2016年成人高考(文史类)数学试卷(word版)
- 格式:pdf
- 大小:210.77 KB
- 文档页数:3
【单选题】设(1)设集合A={0,1},B={0,1,2},则A∩B=A.{0,1}B.{0,2}C.{1,2}D.{0,1,2}【答案】 A【单选题】函数y=2sinxcosx的最小正周期是A.π/2B.πC.2πD.4π【答案】 B【单选题】等差数列{an}中,若a1=2,a3=6,a7=A.14B.12C.10D.8【答案】 A【单选题】曲线y=x3-4x+2在点(1,-1)处的切线方程为()A.x-y-2=0B.x-y=0C.x+y=0D.x+y-2=0 【答案】 C【单选题】下列函数在各自定义域中为增函数的是( )A.y=1-xB.y=1-x2C.y=1+2-xD.y=1+2x【答案】 D【单选题】若甲:x>1,e x>1,则( )。
A.甲是乙的必要条件,但不是乙的充分条件B.甲是乙的充分条件,但不是乙的必要条件C.甲不是乙的充分条件,也不是乙的必要条件D.甲是乙的充分必要条件【答案】 B【单选题】不等式|2x-3|≤1的解集为()。
A.{x|1≤x≤3}B.{x|x≤-1或x≥2}C.{x|1≤x≤2}D.{x|2≤x≤3}【答案】 C【单选题】函数11)1ln(2---=x x y 定义域为()A.A. {x|x<-1或x>1}B. {x|x<1或x>1}C. {x|-1<x<11}D. R【答案】B【单选题】下列函数中,为偶函数的是()。
A.y=log2xB.y=x 2+xC.y=6/xD.y=x 2【答案】 D【单选题】点(2,4)关于直线y=x 的对称点的坐标是( )。
A.(-2,4)B.(-2,-4)C.(4,2)D..(-4,-2) 【答案】 C【单选题】过点(0,1)且与直线x+y+1=0垂直的直线方程为( )A.y=x+1B.y=2x+1C.y=xD.y=x-1 【答案】 A【单选题】下列函数中,函数值恒为负值的是( )。
2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)第I 卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6.已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。
若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) 学科&网 (A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BM uuu r 的最大值是 (A)443 (B) 449(C) 43637+ (D) 433237+10. 设直线l 1,l 2分别是函数f(x)= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)第II 卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016年成人高等学校招生全国统一考试数学试题一、选择题:本大题共17小题,每小题5分,共85分(1)设集合A={0,1},B={0,1,2},则A∩B=( )(A){0,1}(B){0,2}(C){1,2}(D){0,1,2,}(2)函数y =sin cos x x 的最小正周期是( ) (A)2π(B)π(C)π2(D)4π(3)在等差数列}{n a 中,132,6a a ==,则7a =( )(A)14(B)12(C)10 (D)8(4)设甲:x >1;乙:2e >1,则( )(A)甲是乙的必要条件,但不是乙的充分条件。
(B)甲是乙的充分条件,但不是乙的必要条件。
(C)甲不是乙的充分条件,也不是乙的必要条件 (D)甲是乙的充分必要条件。
(5)不等式231x -≤的解集是( )(A){|13x x ≤≤}(B){|12x x x ≤-≥或}(C){|12x x ≤≤} (D){|23x x ≤≤}(6)下列函数中,为偶函数的是( )(A)2log y x = (B)2y x x =+(C)4y x =(D)2y x =(7)点(2,4)关于直线y x =的对称点的坐标是( )(A)(-2,4) (B)(-2,-4) (C)(4,2) (D)(-4,-2)(8)将一颗骰子抛掷一次,得到的点数为偶数的概率为( ) (A)23(B)12(C)13(D)16(9)在△ABC 中,若AB=3,A=45°,C=30°,则BC=( )(A) (D)(10)下列函数张中,函数值恒为负值的是( D )(A)y x =(B)21y x =-+ (C)2y x = (D)21y x =--(11)过点(0,1)且与直线10x y ++=垂直的直线方程为( )(A)y x =(B)21y x =+ (C)1y x =+ (D)1y x =-(12)设双曲线221169x y -=的渐近线的斜率为k ,则︱k ︱=( ) (A)916(B)34(C)43 (D)169(13)2364+19log 81=( )(A)8 (B)10 (C)12 (D)14(14)tan α=3,则tan()4πα+=( ) (A)2 (B)12(C)-2 (D)-4(15)函数21ln(1)1y x x =-+-的定义域为( ) (A){x ︱<-1或x >1}(B)R(C){x ︱-1<x <1}(D){x ︱<1或x >1}(16)某同学每次投蓝投中的概率25,该同学投篮2次,只投进1次的概率为( )(A)625(B)925(C)1225(D)35(17)曲线342y x x =-+在点(1,-1)处的切线方程为( ) (A)0x y +=(B)0x y -=(C)20x y --=(D)20x y +-=二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
高起专成人高考数学(文史)试题(历年成考数学试题答案与解答提示)一、集合与简易逻辑2019年(1) 设全集M={1,2,3,4,5}, N={2,4,6}, T={4,5,6}, 则(M T)N I U 是( )(A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{(2) 命题甲:A=B, 命题乙:sinA=sinB . 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。
2018年(1) 设集合}2,1{=A , 集合}5,3,2{=B , 则B A I 等于( )(A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5}(2) 设甲:3>x , 乙:5>x , 则( )(A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2017年(1)设集合{}22(,)1M x y x y =+≤, 集合{}22(,)2N x y x y =+≤, 则集合M 与N 的关系是(A )M N=M U (B )M N=∅I (C )N M Ø (D )M N Ø(9)设甲:1k =, 且 1b =;乙:直线y kx b =+与y x =平行。
则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2016年(1)设集合{},,,M a b c d =, {},,N a b c =, 则集合M N=U(A ){},,a b c (B ){}d (C ){},,,a b c d (D )∅(2)设甲:四边形ABCD 是平行四边形 ;乙:四边形ABCD 是平行正方, 则(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2015年(1)设集合{}P=1234,,,,5, {}Q=2,4,6,8,10, 则集合P Q=I(A ){}24, (B ){}12,3,4,5,6,8,10, (C ){}2 (D ){}4(7)设命题甲:1k =, 命题乙:直线y kx =与直线1y x =+平行, 则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2016年成人高考(文史类)数学试题答案必须答在答题卡上指定的位置,答在试卷上无效。
........一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。
(1)设集合,,则集合(A){}10, (B){}20, (C){}21, (D){}210,,(2)函数x x cos sin 2y = 的最小正周期是 (A)2π(B)π (C)π2 (D)π4(3)等差数列}{n a 中,若21=a ,63=a ,则=7a(A)10 (B)12 (C)14 (D)8(4)设甲:1x >,乙:1e x >,则(A)甲是乙的必要条件,但不是乙的充分条件 (B)甲是乙的充分条件,但不是乙的必要条件(C)甲不是乙的充分条件,也不是乙的必要条件 (D)甲是乙的充分必要条件(5) 不等式132≤-x 的解集为 (A){}21≤≤x x (B)}{2x 1≥-≤或x x (C){}31≤≤x x (D)}{32≤≤x x(6)下列函数中,为偶函数的是(A)x 2log y = (B) 2y x = (C)x 4y = (D)x x +=2y(7)点()42,关于直线x =y 的对称点的坐标为(A)()24, (B)()42--, (C) ()42,- (D)()24--,(8)将一颗骰子抛掷1次,得到的点数为偶数的概率为 (A)32 (B)61 (C)31 (D)21(9)在ABC ∆中,若3A =B , 45=A , 30C =,则=BC (A)3 (B)32 (C)23 (D)23(10)下列函数中,函数值恒为负值的是(A)x =y (B)1y 2--=x (C)3y x = (D)1y 2+-=x(11)过点()10,且与直线01=++y x 垂直的直线方程为(A)1x +=y (B)1x 2+=y (C)x =y (D)1x -=y(12)设双曲线191622=-y x 的渐近线的斜率为k ,则=k (A)169 (B)916 (C)34 (D)43(13)=+81log 649132(A)8 (B)10 (C)12 (D)14(14)若3=αtan ,则=+)4tan(πα (A)-2 (B)21(C)2 (D)-4(15)函数()111ln y 2-+-=x x 的定义域为 (A){}1x 1x >-<或x (B){}1x 1x ><或x (C){}1x 1x <<- (D)R(16)某同学每次投篮投中的概率为52,该同学投篮2次,只投中1次的概率为 (A)2512 (B)259 (C)256 (D)53(17)曲线243+-=x x y 在点()11-,处的切线方程为(A)02x =--y (B)0x =-y (C)0x =+y (D)02x =-+y二、填空题:本大题共4小题,每小题4分,共16分。
2016年全国普通高等学校统一招生考试文科数学及解答D(2)若43i z =+,则||z z = (A )1 (B )1- (C )43+i 55(D )43i 55-【答案】D 【解析】试题分析:因i z 34+=,则其共轭复数为i z 34-=,其模为534|34|||22=+=+=i z ,故i z z5354||-=,应选答案D 。
(3)已知向量BA →=(123,BC →=312),则∠ABC =(A )30° (B )45° (C )60° (D )120° 【答案】A 【解析】:试题分析:因为1331(,),(,)22BA BC ==,故333442BA BC ⋅=+=,又因为||||cos 11cos cos BA BC BA BC ABC ABC ABC⋅=⋅∠=⨯⨯∠=∠所以3cos 2ABC ∠=,所以6ABC π∠=,应选答案A (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个【答案】D【解析】试题分析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中中各月份的平均最高气温,故结合所提供的四个选项,可以确定D是不正确的,因为从图中可以看出:平均最高气温高于20C0只有7、8两个月份,故应选答案D 。
(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A )815 (B )18 (C )115(D )130【答案】C 【解析】试题分析:前2位共有3515⨯=种可能,其中只有1种是正确的密码,因此所求概率为115P =.故选C . (6)若tanθ=13,则cos2θ= (A )45-(B )15-(C )15(D )45【答案】D 【解析】 试题分析:22222222cos sin 1tan cos 2cos sin cos sin 1tan θθθθθθθθθ--=-==++2211()43151()3--==+-.故选D .(7)已知4213332,3,25a b c ===,则(A)b<a<c (B) a < b <c (C) b <c<a (D) c<a< b 【答案】A 【解析】 试题分析:423324a ==,1233255c ==,又函数23y x =在[0,)+∞上是增函数,所以b a c <<.故选A .(8)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6 【答案】B(9)在ABC中 ,B=1,,sin 43BC BC A π=边上的高等于则(A)310105310【答案】D 【解析】试题分析:由题意得,1112=sin 2323ABCS a a ac B c a ∆⋅=⇒=, ∴232sin sin()4C A A A π=⇒-=222A A A +=,∴310tan 3sin A A =-⇒=,故选D.(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18365+(B)54185+(C)90(D)81【答案】B【解析】试题分析:由题意得,该几何体为一四棱柱,∴表面积为(3336335)2545⋅+⋅+⋅⋅=+ B.(11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(A)4π(B)9π2(C)6π(D)32π3【答案】B(12)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34【答案】A 【解析】 试题分析:由题意得,(,0)A a -,(,0)B a ,根据对称性,不妨2(,)b Pc a-,设:l x my a =-,∴(,)a c M c m --,(0,)aE m,∴直线BM :()()a c y x a m a c -=--+,又∵直线BM 经过OE 中点,∴()1()23a c a a c e ac m m a -=⇒==+,故选A. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则z =2x +3y –5的最小值为______.【答案】-10 【解析】试题分析:可行域为一个三角形ABC 及其内部,其中(1,0),(-1,-1),(1,3)A B C ,直线z 235x y =+-过点B 时取最小值-10(14)函数y =sin x –3cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到. 【答案】3π 【解析】试题分析:2sin()3y x π=-,所以至少向右平移3π(15)已知直线l :360x -+=与圆x2+y2=12交于A 、B 两点,过A 、B 分别作l 的垂线与x 轴交于C 、D 两点,则|CD|= . 【答案】3 【解析】试题分析:由题意得:26212()232AB =-=因此23cos3.6CD π==(16)已知f (x )为偶函数,当0x ≤ 时,1()x f x e x--=-,则曲线y = f (x )在点(1,2)处的切线方程式_____________________________. 【答案】y 2x.= 【解析】 试题分析:110,(),()1,x x x f x e x f x e --'>=+=+时(1)2,y 22(x 1)y 2x.f '=-=-⇒=三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分) 已知各项都为正数的数列{}na 满足11a=,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}na 的通项公式.【答案】(1)11,24;(2)112nn a -=.【解析】试题分析:(I )因为11a =,211(21)20n n n n aa a a ++---=,所以21212(21)20aa a a ---=,解得212a=同理可得 22323(21)20aa a a ---=,解得314a=(II )由已知得211220n n n n n aa a a a ++-+-=,即1(2)(1)0n n n aa a +-+=因为{}na 各项都为正数,所以12n na a +=,即112n na a+=,故数列{}na 是首项为11a=,公比为12q =的等比数列,其通项公式为112nn a-=(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1–7分别对应年份2008–2014. (Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32ii y ==∑,7140.17i ii t y ==∑721()0.55ii y y =-=∑,7≈2.646. 参考公式:12211()()()(yy)n iii nni ii i t t y y r t t ===--=--∑∑∑回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为:121()()()niii ni i t t y y b t t ==--=-∑∑,=.a y bt -【答案】(1)可用线性回归模型拟合变量y 与t 的关系.(2)我们可以预测2016年我国生活垃圾无害化处理1.83 亿吨. 【解析】试题分析:(1)变量y 与t 的相关系数77771111777722221111()()7()()7()()iii i i ii i i i iii ii i i i t t y y t y t y r t t y y t t y y ========---⋅==-⋅-⨯-⋅-∑∑∑∑∑∑∑∑,又7128ii t==∑,719.32ii y ==∑,7140.17i ii t y ==∑721()27 5.292ii t t =-==∑,721()0.55ii y y =-=∑,所以740.17289.320.997 5.2920.55r ⨯-⨯=≈⨯⨯ , 故可用线性回归模型拟合变量y 与t 的关系. (2)4t =,y =7117ii y =∑,所以7172211740.17749.327ˆ0.10287i ii ii t y t ybtt ==-⋅-⨯⨯⨯===-∑∑,1ˆˆ9.320.1040.937ay bx =-=⨯-⨯≈,(19)(本小题满分12分)如图,四棱锥P-ABCD 中,PA ⊥地面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点. (I )证明MN ∥平面PAB; (II )求四面体N-BCM 的体积.【答案】(I )见解析;(II )53。
2016年成人高等学校招生全国统一考试数学(文史财经类)试题第一部分 选择题(85分)一、选择题(本大题共17小题,每小题5分,共85分。
在每小题给出的 四个选项中,只有一项是符合题目要求的,将所选项前的字母填写 在题后括号内)1. 设集合A=}{1,0,B=}{210,,,则A ∩B=( )A. }{10,B. }{20,C. }{21,D. }{210,,2. 函数x x y cos sin 2=的最小正周期是( )A.2πB. πC. 2πD. 4π3. 等差数列}{n a 中,若===731,6,2a a a 则( )A. 14B. 12C. 10D. 84. 若甲: x>1; 乙:xe >1,则 ( )A. 甲是乙的必要条件,但不是乙的充分条件B. 甲是乙的充分条件,但不是乙的必要条件C. 甲不是乙的充分条件,也不是乙的必要条件D. 甲是乙的充分必要条件5. 不等式132≤-x 的解集为( )A. }{31≤≤x xB. }{21-1≥≤x x 或C. }{21≤≤x xD. }{32≤≤x x6. 下列函数中,为偶函数的是( )A.x y 2log =B. x x y +=2C. xy 4=D. 2x y = 7. 点(2,4)关于直线y=x 的对称点的坐标为( )A. (-2, 4)B. (-2, -4)C. (4, 2)D. (-4, -2) 8. 将一颗骰子抛掷1次,得到的点数为偶数的概率为( )A.32B.21 C. 31D. 619. 在ΔABC 中,若AB=3,A=45。
,C=。
30,则BC=( )A. 23B. 32C.3D.22 10. 下列函数中,函数值恒为负值的是( )A. x y =B. 12+=x yC. 3x y = D. 12--=x y 11. 过点(0,1)且与直线x+y+1=0垂直的直线方程为( )A. x y =B. 12+=x yC. 1+=x yD. 1-=x y12. 设双曲线191622=-y x 的渐近线的斜率为k ,则k =( )A. 169B. 43C. 34D. 91613. =+81log 649132( )A. 8B. 10C. 12D. 14 14. 若3tan =α,则⎪⎭⎫⎝⎛+4tan πα=( )A. 2B.21 C. -2D. -4 15. 函数()111ln 2-+-=x x y 的定义域为( )A. }{11〉〈-x x x 或B. RC. }{11〈〈-x xD. }{11〉〈x x x 或16. 某同学每次投篮投中的概率为52,该同学投篮2次,只投中1次的概率为 ( )A.256 B. 259C. 2512D. 5317. 曲线243+-=x x y 在点(1,-1)处的切线方程为( )A. x +y =0B. x -y =0C. x -y -2=0`D. x +y -2=0第二部分 非选择题(65分)二、填空题(本大题共4小题,每小题4分,共16分。
成人高考数学试题(历年成考数学试题答案与解答提示)成考数学试卷(文史类)题型分类一、集合与简易逻辑2001年(1) 设全集M={1,2,3,4,5},N={2,4,6},T={4,5,6},则是()(A) {2,4,5,6} (B) {4,5,6} (C) {1,2,3,4,5,6} (D) {2,4,6}(2) 命题甲:A=B,命题乙:sinA=sinB. 则()(A) 甲不是乙的充分条件也不是乙的必要条件;(B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件;(D) 甲是乙的充分条件但不是必要条件。
2002年(1)设集合,集合,则等于()(A){2} (B){1,2,3,5} (C){1,3} (D){2,5}(2)设甲:,乙:,则()(A)甲是乙的充分条件但不是必要条件;(B)甲是乙的必要条件但不是充分条件;(C)甲是乙的充分必要条件;(D)甲不是乙的充分条件也不是乙的必要条件. 2003年(1)设集合,集合,则集合M与N的关系是(A)(B)(C)NØM (D)MØN(9)设甲:,且;乙:直线与平行。
则(A)甲是乙的必要条件但不是乙的充分条件;(B)甲是乙的充分条件但不是乙的必要条件;(C)甲不是乙的充分条件也不是乙的必要条件;(D)甲是乙的充分必要条件。
2004年(1)设集合,,则集合(A)(B)(C)(D)(2)设甲:四边形ABCD是平行四边形;乙:四边形ABCD是平行正方,则(A)甲是乙的充分条件但不是乙的必要条件;(B)甲是乙的必要条件但不是乙的充分条件;(C)甲是乙的充分必要条件;(D)甲不是乙的充分条件也不是乙的必要条件. 2005年2,3,,,则集合(1)设集合,(B),2,3(C)(D)(A),(7)设命题甲:,命题乙:直线与直线平行,则(A)甲是乙的必要条件但不是乙的充分条件;(B)甲是乙的充分条件但不是乙的必要条件;(C)甲不是乙的充分条件也不是乙的必要条件;(D)甲是乙的充分必要条件。
高起专成人高考数学(文史)试题(历年成考数学试题答案与解答提示)一、集合与简易逻辑2019年(1) 设全集M={1,2,3,4,5}, N={2,4,6}, T={4,5,6}, 则(M T)N I U 是( )(A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{(2) 命题甲:A=B , 命题乙:sinA=sinB . 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。
2018年(1) 设集合}2,1{=A , 集合}5,3,2{=B , 则B A I 等于( )(A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5}(2) 设甲:3>x , 乙:5>x , 则( )(A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2017年(1)设集合{}22(,)1M x y x y =+≤, 集合{}22(,)2N x y x y =+≤, 则集合M 与N 的关系是(A )M N=M U (B )M N=∅I (C )N M Ø (D )M N Ø(9)设甲:1k =, 且 1b =;乙:直线y kx b =+与y x =平行。
则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2016年(1)设集合{},,,M a b c d =, {},,N a b c =, 则集合M N=U(A ){},,a b c (B ){}d (C ){},,,a b c d (D )∅(2)设甲:四边形ABCD 是平行四边形 ;乙:四边形ABCD 是平行正方, 则(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2015年(1)设集合{}P=1234,,,,5, {}Q=2,4,6,8,10, 则集合P Q=I(A ){}24, (B ){}12,3,4,5,6,8,10, (C ){}2 (D ){}4(7)设命题甲:1k =, 命题乙:直线y kx =与直线1y x =+平行, 则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
高起专成人高考数学(文史)试题(历年成考数学试题答案与解答提示)一、集合与简易逻辑2019年(1) 设全集M={1,2,3,4,5}, N={2,4,6}, T={4,5,6}, 则(M T)N I U 是( )(A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{(2) 命题甲:A=B , 命题乙:sinA=sinB . 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。
2018年(1) 设集合}2,1{=A , 集合}5,3,2{=B , 则B A I 等于( )(A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5}(2) 设甲:3>x , 乙:5>x , 则( )(A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2017年(1)设集合{}22(,)1M x y x y =+≤, 集合{}22(,)2N x y x y =+≤, 则集合M 与N 的关系是(A )M N=M U (B )M N=∅I (C )N M Ø (D )M N Ø(9)设甲:1k =, 且 1b =;乙:直线y kx b =+与y x =平行。
则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2016年(1)设集合{},,,M a b c d =, {},,N a b c =, 则集合M N=U(A ){},,a b c (B ){}d (C ){},,,a b c d (D )∅(2)设甲:四边形ABCD 是平行四边形 ;乙:四边形ABCD 是平行正方, 则(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2015年(1)设集合{}P=1234,,,,5, {}Q=2,4,6,8,10, 则集合P Q=I(A ){}24, (B ){}12,3,4,5,6,8,10, (C ){}2 (D ){}4(7)设命题甲:1k =, 命题乙:直线y kx =与直线1y x =+平行, 则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2016年成人高考(文史类)数学试题
答案必须答在答题卡上指定的位置,答在试卷上无效。
........
一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。
(1)设集合,,则集合
(A){}10, (B){}20, (C){}21, (D){}210,,
(2)函数x x cos sin 2y = 的最小正周期是 (A)2π
(B)π (C)π2 (D)π4
(3)等差数列}{n a 中,若21=a ,63=a ,则=7a
(A)10 (B)12 (C)14 (D)8
(4)设甲:1x >,乙:1e x >,则
(A)甲是乙的必要条件,但不是乙的充分条件 (B)甲是乙的充分条件,但不是乙的必要条件
(C)甲不是乙的充分条件,也不是乙的必要条件 (D)甲是乙的充分必要条件
(5) 不等式132≤-x 的解集为 (A){}21≤≤x x (B)}{2x 1≥-≤或x x (C){}31≤≤x x (D)}
{32≤≤x x
(6)下列函数中,为偶函数的是
(A)x 2log y = (B) 2y x = (C)x 4y = (D)x x +=2
y
(7)点()42,关于直线x =y 的对称点的坐标为
(A)()24, (B)()42--, (C) ()42,- (D)()24--,
(8)将一颗骰子抛掷1次,得到的点数为偶数的概率为 (A)32 (B)61 (C)31 (D)21
(9)在ABC ∆中,若3A =B , 45=A , 30C =,则=BC (A)3 (B)32 (C)23 (D)23
(10)下列函数中,函数值恒为负值的是
(A)x =y (B)1y 2--=x (C)3y x = (D)1y 2+-=x
(11)过点()10,且与直线01=++y x 垂直的直线方程为
(A)1x +=y (B)1x 2+=y (C)x =y (D)1x -=y
(12)设双曲线19162
2
=-y x 的渐近线的斜率为k ,则=k (A)169 (B)916 (C)34 (D)43
(13)=+81log 649
132
(A)8 (B)10 (C)12 (D)14
(14)若3=αtan ,则=+)4tan(π
α (A)-2 (B)21
(C)2 (D)-4
(15)函数()11
1ln y 2-+-=x x 的定义域为 (A){}1x 1x >-<或x (B){}1x 1x ><或x (C){}1x 1x <<- (D)R
(16)某同学每次投篮投中的概率为52
,该同学投篮2次,只投中1次的概率为 (A)2512 (B)259 (C)256 (D)53
(17)曲线243+-=x x y 在点()11-,处的切线方程为
(A)02x =--y (B)0x =-y (C)0x =+y (D)02x =-+y
二、填空题:本大题共4小题,每小题4分,共16分。
把答案写在答题卡相应题号.......后.。
(18)若平面向量a )1,(x =, b )2,1(-=,且a ‖b ,则=x .
(19)若二次函数x x f 2a )x 2+=(的最小值为31
-,则=a .
(20)某次测试中5位同学的成绩分别为79,81,85,75,80,则他们成绩的平均数为 .
(21)函数22-=x y 的图像与坐标轴的交点共有 个.
三、解答题:本大题共4小题,共49分。
解答应写出推理、演算步骤,并将其写在答题卡相应题号.......后.。
(22)(本小题满分12分)
已知ABC ∆中,2=AB ,3=BC , 60=B ,求C A 及ABC ∆的面积.
(23)(本小题满分12分)
已知等比数列}{n a 的各项都是正数,且1031=+a a ,632=+a a , (Ⅰ)求}{n a 的通项公式; (Ⅱ)求}{n a 的前5项和.
(24)(本小题满分12分)
设函数m x x x x f +-+=36m 32)(23,且36)1(-=-'f .
(Ⅰ)求m ; (Ⅱ)求)(x f 的单调区间.
(25)(本小题满分13分)
已知椭圆C : )(0122
22>>=+b a b
y a x ,斜率为1的直线l 与C 相交,其中一个交点的坐标为)222(,,且C 的右焦点到l 的距离为1.
(Ⅰ)求b a ,; (Ⅱ)若C 的离心率.。