直线的两点式方程教学设计
- 格式:doc
- 大小:104.00 KB
- 文档页数:2
直线的两点式方程教案一、知识点概述在平面直角坐标系中,直线可以用不同的方程式来表示,其中最常见的是点斜式和一般式。
而直线的两点式方程则是另一种常见的表示方式,它可以通过给定直线上的两个点来确定直线的方程式。
直线的两点式方程的基本形式为:y−y1 x−x1=y2−y1 x2−x1其中(x1,y1)和(x2,y2)分别为直线上的两个点。
二、教学目标1.理解直线的两点式方程的概念和基本形式;2.掌握如何根据给定的两个点确定直线的两点式方程;3.能够应用直线的两点式方程解决实际问题。
三、教学重点1.直线的两点式方程的概念和基本形式;2.如何根据给定的两个点确定直线的两点式方程。
四、教学难点如何应用直线的两点式方程解决实际问题。
五、教学过程1. 导入教师可以通过引入实际问题,如两个城市之间的距离、两个物体之间的运动轨迹等,来引出直线的两点式方程的概念和应用。
2. 讲解1.直线的两点式方程的概念和基本形式直线的两点式方程是通过直线上的两个点来确定直线的方程式。
其基本形式为:y−y1 x−x1=y2−y1 x2−x1其中(x1,y1)和(x2,y2)分别为直线上的两个点。
2.如何根据给定的两个点确定直线的两点式方程以两个点(1,2)和(3,4)为例,我们可以按照以下步骤确定直线的两点式方程:–计算斜率k:k=y2−y1x2−x1=4−23−1=1–选择其中一个点,代入斜率和基本形式中,解出截距b:y−2x−1=1⇒y=x−1因此,直线的两点式方程为y=x−1。
3. 练习让学生自行计算以下两个点的直线的两点式方程:1.(2,3)和(4,5)2.(−1,0)和(3,4)4. 应用让学生应用直线的两点式方程解决以下实际问题:1.两个城市之间的距离为500公里,汽车以每小时80公里的速度行驶,问需要多长时间才能到达目的地?2.一个物体从(0,0)出发,以每秒2米的速度向上运动,问5秒后它的位置坐标是多少?5. 总结教师可以让学生总结直线的两点式方程的概念和基本形式,以及如何根据给定的两个点确定直线的两点式方程。
直线方程两点式教案教案标题:直线方程两点式教案教学目标:1. 理解直线方程的两点式表示法;2. 能够根据给定的两点,确定直线的方程;3. 能够利用直线方程两点式解决与直线相关的问题。
教学准备:1. 教师准备:教师需要准备黑板、粉笔或白板、马克笔等教学工具;2. 学生准备:学生需要准备纸和笔。
教学过程:一、导入(5分钟)1. 引入直线方程的概念,简要介绍直线方程的两点式表示法,并与一般式和斜截式进行对比。
二、讲解直线方程的两点式表示法(15分钟)1. 通过示例,详细讲解直线方程的两点式表示法的定义和推导过程;2. 强调两点式表示法的优点,即可以直接通过给定的两点确定直线方程,无需进行其他转换。
三、练习与讨论(20分钟)1. 教师提供一些简单的两点式直线方程问题,让学生尝试解答,并进行讨论;2. 学生根据给定的两点,确定直线方程,并求解与直线相关的问题。
四、拓展与应用(15分钟)1. 提供一些较为复杂的两点式直线方程问题,让学生进行拓展与应用;2. 学生根据实际问题,确定直线方程,并解决与直线相关的实际问题。
五、总结与评价(5分钟)1. 总结直线方程的两点式表示法的要点和应用;2. 对学生在课堂上的表现进行评价。
教学延伸:1. 学生可以通过使用计算机软件或在线工具,进一步练习和巩固直线方程的两点式表示法;2. 学生可以尝试寻找更多与直线方程相关的实际问题,并进行解答。
教学反思:本节课通过讲解直线方程的两点式表示法,引导学生理解和掌握该表示法的定义、推导过程和应用方法。
通过练习和讨论,学生能够熟练运用两点式表示法确定直线方程,并解决与直线相关的问题。
在教学过程中,可以适当增加一些拓展与应用的内容,提高学生的思维能力和问题解决能力。
同时,教师要及时给予学生反馈和指导,帮助他们克服困难,提高学习效果。
直线的两点式方程教学设计和反思一、教学设计1. 教学目标•理解直线的两点式方程的概念和原理;•掌握如何根据给定的两点求直线的两点式方程;•能够利用直线的两点式方程解决与直线有关的数学问题。
2. 教学内容•直线的两点式方程的定义和特点;•如何根据给定的两点求直线的两点式方程;•解决与直线有关的数学问题。
3. 教学步骤和方法引入 - 使用一个简单的问题引入直线的两点式方程的概念:小明去度假,在一片空地上,他发现两个房屋,分别标有坐标为(1,3)和(5,7),小明想知道这两个房屋之间的直线方程是什么?探究 - 学生分组进行讨论,探讨如何根据两点求直线的两点式方程; - 每个小组选择一组坐标进行计算,并给出计算步骤; - 学生进行报告,分享自己的计算过程,并以此为基础讨论出根据两点求直线方程的一般步骤。
总结 - 教师对探究结果进行总结,概括求直线的两点式方程的一般步骤,并列示出公式和示例; - 引导学生归纳总结直线的两点式方程的特点。
实践 - 学生继续分组进行练习,根据给定的两点求直线的两点式方程; - 学生互相交流,互相检查答案,帮助解决困难。
拓展- 学生自主拓展,找到与直线的两点式方程相关的实际问题,并进行解答。
4. 教学评价•在探究环节,评价学生对根据两点求直线方程的理解和运用能力;•在实践环节,评价学生对直线两点式方程的运用能力;•考察学生在拓展环节中的思维发散和解决问题的能力。
二、教学反思在本次教学中,我主要采用了探究和实践相结合的教学方法。
通过引入问题,引发学生的兴趣,激发他们的思考和研究的欲望。
在探究环节,学生通过小组讨论和报告,互相学习和分享,掌握了根据给定两点求直线方程的一般步骤。
这种互动和合作的学习模式激发了学生的积极性,提高了他们的学习效果。
在实践环节,学生进一步巩固了所学的知识,并通过互相检查和交流,相互帮助解决问题。
这种合作学习的方式不仅促进了学生之间的互动,还提高了他们的合作能力和解决问题的能力。
直线的两点式方程优秀教案直线的两点式方程一、教学目标1.掌握直线方程的两点式和截距式以及求法;2.理解直线方程点斜式、斜截式、两点式和截距式四种形式之间的联系和转化;3.通过直线方程多种形式的学习,让学生体会对统一的辩证唯物主义观点.二、教学重点:直线方程两点式的推导和应用;教学难点:直线方程的几种形式之间的等价转化.三、教学用具:投影仪或多媒体四、教学过程:(一)导入新课(教师活动)复习旧知,组织板演,并作小结.[复习]直线方程的点斜式及推导过程.(提问)[练习]应用直线方程的点斜式,求经过下列两点的直线方程:(1))3,6(),1,2(-B A(2))0,5(),5,0(B A(3))0,0(),5,4(B A --(4)),(),,(2211y x B y x A (其中21x x ≠).(学生活动)其他同学笔答.[归纳]已知直线上两点求直线方程时,首先利用直线的斜率公式求出斜率k ,然后利用点斜式写出直线方程.其中第(4)小题的直线方程为:),(112121x x x x y y y y ---=- 这时可向学生提出:这个答案对我们有什么启示?能否将过两点的直线方程公式化?以此揭示、板书课题.设计意图:本环节从学生利用上节课学过的直线方程的点斜式,求过两已知点的直线方程出发,让学生“悟”出学习两点式的必要,同时也“悟”出两点式的推导方法,以此导入新课,目的在于为学生既加深学过知识的理解,又为学习新知识奠定良好的基础.(二)新课讲授【尝试探求,建立新知】(教师活动)组织探讨,并作分析.【探讨两点式】[问题1]由)(112121x x x x y y y y ---=-可以推导出121121x x x x y y y y --=--,这两者表示直线的范围是否相同?[分析]不同,后者21y y ≠,即不能表示倾斜角是0°的直线,显然后者范围缩小了,但后者这个方程的形式比较对称和美观,体现了数学美,同时也便于记忆及应用.所以采用后者作为公式,由于这个方程是由直线上两点确定的,可以把这种直线方程取一个什么名字?(让学生作合情分析)由此得出:当2121,y y x x ≠≠时,经过点),(),,(222111y x P y x P 的直线方程可以写成:由于这个方程是由直线上两点确定的,所以叫做直线方程的两点式.[问题2]哪些直线不能用此公式表示?(倾斜角是0°或90°的直线不能用两点式公式表示)[问题3]若要包含倾斜角是0°或90°的直线,应把两点式变成什么形式?(应变为))(())((121121y y x x x x y y --=--的形式))[问题4]我们推导两点式是通过点斜式推导出来的,还有没有其它的途径来进行推导?[分析]还可以利用同一直线上任何两点确定的斜率相等进行推导.设),(y x P 是直线l 上不同于),(),,(222111y x P y x P 的任意一点,由211P P PP k k =即得当21y y ≠时,,121211x x y y x x y y --=--即.121121x x x x y y y y --=-- 所以,公式中的)(),(2211y x y x 、、对一条具体直线而言,可以用直线上任意两个不同的点代替.[练习]求过下列两点的直线的两点式方程,再化成斜截式方程:(1))3,0(),1,2(-B A(2))0,0(),5,4(B A --(3))0,5(),5,0(B A(4))0,0()0,(),0,(≠≠b a b B a A 设计意图:为更好地揭示直线方程的两点式公式的内涵,加深学生对公式的理解,本环节通过创设不同角度的四个问题,供学生思考、分析,让学生体会数学的“对称美”,同时又培养了学生严密的逻辑思维能力,渗透了分类讨论的数学思想.另外,通过学生完成练习,既巩固两点式的应用,又较自然地引导出下一环节讲解的“截距式”.【推出截距式】在练习(4)中,得到过点),0(),0,(b B a A 的直线方程为b x ab y +-=,将其变形成为:若直线与x 轴交于点(a ,0),定义a 为直线在x 轴上的截距,则以上直线方程是由直线在x 轴和y 轴上的截距确定的,所以叫做直线方程的截距式.用截距式画直线比较方便,因为可以直接确定直线与x 轴和y 轴的交点的坐标.[问题1]截距式中,a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?(答:不是,应是直线与坐标轴交点的横坐标和纵坐标,故a ,b 取值为任何非零实数,而不仅仅为正数.)[问题2]有没有截距式不能表示的直线?(答:有,当直线在x 轴或y 轴上的截距为零的时候.截距式不能表示过原点以及与坐标轴平行的直线.故使用截距式表示直线方程时,应注意单独考虑这几种情形,分类讨论,防止遗漏.)[练习]2.说出下列直线的方程,并画出图形:(1)倾斜角为45°,在y 轴上的截距为0;(2)在工轴上的截距是-5,在y 轴上的截距是6;(3)在工轴上的截距是-3,与y 轴平行;(4)在y 轴上的截距是4,与x 轴平行。
2.2.2 直线的两点式方程教学设计一、教学目标1.理解直线的两点式方程的概念和意义;2.能够根据给定的两个点确定直线的两点式方程;3.掌握直线的两点式方程与线性函数的关系。
二、教学准备1.教师准备:课件、黑板、粉笔;2.学生准备:纸笔、直尺。
三、教学过程Step 1:引入教师通过示意图引入直线的两点式方程的概念,引导学生思考通过两个已知点来确定一条直线的方式。
提问学生:在平面直角坐标系中,如何用两个点来表示一条直线?Step 2:概念解释教师简要介绍直线的两点式方程的定义和表示方法。
直线的两点式方程是通过直线上的两个点P(x₁, y₁)和Q(x₂, y₂)来表示直线的方程。
可表示为:(x - x₁)(y₂ - y₁) = (y - y₁)(x₂ - x₁)其中,P(x₁, y₁)和Q(x₂, y₂)为直线上两个已知点,(x, y)为直线上任意一点的坐标。
Step 3:计算实例教师给出一个直线的两点坐标示例,并分步骤进行计算和演示。
比如,直线上两点坐标分别为P(2, 5)和Q(4, 9)。
教师先计算上式左边的乘积,再计算右边的乘积,最后得出直线的两点式方程为:(x - 2)(9 - 5) = (y - 5)(4 - 2)简化得出:2x - 4y + 2 = 0解释清楚每一步的计算过程和原理,引导学生逐步理解直线的两点式方程的推导过程。
Step 4:练习演练教师在黑板上给出几道直线的两点式方程计算题目,要求学生自行计算并填写答案。
提供足够的练习时间后,教师进行答案批改和讲解,对学生的错误进行指导和订正。
Step 5:小组合作将学生分为小组,要求每个小组自行找出两个点并计算出对应的直线的两点式方程。
鼓励学生之间进行讨论和合作,互相解答问题。
每个小组选择一个代表进行展示,教师对答案进行点评和讲解。
Step 6:拓展应用教师从日常生活中选取几个实际应用场景,引导学生根据给定的两个点,求出对应的直线的两点式方程,并解释该方程在这个场景中的意义和应用。
直线的两点式方程教案详案一、教学目标1.理解直线的两点式方程的含义和基本形式;2.掌握利用直线上两点确定直线方程的方法;3.能够灵活运用两点式方程解决与直线相关的问题。
二、教学准备1.教师准备:–教学课件或板书工具;–直线模型或实物示范。
2.学生准备:–笔、纸、尺等基础学习工具。
三、教学过程1. 导入与引入通过示范直线模型或实物,并提问引导学生思考:•直线是什么?你见过哪些直线?•直线有什么特点?进一步引出直线的两点式方程的概念和作用。
2. 直线的两点式方程的定义解释直线的两点式方程的定义:•直线的两点式方程是用直线上的两个点的坐标表示直线的方程。
•一个直线的两点式方程唯一确定这条直线。
3. 直线的两点式方程的基本形式介绍直线的两点式方程的基本形式:$y - y_1 = \\frac{{y_2 - y_1}}{{x_2 - x_1}}(x - x_1)$解释各项符号的含义,如P1(x1,y1)和P2(x2,y2)分别为直线上的两个已知点。
4. 求直线的两点式方程的步骤•步骤1:已知直线上两个点的坐标,记为P1(x1,y1)和P2(x2,y2);•步骤2:根据基本形式,代入已知点的坐标,得到直线的两点式方程;•步骤3:化简方程得到最简形式。
示范解题过程,让学生理解如何利用已知点求直线的两点式方程。
5. 实例练习提供若干道例题,让学生独立或小组合作完成,并进行讲解。
例题1:已知直线上两个点P1(2,3)和P2(−1,4),求该直线的两点式方程。
例题2:已知直线上两个点P1(−3,1)和P2(5,−2),求该直线的两点式方程。
例题3:已知直线上两个点P1(0,2)和P2(2,0),求该直线的两点式方程。
6. 拓展应用让学生利用直线的两点式方程解决与直线相关的问题,如求直线与坐标轴的交点、直线在平面直角坐标系中的图像等。
7. 总结与评价回顾直线的两点式方程的概念和求解步骤,让学生自己总结和梳理。
评价学生的学习情况,鼓励解答问题,纠正错误。
3.2.2直线的两点式方程的教学设计3.2.2直线的两点式方程的教学设计(3课时)主备教师谢太正一、教材分析两点式方程是在学完点斜式方程之后学习的,以提问两点斜率公式为前提,用两点可以确定一条直线为理论依据引入新课。
由一般到特殊去研究,探求数学的严谨,引起学生的注意这也应该是一个理念:有一个点在坐标轴上,两个点都在坐标轴上,一个点是坐标原点的,两点横坐标相同的,两点纵坐标相同的。
二、目标及解析目标:1. 掌握直线的两点式,截距式;2.理解两点式方程的探索过程。
解析:两点式: 经过两点111222(,),(,)P x y P x y 其中1212(,)x x y y ≠≠的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--截距式:与x 轴的交点为A(a,0),与y 轴的交点为B(0,b),其中0,0a b ≠≠的直线方程为:1x ya b+= (0,0a b ≠≠)三、问题诊断分析两点式方程是在学完点斜式方程之后学习的,以提问两点斜率公式为前提,用两点可以确定一条直线为理论依据引入新课。
由一般到特殊去研究,探求数学的严谨,引起学生的注意这也应该是一个理念:有一个点在坐标轴上,两个点都在坐标轴上,一个点是坐标原点的,两点横坐标相同的,两点纵坐标相同的。
原则是老师不要讲,而应该让学生自己去探究,老师给个线索,把学生的结论归纳一下就好了。
四、教学设计(一)温故知新1、直线的点斜式方程,过点000(,)P x y ,斜率为k 的直线方程为00()y y k x x -=-。
2、已知直线上两点的斜率公式:111(,)p x y ,222(,)p x y ,12()x x ≠,过12,p p 的直线的斜率2121y y k x x -=-.(二)探究新知1.探究:直线的两点式方程问题一:利用点斜式解答如下问题:(1)已知直线l 经过两点12(1,2),(3,5)P P ,求直线l 的方程. (2)已知两点111222(,),(,)P x y P x y 其中1212(,)x x y y ≠≠,求通过这两点的直线方程。
2.2.2直线的两点式方程教学设计本小节内容选自《普通高中数学选择性必修第一册》人教A版(2019)第二章《直线和圆的方程》的第二节《直线的方程》。
以下是本单元的课时安排:第二章直线和圆的方程课时内容 2.1直线的倾斜角与斜率 2.2直线的方程 2.3 直线的交点坐标与距离公式所在位置教材第51页教材第59页教材第70页新教材内容分析直线的倾斜角与斜率从初中所学“两点确定一条直线”出发,引起学生对平面直角坐标系中的直线的几何要素的确定,是今后学习直线方程的必备知识。
在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线的方程.充分体现坐标法建立方程的一般思路,为后续学习圆的方程及圆锥曲线的方程奠定基础.围绕两直线一般方程的系数的变化来揭示两直线方程联立解的情况,从而判定两直线的位置特点.“点到直线的距离”是从初中平面几何的定性作图,过渡到了解析几何的定量计算,为以后直线与圆的位置关系和圆锥曲线的进一步学习奠定了基础,具有承前启后的重要作用.核心素养培养通过直线的倾斜角和斜率的求解,以及在人们的生活、生产、科技中有着广泛的实际应用,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。
通过直线方程的求法,发展学生数学抽象、逻辑推理、直观想象和数学运算的核心素养。
通过直线交点的求法,距离公式的应用,发展学生数学抽象、逻辑推理、直观想象和数学运算的核心素养。
教学主线直线的方程的应用在学生亲身体验直线的两点式与截距式这两种直线方程的求法,通过典型例子的分析和学生的自主探索活动,促使学生理解数学概念、结论逐步形成的过程,从而体会蕴涵在其中的数学思想方法。
1.掌握直线的两点式方程和截距式方程,培养数学抽象的核心素养.2.会选择适当的方程形式求直线方程,提升数学运算的核心素养.3.能用直线的两点式方程与截距式方程解答有关问题,培养逻辑推理的核心素养.重点:掌握直线方程的两点式及截距式难点:会选择适当的方程形式求直线方程(一)新知导入某房地产公司要在荒地ABCDE上划出一块长方形土地(不改变方向)建造一幢8层的公寓,如何设计才能使公寓占地面积最大?(精确到1 m2)【提示】点P的位置由两个条件确定,一是A,P,B三点共线,二是矩形的面积最大.借助三点共线寻求x与y的关系,然后利用二次函数知识探求最大值.(二)直线的两点式方程知识点1 两点式方程【探究1】我们知道两点确定一条直线,如果已知直线上两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),那么如何求出过这两点的直线方程?【提示】因为x 1≠x 2,所以直线的斜率k =y 2-y 1x 2-x 1,由直线的点斜式方程,得y -y 1=y 2-y 1x 2-x 1(x -x 1),又y 1≠y 2,∴上式可写为y -y 1y 2-y 1=x -x 1x 2-x 1.于是过这两点的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1.◆直线的两点式方程名称 已知条件 示意图 方程 使用范围两点式P 1(x 1,y 1),P 2(x 2,y 2),其中x 1≠x 2,y 1≠y 2y -y 1y 2-y 1=x -x 1x 2-x 1 斜率存在 且不为0【点睛】1.当两点(x 1,y 1),(x 2,y 2)的直线斜率不存在(x 1=x 2)或斜率为0(y 1=y 2)时,不能用两点式方程表示,即两点式方程不能表示与坐标轴垂直的直线.2.对于两点式中的两个点,只要是直线上的两个点即可;另外,两点式方程与这两个点的顺序无关,如直线过点P 1(1,1),P 2(2,3),由两点式可得y−13−1=x−12−1,也可以写成y−31−3=x−21−2.【思考】把由直线上已知的两点坐标得到的直线方程化为整式形式(y-y 1)(x 2-x 1)=(y 2-y 1)(x-x 1),对两 点的坐标还有限制条件吗?【做一做】(教材P66练习1改编)过点A (3,2),B (4,3)的直线方程是( ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0D .x -y -1=0解析:由两点式可得,过A 、B 的直线方程为y -23-2=x -34-3,即x -y -1=0.答案:D知识点2 截距式方程【探究2】已知直线l 与x 轴的交点为A (a,0),与y 轴的交点为B (0,b ),其中a ≠0,b ≠0,如何求直线l 的方程?【提示】将两点A (a,0),B (0,b )的坐标代入两点式, 得y -0b -0=x -a 0-a,即x a +yb =1. ◆直线的截距式方程 名称 已知条件 示意图 方程 使用范围截 距 式在x ,y 轴上的截距分别为a ,b ,且ab ≠0x a +yb =1a ≠0,b ≠0【做一做1】(教材P64练习1改编)过P 1(2,0),P 2(0,3)两点的直线方程是( ) A.x 3+y2=0 B.x 2+y 3=0 C.x 2+y3=1 D.x 2-y 3=1 解析:由截距式,得所求直线的方程为x 2+y3=1.答案:C【做一做2】直线l 过点(-3,4),且在两坐标轴上的截距之和为12,求直线l 的方程.【解析】由于直线在两坐标轴上的截距之和为12,因此直线l 在两坐标轴上的截距都存在且不过原点,故可设为截距式直线方程.设直线l 的方程为xa +yb =1,则a+b=12.① 又直线l 过点(-3,4),所以-3a +4b =1.② 由①②解得{a =9,b =3或{a =−4,b =16.故所求的直线方程为x 9+y 3=1或x -4+y16=1, 即x+3y-9=0或4x-y+16=0.(三)典型例题 1.直线的两点式方程例1.三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程.【分析】已知直线上两个点的坐标,可以利用两点式写出直线的方程.【解析】由两点式,直线AB 所在直线方程为y --10--1=x -3-1-3,即x +4y +1=0.同理,直线BC 所在直线方程为y -3-1-3=x -13-1,即2x +y -5=0.直线AC 所在直线方程为y -30-3=x -1-1-1,即3x -2y +3=0.【类题通法】用两点式方程写出直线的方程时,要特别注意横坐标相等或纵坐标相等时,不能用两点式.已知直线上的两点坐标,也可先求出斜率,再利用点斜式写出直线方程. 【巩固练习1】求经过下列两点的直线方程.(1)A (3,2),B (4,3); (2)A (2,1),B (3,1); (3)A (2,1),B (2,-1).【解析】(1)由两点式可得直线方程为y -23-2=x -34-3,即y =x -1.故所求的直线方程为x -y -1=0.(2)由于A 、B 两点的纵坐标相等,故不能用两点式,所求的直线方程为y =1. (3)由于A 、B 两点的横坐标相等,故不能用两点式,所求的直线方程为x =2.2.直线的截距式方程例2.求经过点P (2,3),并且在两坐标轴上截距相等的直线l 的方程.【解析】法一:(1)当截距为0时,直线l 过点(0,0),(2,3),则直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0.(2)当截距不为0时,可设直线l 的方程为x a +ya=1.∵直线l 过点P (2,3),∴2a +3a =1,∴a =5,∴直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0.法二:由题意可知所求直线斜率存在,则可设y -3=k (x -2),且k ≠0. 令x =0,得y =-2k +3.令y =0,得x =-3k +2.于是-2k +3=-3k +2,解得k =32或-1.则直线l 的方程为y -3=32(x -2)或y -3=-(x -2),即直线l 的方程为3x -2y =0或x +y -5=0.【类题通法】如果题目中出现直线在两坐标轴上的“截距相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,若采用截距式求直线方程,则一定要注意考虑“零截距”的情况.【巩固练习2】直线l 过点P (-6,3),且它在x 轴上的截距是它在y 轴上截距的3倍,求直线l 的方程.【解析】(1)当直线在y 轴上的截距为零时,直线过原点,可设直线l 的方程为y =kx , ∵直线l 过点P (-6,3).∴3=-6k ,k =-12. ∴直线l 的方程为y =-12x ,即x +2y =0.(2)当直线在y 轴上的截距不为零时,由题意可设直线l 的方程为x 3b +yb =1,又直线l 过点P (-6,3),∴-63b +3b =1,解得b =1. ∴直线l 的方程为x3+y =1.即x +3y -3=0.综上所述,所求直线l的方程为x+2y=0或x+3y-3=0.(四)操作演练素养提升1.在x、y轴上的截距分别为-3,4的直线方程为()A.x-3+y4=1 B.x3+y-4=1C.x-4+y3=1 D.x4+y-3=12.过点(5,2) ,且在y轴上的截距是在x轴上的截距的2倍的直线方程为()A.2x+y-12=0 B.2x+y-12=0或2x-5y=0C.x-2y-1=0 D.x-2y-1=0或2x-5y=03.直线l过(-1,-1),(2,5)两点,且点(1 010,b)在l上,则b的值为()A.2 018 B.2 019C.2 020 D.2 0214.已知△ABC三顶点A(1,2),B(3,6),C(5,2),M为AB的中点,N为AC的中点,则中位线MN所在的直线方程为()A.2x+y-8=0B.2x-y+8=0C.2x+y-12=0D.2x-y-12=0答案:1.A 2.B 3.D 4.A【设计意图】通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。
3.2.2 直线的两点式方程学案
一、教学目标
1、知识与技能
(1)掌握直线方程的两点的形式特点及适用范围;
(2)了解直线方程截距式的形式特点及适用范围。
2、过程与方法
让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。
二、教学重点、难点:
1、 重点:直线方程两点式。
2、难点:两点式推导过程的理解。
三.新课
1、利用点斜式解答如下问题:
(1)已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程.
(2)已知两点),(),,(222211y x P x x P 其中),(2121
y y x x ≠≠,求通过这两点的直线方程。
.
思考:2、若点),(),,(222211y x P x x P 中有21
x x =,或21y y =,此时这两点的直线方
程是什么?
3、例3 教学
已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a ,求直线l 的方程。
思考:此题中a 和b 的含义
4、例4教学
已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程
总结:中点坐标公式
四.目标检测。
课题名称:数学选择性必修第1册第2章2.2.2直线的两点式方程教学方法:“一体二化三导四学”教学模式和自主学习模式.(一体二化三导四学:以学生为主体,教学内容问题化,教学活动探究化,引导,指导,督导,自主学习,探究学习,合作学习,体验学习)教学目标:1.了解“直线的两点式方程”的推导过程;;2.会根据题目所给条件求直线的两点式方程;3.体会数形结合,分类讨论, 特殊到一般等数学思想.教学重点、难点:教学重点: 1.直线的两点式方程;教学难点:会根据题目所给条件求直线的两点式方程.教学过程【教学过程与设计】整个教学过程是由问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知课堂实练巩固提高变式训练提炼方法小结反思【教学程序与设计意图】(一)知识回顾——启迪思维问题一:我们知道:已知一点和倾斜程度(斜率)可以确定唯一一条直线.已知两点也可确定唯一一条直线.例如已知直线上的两点求直线的方程.已知直线上不同两点,如何确定这条直线方程呢?【设计意图】复习引入,既回顾所学的知识,又为新的知识埋下伏笔。
抓住了学生的注意力,把学生的思维引到直线的方程上来,进入第二环节.(二)深入探究——获得新知新知讲解:问题2:已知直线上的两点求直线的方程.本题的实质是求过平面直角坐标系中横坐标不相同的两点的直线方程.那么这种方法可以推广到任意两点吗?已知两点P1(x1,y1)、P2(x2,y2),直线l的方程如何表示?此式适用条件:直线与两坐标轴不平行且不重合. 即当直线没有斜率或斜率为0时,不能用上式求它们的方程.(三)课堂实练——巩固提高I.直接应用内化新知例1:已知两点A(a,0),B(0,b),其中ab≠0,求直线的方程.直线l与x轴的交点(a,0)的横坐标称为直线l在x轴上的截距,此时直线在y轴上的截距为b.方程称为直线的截距式方程.【设计意图】这一环节首先让学生自主思考,然后小组合作交流探究,学生根据已有的知识探究新的知识获得成功的体验感的同时,又培养学生严谨的求学态度。
3.2.2 直线的两点式方程
三维目标
1、知识与技能
(1)掌握直线方程的两点的形式特点及适用范围;
(2)了解直线方程截距式的形式特点及适用范围。
2、过程与方法
让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、
应用获得新知识的特点。
3、情态与价值观
(1)认识事物之间的普遍联系与相互转化;
(2)培养学生用联系的观点看问题。
教学重点、难点:
1、 重点:直线方程两点式。
2、难点:两点式推导过程的理解。
教学过程:
一、复习准备:
1. 写出下列直线的点斜式、斜截式方程,并求直线在y 轴上的截距.
①经过点A(-2,3),斜率是-1;②经过点B(-3,0),斜率是0;③经过点()
22,C -,倾斜角是 60; 二、讲授新课:
1.直线两点式方程的教学:
① 探讨:已知直线l 经过111222(,),(,)p x y p x y (其中1212,x x y y ≠≠)两点,如何求直线的点
斜式方程? 211121
()y y y y x x x x --=-- 两点式方程:由上述知, 经过111222(,),(,)p x y p x y (其中1212,x x y y ≠≠)两点的直线方程为
112121
y y x x y y x x --=-- ⑴, 我们称⑴为直线的两点式方程,简称两点式. 若点),(),,(222211y x P x x P 中有21
x x =,或21y y =,此时这两点的直线方程是什么?
2.举例
例1:求过(2,1),(3,3)A B -两点的直线的两点式方程,并转化成点斜式.
练习:教材P97面1题
例2:已知直线l 与x 轴的交点为A (a ,0),与y 轴的交点为B (0,b ),其中a ≠0,
b ≠0
求l 的方程
② 当直线l 不经过原点时,其方程可以化为
1x y a b
+= ⑵, 方程⑵称为直线的截距式方程,其中
直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b .
③ 中点:线段AB 的两端点坐标为1122(,),(,)A x y B x y ,则AB 的中点(,)M x y ,其中212
122x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩
例2:已知直线经过(2,0),(0,3)A B 两点,则AB 中点坐标为______,此直线截距式方程为
______、与x 轴y 轴的截距分别为多少?
练习:教材P97面2题、3题
例3、已知∆ABC 的三个顶点是A(0,7) B(5,3) C(5,-3),求
(1) 三边所在直线的方程;(2)中线AD 所在直线的方程;(3)高AE 所在直线的方程。
3.小结:(1)、两点式.截距式.中点坐标.
(2)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么
关系?
(3)要求一条直线的方程,必须知道多少个条件?
4.作业:《习案》第二十课时。
.
5.板书设计
直线的两点式方程
一. 复习准备 三。
应用示例
二. 公式的教学 四。
练习与小结
6.教学反思:本节课的内容学生学起来还是比较容易接受的,课后注意巩固与练习,部分太差的学生才用个别辅导。
. .。