工程力学B(二)第11讲第六章弯曲应力-强度条件
- 格式:ppt
- 大小:1.18 MB
- 文档页数:26
6-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
中性轴z 轴过形心C 与载荷垂直,沿水平方向。
(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M -=-⨯=-⋅kN m)(3)应力分析,梁上边有弯矩图,上侧纤维受拉。
1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。
3111111max2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯Pa MPa 。
11.11b a σσ=-=-MPa0c σ= 31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯Pa MPa37M kN V 图(kN)(a)(c)(b)(c)(e)(d)2+q l /8MkN ·m)(f)(b)180q题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。
梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。
若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。
而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。
如图所示。
(2)内力分析,判危险面:弯矩图如图(b )所示,跨中截面为危险面。
第六章 弯曲应力和强度1、 纯弯曲时的正应力 横力弯曲时,0≠=Q dxdM。
,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。
根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。
横截面只是绕其面内的某一轴线刚性地转了一个角度。
这就是弯曲变形的平面假设。
(2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。
(2)物理关系根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。
当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为y EE ρεσ==该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上ρE为常数,说明弯曲正应力沿截面高度按线性规律分布,如图所示。
中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。
(3)静力关系截面上的最大正应力为zI My maxmax =σ 如引入符号m axy I W zz =则截面上最大弯曲正应力可以表达为zW M=max σ 式中,z W 称为截面图形的抗截面模量。
它只与截面图形的几何性质有关,其量纲为[]3长度。
矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面:621223maxbh h bh y I W zz ===直径为d 的圆截面:3226433maxd d d y I W z z ∏=∏==至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。
若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如T 形截面。
这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。
最大拉应力为:zt I My 1)(=σ 最大压应力为:ze I My 2)(=σ 2、横力弯曲时的正应力zI My=σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。