aij bij i 1,2,,m; j 1,2,,n,
则称矩阵A与B相等,记作A B.
第12页/共90页
例3: 设 A 1 2 3, 3 1 2
B 1 x 3, y 1 z
已知 A B,求 x, y, z. 解: A B,
x 2, y 3, z 2.
第13页/共90页
0 0 1 a31 a32 a33 a31 a32 a33
a11 x1 a12 x2 a1n xn a21 x1 a22 x2 a2n xn
b1
b2
,
am1 x1 am2 x2 amn xn bm
所以方程组可以用矩阵的乘法来表示.方程组中 系数组成的矩阵A称为系数矩阵,
第28页/共90页
方程组中系数与常数组成的矩阵
3 3 6 2 8 1 6 8 9
第16页/共90页
2、 矩阵加法的运算规律
1 A B B A;
2 A B C A B C .
a11
3
A
a21
a12
a22
am1 am1
称为矩阵A的负矩阵.
a1n a2n amn
aij ,
4 A A 0, A B A B.
主对角线 a11 a12
A
a21
a22
副对角线 am1 am2
a1n
a2n
amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
元素是实数的矩阵称为实矩阵,
元素是复数的矩阵称为复矩阵.
第5页/共90页
例1:线性方程组
a11 x1 a12 x2