的值。
2. 代入法代入法是另一种常用的解二元一次方程组的方法。
其基本思想是通过将一个方程的一个未知数表示为另一个方程的未知数的函数形式,然后代入到另一个方程中进行求解。
假设给定的二元一次方程组为:```ax + by = c (1)dx + ey = f (2)```1) 选择其中一个方程,将其未知数表示为另一个方程的未知数的函数形式。
比如,将方程(1)中的x表示为方程(2)中的未知数:```x = (f - ey)/d```2) 将上述表达式代入方程(1),得到一个只包含一个未知数y的方程:```a * ((f - ey)/d) + by = c```3) 再次整理方程,求解未知数y的值。
二元一次方程的解法步骤
二元一次方程是指形如ax+by=c的方程,其中a、b、c为已知常数,x、y为未知数。
解决二元一次方程的常用方法有三种,分别是代入法、消元法和Cramer法。
代入法:
代入法是指将其中一个未知数用另一个未知数的表达式代入方
程中,从而得到只含一个未知数的一元一次方程。
然后解决这个一元一次方程即可得到一个未知数的值,再将这个值代入另一个方程中,解决另一个未知数的值。
最终得到二元一次方程的解。
消元法:
消元法是指将两个方程中的一个未知数消去,以便得到只含一个未知数的一元一次方程。
方法是通过对两个方程进行加、减、乘、除等运算,把其中一个未知数消去,从而得到只含另一个未知数的一元一次方程。
然后解决这个一元一次方程即可得到一个未知数的值,再将这个值代入另一个方程中,解决另一个未知数的值。
最终得到二元一次方程的解。
Cramer法:
Cramer法是一种利用行列式解决二元一次方程的方法。
将二元一次方程组的系数矩阵与常数矩阵组成一个增广矩阵,然后求该矩阵的行列式值以及系数矩阵各行、各列的代数余子式,从而得到二元一次方程的解。
以上三种方法都是解决二元一次方程的有效方法,根据具体情况
选择合适的方法可以大大提高解题效率。
二元一次方程组的概念与解法二元一次方程组是初中数学中的重要内容,它由两个未知数和两个方程组成。
本文将介绍二元一次方程组的概念以及解法,帮助读者更深入地理解和掌握这一知识点。
一、概念二元一次方程组由两个未知数和两个一次方程组成。
通常的一种表示形式为:```{ax + by = c (式1){dx + ey = f (式2)```其中,a、b、c、d、e、f都是已知的实数系数,x和y是未知数。
二、解法解二元一次方程组有多种方法,下面将分别介绍三种常用的解法。
1. 代入法代入法是一种较为直观且易于理解的解法。
我们可以将其中一个方程中的一个未知数用另一个方程中的未知数表示,然后代入另一个方程中,从而得到一个只含有一个未知数的方程,进而求解。
以下是具体步骤:Step 1:选择一个方程,将其中一个未知数,如x,用另一个方程中的未知数y表示。
Step 2:将代入得到的式子代入另一个方程中,得到一个只含有一个未知数的方程。
Step 3:求解该方程,得到一个未知数的值。
Step 4:将求得的未知数的值代入任意一个原方程,求解另一个未知数。
Step 5:得到方程组的解。
2. 消元法消元法是一种常用的解法,它通过逐步消去一个未知数,从而实现解方程组的目的。
以下是具体步骤:Step 1:通过变换,使得两个方程的系数相等。
Step 2:将两个方程相减(或相加),得到一个只含有一个未知数的方程。
Step 3:求解该方程,得到一个未知数的值。
Step 4:将求得的未知数的值代入任意一个原方程,求解另一个未知数。
Step 5:得到方程组的解。
3. 矩阵法矩阵法是一种更为高级的解法,它将二元一次方程组表示为一个矩阵方程,并通过矩阵的性质进行求解。
以下是具体步骤:Step 1:将方程组的系数和常数构成一个矩阵。
Step 2:求解矩阵的逆矩阵。
Step 3:将逆矩阵与常数向量相乘,得到未知数向量。
Step 4:得到方程组的解。
通过以上三种方法,我们可以解决二元一次方程组的问题。
二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程〔1〕(3x+1)2=7〔2〕9x2-24x+16=11分析:〔1〕此方程显然用直接开平方法好做,〔2〕方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
〔1〕解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=〔2〕解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方〕解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。
例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
代数方程解法二元一次方程组的求解方法在数学中,方程是一个带有未知数的等式,需要通过计算得出未知数的值。
当方程中含有两个未知数时,这就是一个二元一次方程组。
求解这类方程组,可以采用多种方法,包括代数方法和几何方法。
在代数方法中,我们需要了解两个基本概念:消元和代入。
下面将详细介绍这两种方法以及解方程组的步骤。
一、消元法消元法是一种通过不断消去方程组中的未知数,从而得到一个只含有一个未知数的方程的方法。
下面以一个二元一次方程组为例,来说明消元法的基本步骤。
假设我们有以下的二元一次方程组:```ax + by = cdx + ey = f```(1)让其中一个未知数的系数相等为了消元,我们需要让其中一个未知数的系数相等。
例如,在上面的方程中,我们可以通过乘以一个常数来使得 x 的系数相等:```a(dx + ey) = cdadx + aey = cdaxd + aey = cd```现在我们得到了一个只包含 x 和 y 的方程。
(2)让未知数的系数相消接下来我们要把其中一个未知数的系数消去。
例如,在上面的方程中,我们可以通过减去两个方程来消去 y 的系数:```axd + aey = cd-bxd - bey = -bf------------------axd - bxd + aey - bey = cd - bf```也就是:```x(ad - b) + y(ae - b) = cd - bf```(3)求解未知数现在我们得到了一个只包含 x 和 y 的方程,我们就可以用一些简单的代数操作来解这个方程,从而求出未知数的值。
二、代入法代入法是一种将一个方程的一个未知数表示成另外一个未知数的函数,利用已知的未知数的值求出另一个未知数的值的方法。
下面以一个二元一次方程组为例,来说明代入法的基本步骤。
假设我们有以下的二元一次方程组:```x + y = 53x + 2y = 11```(1)将一个方程表示成另一个未知数的函数我们可以通过将第一个方程表示成 y 的函数,得到:```y = 5 - x```(2)将函数代入第二个方程我们将上述函数代入第二个方程中:```3x + 2(5-x) = 113x + 10 - 2x = 11x = 1```(3)求解另一个未知数现在我们已经知道了 x 的值,我们可以将其代入第一个方程来求解y 的值:```x + y = 51 + y = 5y = 4```因此,二元一次方程组的解为 x=1,y=4。
初一数学二元一次方程组解题技巧初一数学中的二元一次方程组通常是由两个关于同一组变量的一次方程组成的。
解题的关键在于找到合适的方法和技巧来求解方程组。
解题技巧如下:1.消元法:通过加减乘除等运算,使方程组中的其中一变量的系数相等,然后相减或相加得到一个只有一变量的方程。
这样可以将原方程组化简为一个只有一变量的方程,从而求出该变量的值。
例如,考虑以下方程组:2x+3y=73x-2y=4我们可以通过乘以适当的系数来使得y的系数相等。
观察到2和-3之间存在公倍数6,所以我们可以令第一个方程乘以2,第二个方程乘以3,得到:4x+6y=149x-6y=12然后相加两个方程,会得到:13x=26从而解得x=2,然后将x的值代入其中一个方程,可以得到y的值。
2.代入法:通过将一个方程的解代入另一个方程,从而将方程组化简为一个只有一变量的方程。
这种方法一般适用于一方程的系数较简单的情况。
例如,考虑以下方程组:3x+2y=11x-4y=-7我们可以从第一个方程中解出x,得到x=11-2y。
然后将x的值代入第二个方程,得到:11-2y-4y=-7化简得到:-6y=-18从而解得y=3、然后将y的值代入第一个方程,可以得到x的值。
3.图像法:将方程组中的两个方程分别画在坐标系中,根据图像的交点得出方程的解。
例如,考虑以下方程组:y=2x-1y=-x+4我们可以将两个方程分别画在坐标系中。
两条直线在图像上相交,并且交点坐标为(1,1)。
因此,解为x=1,y=14.系数法:通过对方程组中的相应系数进行调整,使得方程组中的一些常数项消失,从而得到只有一变量的方程。
例如,考虑以下方程组:2x+y=53x+4y=14我们可以通过将第一个方程乘以2,将第二个方程乘以3,得到:4x+2y=109x+12y=42然后将第一个方程乘以3,得到:12x+6y=30然后将这个方程减去第二个方程,可以得到只含有x的方程:3x-6y=-12从而解得x=-4,然后将x的值代入任意一个方程,可以得到y的值。
二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。
例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
二元一次方程组的8大解题方法,专治各类应用题!二元一次方程大战应用题一、实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。
(第一中考网)3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
二、八大典型例题详解01.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。
典型例题思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。
变式拓展思路点拨:由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。
02.产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。
典型例题思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
变式拓展思路点拨:根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。
二元一次方程组的解的公式
对于二元一次方程组,我们可以使用消元法或代入法来求解。
消元法:
将两个方程相加,得到一个新方程,这个新方程的右边为0。
将新方程两边同时除以未知数的系数,得到一个新方程,这个新方程的右边为0。
解这个新方程,即可得到一个未知数的值。
将这个未知数的值代入原方程组中的任意一个方程,即可得到另一个未知数的值。
代入法:
从第一个方程中解出一个未知数,得到这个未知数的值。
将这个未知数的值代入第二个方程中,得到另一个未知数的值。
例如,对于方程组:
3x + 2y = 18
5x - y = 3
我们可以使用消元法来求解:
解得: [{x: 24/13, y: 81/13}]
图像法:将二元一次方程组转化为一元一次方程,通过求解一元一次
方程得到答案。
拉格朗日插值法:利用拉格朗日插值多项式求解二元一次方程组。
牛顿插值法:利用牛顿插值多项式求解二元一次方程组。
最小二乘法:利用最小二乘法求解二元一次方程组。
反代法:将二元一次方程组的两个方程相减,得到一个新的方程。
再将这个新的方程代入其中一个方程中,即可得到另一个未知数的值。
参数法:将二元一次方程组的两个方程都转化为含有同一个参数的方程,通过求解参数得到答案。
联立解法:将二元一次方程组的两个方程联立起来,构成一个新的方程组,然后解这个新的方程组得到答案。
矩阵法:将二元一次方程组转化为矩阵形式,通过求解矩阵得到答案。
解二元一次方程的基本步骤:
(一)、代入消元法
(1)从方程中选一个系数比较简单的方程,将这个方程中的未知数用另一个未知数的代数式来表示,如用x表示y,可写成y=ax+b;(2)将y=ax+b代入另一个方程,消去y,得到一个关于x的一元一次方程(3)解这个一元一次方程,求出x的值;(4)把求得的x的值代入y=ax+b 中,求出y的值,从而得到方程组的解.
(二)、加减消元法
(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,也不相等时,可用适当的数乘以方程的两边,使一个未知数的系数互为相反数或相等,得到一个新的二元一次方程组;(2)把这个方程组的两边分别相加(或相减),消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程;(4)将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.。