变压器的主磁通与漏磁通
- 格式:doc
- 大小:21.00 KB
- 文档页数:2
第 9 章思考题与习题参考答案9.1试比较异步电动机中主磁通和漏磁通的区别。
答: 主磁通是由基波旋转磁动势产生的基波旋转磁通,它经主磁路(定子铁心—气隙—转子铁心—气隙—定子铁心)而闭合。
其穿过气隙而同时交链定子、转子绕组,并分别在定子、转子绕组中产生感应电动势。
转子感应电动势产生的转子电流与定子磁场相互作用产生电磁转矩,驱动转子旋转,异步电动机从而实现将定子侧的电能传递给转子并转换成机械能输出。
因此,主磁通起能量传递和转换的媒介作用。
漏磁通不穿过气隙,它只与自身绕组相交链。
漏磁通包括槽部漏磁通和端部漏磁通。
另外由高次谐波磁动势所产生的高次谐波磁通虽然穿过气隙,但是对转子并不产生有效转矩,与槽部漏磁通和端部漏磁通具有同样的性质,所以也将其作漏磁通处理,称为谐波漏磁通。
由于漏磁通路径磁阻很大,因此它比主磁通小很多。
漏磁通仅在绕组上产生漏电动势,起电抗压降作用,不参与能量传递和转换。
9.2和同容量的变压器相比,为什么三相异步电动机的空载电流较大?答:变压器的主磁路由铁心构成,其磁阻很小,建立一定的主磁通所需要的磁动势很小,即励磁电流很小,通常为额定电流的2%~ 10%。
异步电动机的主磁路除了定、转子部分为铁心外,还有两段空气隙,这使得主磁路的磁阻很大,建立一定的主磁通所需要的磁动势就很大,即励磁电流很很大,通常为额定电流的20%~ 50%。
所以和同容量的变压器相比,三相异步电动机的空载电流较大。
9.3增大异步电动机的气隙,对空载电流、漏抗有何影响?答:增大异步电动机的气隙,主磁路磁阻增大,励磁电抗减小,空载电流增大。
气隙增大后,漏磁面积增加,单位电流产生的漏磁通增加,漏抗增大。
9.4异步电动机空载和负载时的气隙主磁通是否变化,为什么?答:主磁通几乎不变化。
虽然异步电动机空载运行时,气隙主磁通仅由定子励磁磁动势F0产生,而负载运行时,气隙主磁通由定子磁动势F1和转子磁动势 F2共同产生,但是因为外施电压U 1不变,根据U1 E1 4.44 fNk w1可知,空载和负载时的主磁通基本是同一数值。
一、填空题1.变压器中的磁通按照性质和作用的不同,分为__主磁通__和 漏磁通 ,其中__漏磁通___不参与变压器的能量传递。
2.他励直流电动机常用的调速方法有:_ 改变电枢回路里的串联电阻 ; 减小气隙磁通φ ;改变电枢端电压U 。
3.鼠笼式异步电动机降压起动的方法有 定子串接电抗器起动 ; Y —∆起动 ; 自耦减压起动 。
4.三相同步电动机通过调节___励磁电流__可调节无功功率。
5.异步电动机的电源电压降低10%,电机的过载能力降低到____80%__________,临界转差率___不变_______,负载不变时,电机的转速将___降低_______。
6.直流电动机常用的调速方法有: 电枢 控制和 磁场 控制。
7.变压器负载运行时, 二 次电流的大小决定着 一 次电流的大小。
8.削弱齿谐波电动势的方法有 斜槽 、 分数槽(半闭口槽) 以及其它措施。
9.单相绕组的磁动势是 脉动 磁动势;对称三相绕组的磁动势为 旋转 磁动势。
10.三相感应电动机的调速方法有:改变转差率调速、 改变电压 调速、变频 调速。
11.变压器空载实验选择在__低压侧_____压侧进行,原因是___安全和仪表选择方便 。
短路实验选择在高压侧 压侧进行,原因是 安全和仪表选择方便 。
12.一台单相变压器一次、二次绕组匝数比为10,则将二次绕组进行归算后,归算前后的二次侧电阻之比为 1:100 ;归算前后的二次侧磁势之比是 1:1 。
13.并励直流发电机自励的三个条件是 有剩磁 、 剩磁与励磁方向相同(电枢和励磁绕组接法正确) 、 励磁电阻小于临界电阻 。
14.一台直流发电机,其电势和端电压的大小关系是 E>U 。
15.三相感应电动机转子转速为n ,定子旋转磁场的转速为n S , 极对数为p ,则定子电流的交变频率为60s n p _ ;转子电流的交变频率为 ()60s n n p - 。
二、选择题1、两相对称绕组通以两相对称电流,将产生( A );三相感应电机通以三相对称电流,若一相绕组断线(绕组无中线),将产生脉振磁场。
第二章习题解答(Page 39~42)2-1变压器主磁通和漏磁通有何不同?在等效电路中如何体现它们的区别?【解】区别有:①磁通路径不同。
主磁路是闭合的铁心,漏磁路主要由非磁性介质构成,因此,主磁路导磁性能好,主磁通占总磁通的绝大部分,通常在90%左右,故被称为主磁通;漏磁路导磁性能差,漏磁通幅值小,它占总磁通的份额一般不到10%。
②匝链的绕组不同。
主磁通同时匝链(即穿越绕组的线匝)一、二次绕组,而某侧漏磁通仅与该侧绕组自身匝链,这是二者的本质区别。
③受负载影响不同。
主磁通幅值几乎不随负载变化,而漏磁通幅值随负载增加而增大。
在变压器等效电路中,第一个区别用电抗大小来表示,主磁通对应的激磁电抗x m 数值大,漏磁通Φ1σ、Φ2σ对应的一、二次漏抗x 1σ、x 2σ数值较小;第二个区别用电抗位置来表示,x 1σ、x 2σ分别处在一次绕组回路和二次绕组回路中,x m 则处在一、二次绕组的公共回路中;第三个区别表现在电动势大小(图中实际为电抗电压)是否受负载影响,其中,由于I 0基本不随负载变,故电抗压降E 1≈I 0x m 也就不变;I 1和I 2随负载增大而增大,故电抗压降E 1σ=I 1x 1σ和E 2σ=I 2x 2σ就随之增大。
2-2某台单相变压器,220/110V ,若错把二次侧(110V 侧)当成一次侧接到220V 交流电源上,主磁通和激磁电流将如何变化?若将直流电源220V 接在一次侧,会出现什么问题?典型分析过程如下:⑴首先用式分析铁心中主磁通Φm 变化情况。
可见,影响Φm 大小的因素有m 111fN 44.4E U Φ=≈一次绕组匝数N 1、电源的电压U 1和频率f 。
其中,频率,k 为常数。
3.⑵再用式分析磁密B m p Fe 。
A B m m =Φ⑶然后用式和变压器空载特性(也称磁化曲线)分析磁路中磁场强度H m 和导磁率μm m H B µ=变化情况。
三者关系为:若B m 增大,则H m 增大而μ减小;若B m 减小(↓),则H m 减小而μ增大(↑)。
变压器漏磁通表达式1.引言1.1 概述概述部分应包括对变压器漏磁通表达式这一主题的简要介绍,可以涵盖以下内容:变压器是电力系统中常见的电力设备之一,它用于将输电线路输送的高压电能变换为适合分配和使用的低压电能。
变压器在电力系统中发挥着至关重要的作用,其中包括将电能从发电厂输送到用户的过程中所产生的各种损耗,其中最重要的是铁损耗和铜损耗。
其中铁损耗是指变压器中磁场对铁芯材料产生的损耗,而铜损耗则是指通过变压器的电流在导线内产生的热量。
然而,在实际的变压器工作过程中,还会产生一种称为漏磁通的情况。
漏磁通是指磁场未完全集中在铁芯中,而经过了周围的空气或其他非磁性材料。
由于周围空气或其他非磁性材料的磁导率远远小于铁芯材料的磁导率,这些漏磁通会导致变压器的能量损耗和温升,从而影响变压器的效率和性能。
为了有效地分析和计算变压器中的漏磁通,我们需要建立相应的数学表达式。
这些表达式可以描述漏磁通的大小和分布,以及其对变压器性能的影响。
一般来说,变压器漏磁通表达式可以通过电磁场理论、磁路分析和磁通平衡等方法来推导和求解。
本文将重点介绍变压器漏磁通表达式的研究和应用。
首先,我们将对变压器漏磁通的定义和作用进行详细阐述,为后续内容的理解和分析打下基础。
接下来,我们将介绍变压器漏磁通表达式的推导和求解方法,包括磁通平衡方程和漏抗等的应用。
最后,我们将总结变压器漏磁通表达式的研究成果,并展望其在变压器设计和运行中的应用前景。
通过对变压器漏磁通表达式的深入研究和应用,我们可以更好地理解变压器的工作原理和性能特点,从而为变压器的设计和优化提供可靠的理论依据。
此外,对变压器漏磁通的研究还可以为电力系统的稳定运行和能源效率提升提供技术支持。
文章结构部分的内容可以如下所示:1.2 文章结构本篇文章主要分为三个部分:引言、正文和结论。
在引言部分中,我们将概述本文的主题,并介绍变压器漏磁通的定义和作用。
接下来会给出本文的结构安排,并说明本文的目的,以使读者能够清晰地理解文章的内容和意图。
第二章 变压器2-1 什么叫变压器的主磁通,什么叫漏磁通?空载和负载时,主磁通的大小取决于哪些因素?答:变压器工作过程中,与原、副边同时交链的磁通叫主磁通,只与原边或副边绕组交链的磁通叫漏磁通。
由感应电动势公式Φ=1144.4fN E 可知,空载或负载情况下11E U ≈,主磁通的大小取决于外加电压1U 、频率f和绕组匝数1N 。
2-2 一台50Hz 的变压器接到60Hz 的电源上运行时,若额定电压不变,问激磁电流、铁耗、漏抗会怎样变化答:(1)额定电压不变,则'1'11144.444.4Φ=Φ=≈N f fN E U N又5060'=f f ⇒6050'=ΦΦ, 即Φ=Φ65'磁通降低,此时可认为磁路为线性的,磁阻s l R m μ=不变,励磁磁势m m R N I Φ=⋅1,∴m m I I 65'=;(2βα(3)'1x 2-3 电路;2-4 利用T 2-5 2-14 ,Y ,d 联结,试求:(1)一次、 解:(1)A A U S I N N N68.2881035000311=⨯==A A U S I N N N 21.4583.635000322=⨯==(2)原边Y 联结:kV kV U U N N 77.5310311===ΦA I I N N 68.28811==Φ副边∆联结:kV U U N N 3.611==ΦA A I I N N 55.264321.458311===Φ 2-16 有一台单相变压器,已知参数为:Ω=19.21R ,Ω=4.151σX ,Ω=15.02R ,Ω=964.02σX ,Ω=1250m R ,Ω=12600m X ,26087621=N N 。
当二次侧电压VU 60002=,电流A I 1802=,且8.0cos 2=ϕ(滞后)时:(1)画出归算到高压侧的T 型等效电路;(2)用T 型等效电路和简化等效电路求1∙U 和1∙I ,并比较其结果。
《电机与电气控制技术》第2版习 题 解 答第一章 变压器1-1 在分析变压器时,对于变压器的正弦量电压、电流、磁通、感应电动势的正方向是如何规定的?答:在分析变压器运行时,上述正弦量的正方向规定如下:1)电源电压正方向与其电流正方向采用关联方向,即两者正方向一致;2)绕组电流正方向与所建立的磁通正方向符合右手螺旋定则;3)由交变磁通产生的感应电动势,两者的正方向符合右手螺旋定则。
1-2 变压器中的主磁通和漏磁通的性质和作用是什么?答:变压器一次绕组流过正弦交流电流,产生正弦交流磁通,该磁通绝大部分沿变压器铁心闭合且与一、二次绕组同时交链,这部分磁通为主磁通;而另有很少的一部分磁通只与一次绕组交链,且主要经非磁性材料闭合,不只二次绕组交链的磁通为一次绕组的漏磁通。
主磁通为工作磁通,漏磁通为非工作磁通。
1-3 变压器空载运行时,空载电流为何很小?答:变压器空载运行时,空载电流主要用来建立主磁通,由于空载运行时没有输出功率,仅存在空载损耗即变压器的铁心损耗,故空载电流仅为额定电流的0.02~0.1。
1-4 一台单相变压器,额定电压为220V/110V ,如果将二次侧误接在220V 电源上,对变压器有何影响?答:单相变压器,额定电压为220V/110V ,额定电压是根据变压器的绝缘强度和允许发热条件而规定的绕组正常工作电压值,说明该单相变压器二次侧绕组正常工作电压值为110V ,现将二次侧误接在220V 电源上,首先220V 电源电压大大超过其110V 的正常工作电压值,二次侧绝缘强度不够有可能使绝缘击穿而损坏。
另一方面该单相变压器为一台降压变压器,一次绕组匝数N 1=2N 2,接法正确时U 1=220=4.44fN 1φ m ,误接时220=4.44fN 2φ' m ,则误接时φ' m =2φ'm ,致使铁心饱和,工作在磁化曲线的饱和段,致使励磁电流激增,既便在空载情况下,电流也大增,将使绕组发热而烧坏。
《电机学》(第五版)课后习题解答系别:电气工程系系授课教师: *** * 日期: 2017.05.2 0第一章 磁路1-1 磁路的磁阻如何计算?磁阻的单位是什么?答: 磁路的磁阻与磁路的几何形状(长度、面积)和材料的导磁性能有关,计算公式为AlR m μ=,单位:Wb A1-2 磁路的基本定律有那几条?当铁心磁路上有几个磁动势同时作用时,能否用叠加原理来计算磁路?为什么?答: 有安培环路定律,磁路的欧姆定律,磁路的串联定律和并联定律;不能,因为磁路是非线性的,存在饱和现象。
1-3 基本磁化曲线与初始磁化曲线有何区别?计算磁路时用的是哪一种磁化曲线?答: 起始磁化曲线是将一块从未磁化过的铁磁材料放入磁场中进行磁化,所得的)(H f B =曲线;基本磁化曲线是对同一铁磁材料,选择不同的磁场强度进行反复磁化,可得一系列大小不同的磁滞回线,再将各磁滞回线的顶点连接所得的曲线。
二者区别不大。
磁路计算时用的是基本磁化曲线。
1-4 铁心中的磁滞损耗和涡流损耗是怎样产生的,它们各与哪些因素有关?答: 磁滞损耗:铁磁材料置于交变磁场中,被反复交变磁化,磁畴间相互摩擦引起的损耗。
经验公式V fB C p nmh h ≈。
与铁磁材料的磁滞损耗系数、磁场交变的频率、铁心的体积及磁化强度有关;涡流损耗:交变的磁场产生交变的电场,在铁心中形成环流(涡流),通过电阻产生的损耗。
经验公式G B f C p m Fe h 23.1≈。
与材料的铁心损耗系数、频率、磁通及铁心重量有关。
1-5 说明交流磁路和直流磁路的不同点。
答: 直流磁路中的磁通是不随时间变化的,故没有磁滞、涡流损耗,也不会在无相对运动的线圈中感应产生电动势,而交流磁路中的磁通是随时间而变化的,会在铁心中产生磁滞、涡流损耗,并在其所匝链的线圈中产生电动势,另外其饱和现象也会导致励磁电流、磁通,感应电动势波形的畸变,交流磁路的计算就瞬时而言,遵循磁路的基本定律。
1-6 电机和变压器的磁路通常采用什么材料构成?这些材料有什么特点?答:磁路:硅钢片。
第三章变压器3.1 变压器中主磁通和漏磁通的性质和作用有什么不同?在分析变压器时怎样反映其作用?它们各由什么磁动势产生?[答案]3.2 变压器的R m、X m各代表什么物理意义?磁路饱和与否对R m、X m有什么影响?为什么要求X m大、R m小?[答案]3.3 变压器额定电压为220/110V,如不慎将低压侧误接到220V电源后,将会发生什么现象?[答案]3.4 变压器二次侧接电阻、电感和电容性负载时,从一次侧输入的无功功率有何不同?为什么?[答案]3.5 变压器的其它条件不变,在下列情况下, X1σ, X m各有什么变化?(1) 一次、二次绕组匝数变化±10%;(2) 外施电压变化±10%;(3) 频率变化±10%。
[答案]3.6 变压器的短路阻抗Z k、R k、X k的数值,在短路试验和负载运行两种情况下是否相等?励磁阻抗Z m、R m、X m的数值在空载试验和负载运行两种情况下是否相等?[答案]3.7 为什么变压器的空载损耗可以近似地看成铁损耗?为什么短路损耗可以近似地看成铜损耗?负载时,变压器真正的铁损耗和铜损耗分别与空载损耗、短路损耗有无差别?为什么?[答案]3.8 当负载电流保持不变,变压器的电压变化率将如何随着负载的功率因数而变化?[答案]3.9 两台完全相同的单相变压器,一次侧额定电压为220/110V ,已知折合到一次侧的参数为:一、二次侧漏抗的标么值Z1*=Z2*=0.025∠60ο,励磁电抗的标么值Z m*=20∠60ο,如图所示把两台变压器一次侧串联起来,接到440∠0οV的电源上,求下述三种情况一次侧电流的大小(用标么值表示)。
[答案]题3.9图(1)端点1和3 相连,2和4相连;(2)端点1和4 相连,2和3相连;(3)第Ⅰ台变压器二次侧开路,第Ⅱ台变压器二次侧短路。
3.10 三相变压器变比和线电压比有什么区别?折算时用前者还是后者?[答案]3.11 Yd接法的三相变压器,一次侧加额定电压空载运行,此时将二次侧的三角打开一角,测量开口处的电压,再将三角闭合测量电流,试问当此三相变压器是三相变压器或三相心式变压器时,所测得的数值有无不同?为什么?[答案]3.12 变压器并联运行的最理想情况有哪些?如何达到最理想的情况?[答案]3.13 在三相变压器中,零序电流和零序磁通与三次谐波电流和3次谐波磁通有什么相同点和不同点?[答案]3.14 为什么三相变压器组不宜采用Yyn联结,而三相心式变压器又可采用Yyn 联结?[答案]3.15 Yy连接的变压器,一次侧接对称三相电压,二次侧二线对接短路,如图所示。
主磁通与漏磁通当变压器中一个绕组与电源相联后,就会在铁心中产生磁通,在铁心中由于激磁电压产生的磁通叫主磁通,主磁通大小决定于激磁电压的大小。
额定电压激磁时产生的主磁通不应使铁心饱和,即此时的磁通密度不应饱和。
主磁通是矢量,一般用峰值表示。
当变压器中流过负载电流时,就会在绕组周围产生磁通,在绕组中由负载电流产生的磁通叫漏磁通,漏磁通大小决定于负载电流。
漏磁通不宜在铁磁材质中通过。
漏磁通也是矢量,也用峰值表示。
主磁通与漏磁通都是封闭回线,都是矢量,但不在同一相位上。
主磁通在闭合磁路的铁心中成封闭回路,但在饱和后会溢出铁心成回路,漏磁通在开磁路结构件包括通过部分心柱或磁屏蔽成回路,主漏通与漏磁通在心柱内为矢量相加或相减,主磁通在铁心内产生空载损耗,漏磁通在绕组内与结构件内产生附加负载损耗。
主磁通在数量上有下列关系:式中Uk%为变压器阻抗电压分数,0为主磁通,s为漏磁通。
从此式可以理解:漏磁通产生阻抗电压,高阻抗电压百分数的变压器实质上是高漏磁变压器。
在这种变压器中应采用漏磁回路控制技术,使漏磁在希望的回路中成闭合回路,以免过大的附加负载损耗或避免不应该有的局部过热。
漏磁产生4的效应较多,除上述说明中提到的漏磁通会引起绕组内涡流损耗、换位不完全损耗、心柱小及叠片上涡流损耗、结构损耗外,还会引起机械力。
由于负载电流在高、低压绕组沿轴向分布不均衡,即所谓安匝不平衡,还会引起附加的漏磁通。
绕组中负载电流产生的漏磁通为轴磁通(绕组端部有横向漏磁通),不平衡安匝引起的漏通一般为横向漏磁通。
即使导电材料内无负载电流,漏磁通会使处于漏磁场内无电流的导电材料中产生涡流损耗。
大容量变压器与高阻抗变压器中要合理控制漏磁通回路。
采用高压—低压—高压或低压—高压—低压排列的绕组结构可使漏磁通密度降低。
另外要特别注意大电流引线产生的漏磁通,引线产生的漏磙这分布与绕组产生的漏磁通分布不同。
为减少引线漏磁通的影响,引线不宜靠箱壁很近;A、B、C三相垂直引线靠近走线时三相漏磁通之矢量和可为零。
主磁通与漏磁通
当变压器中一个绕组与电源相联后,就会在铁心中产生磁通,在铁心中由于激磁电压产生的磁通叫主磁通,主磁通大小决定于激磁电压的大小。
额定电压激磁时产生的主磁通不应使铁心饱和,即此时的磁通密度不应饱和。
主磁通是矢量,一般用峰值表示。
当变压器中流过负载电流时,就会在绕组周围产生磁通,在绕组中由负载电流产生的磁通叫漏磁通,漏磁通大小决定于负载电流。
漏磁通不宜在铁磁材质中通过。
漏磁通也是矢量,也用峰值表示。
主磁通与漏磁通都是封闭回线,都是矢量,但不在同一相位上。
主磁通在闭合磁路的铁心中成封闭回路,但在饱和后会溢出铁心成回路,漏磁通在开磁路结构件包括通过部分心柱或磁屏蔽成回路,主漏通与漏磁通在心柱内为矢量相加或相减,主磁通在铁心内产生空载损耗,漏磁通在绕组内与结构件内产生附加负载损耗。
主磁通在数量上有下列关系:
式中Uk%为变压器阻抗电压分数,0为主磁通,s为漏磁通。
从此式可以理解:漏磁通产生阻抗电压,高阻抗电压百分数的变压器实质上是高漏磁变压器。
在这种变压器中应采用漏磁回路控制技术,使漏磁在希望的回路中成闭合回路,以免过大的附加负载损耗或避免不应该有的局部过热。
漏磁产生4的效应较多,除上述说明中提到的漏磁通会引起绕组内涡流损耗、换位不完全损耗、心柱小及叠片上涡流损耗、结构损耗外,还会引起机械力。
由于负载电流在高、低压绕组沿轴向分布不均衡,即所谓安匝不平衡,还会引起附加的漏磁通。
绕组中负载电流产生的漏磁通为轴磁通(绕组端部有横向漏磁通),不平衡安匝引起的漏通一般为横向漏磁通。
即使导电材料内无负载电流,漏磁通会使处于漏磁场内无电流的导电材料中产生涡流损耗。
大容量变压器与高阻抗变压器中要合理控制漏磁通回路。
采用高压—低压—高压或低压—高压—低压排列的绕组结构可使漏磁通密度降低。
另外要特别注意大电流引线产生的漏磁通,引线产生的漏磙这分布与绕组产生的漏磁通分布不同。
为减少引线漏磁通的影响,引线不宜靠箱壁很近;A、B、C三相垂直引线靠近走线时三相漏磁通之矢量和可为零。
引线通过箱盖或箱壁引出时,如引线中
通过电流较大,箱盖上开孔处应用隔磁装置。
引线无法远离箱壁或箱盖时,宜将局部靠近引线的箱壁或箱盖用不导磁钢作结构件材料。
引线漏磁通产生的局部过热是特别应避免的技术问题。
总之,漏磁通引起的局部过热是难予解决的问题。
所以,在工厂的温升试验中应注意探测漏磁通引起的局部过热,包括由油中含气色谱分析的接测局部过热的方法,现在也有用高性能液相色谱分析探测油中糠醛含量的方法来判明绕组中是否有不允许的热点温度存在,这一方法已在《变压器》期刊中作了介绍。
当然,最好是在绕组中埋入温度传感器以探险明绕组中是否有局部过热存在,或者说,探险明漏磁通的集中区。
以上各种方法,在国内外是可行的,对高漏磁变压器而言,要保证其运行可靠性,这些检测是必不可少的,不是用计算机辅助设计作磁场分布分析所能代替的。
还有一点,也应特别注意的,如果大容量变压器两个绕组的磁中心不在同一水平上(设计上是在同一水平上的,制造上不一定在同一水平上)会有附加的横向漏磁场存在。
所以在绕组套装前,应加强对高压和低压绕组磁中心是否一致的控制。
附带强调一下,三相变压器的电压不平衡时(如单相短路)在变压器中还有零序磁通。
在三相三柱Yyno接法变压器中还有三次谐波磁通,由于它在三个柱上都是同相位,且在空气中成回路,故它们值是较小的。