高速高频PCB板材介绍
- 格式:pdf
- 大小:765.92 KB
- 文档页数:23
pcb高频板材等级划分标准高频板材是一种用于高频电子设备的特殊金属基板材料。
由于高频电路在设备中的应用越来越广泛,对高频板材的需求也越来越大。
为了满足不同需求,对高频板材进行了等级划分,并制定了相关标准。
高频板材等级划分标准主要包括以下几个方面:介电常数、损耗因子、热膨胀系数、密度等。
下面将逐个进行介绍。
1.介电常数:介电常数是指材料在电场作用下的电介质特性。
对于高频电路来说,材料的介电常数越低越好,可以减小信号在传输过程中的能量损耗。
一般来说,介电常数小于3.3的高频板材被认为是一级材料,介电常数在3.3-3.9之间的被认为是二级材料,介电常数大于3.9的则被认为是三级材料。
2.损耗因子:损耗因子是指材料在电场作用下的能量损耗程度。
对于高频电路来说,材料的损耗因子越低越好,可以减小信号在传输过程中的能量损失。
一般来说,损耗因子小于0.002的高频板材被认为是一级材料,损耗因子在0.002-0.005之间的被认为是二级材料,损耗因子大于0.005的则被认为是三级材料。
3.热膨胀系数:热膨胀系数是指材料在温度变化下的线膨胀量与温度变化量之比。
对于高频电路来说,材料的热膨胀系数应该与其他组件的热膨胀系数相匹配,以避免在温度变化时出现膨胀不一致的情况。
一般来说,热膨胀系数小于10ppm/℃的高频板材被认为是一级材料,热膨胀系数在10-20ppm/℃之间的被认为是二级材料,热膨胀系数大于20ppm/℃的则被认为是三级材料。
4.密度:密度是指材料单位体积的质量。
对于高频电路来说,材料的密度应该足够轻,以减小整个电子设备的重量。
一般来说,密度小于2.2g/cm³的高频板材被认为是一级材料,密度在2.2-2.8g/cm³之间的被认为是二级材料,密度大于2.8g/cm³的则被认为是三级材料。
根据以上标准,可以将高频板材划分为一级、二级和三级。
一级材料具有低介电常数、低损耗因子、低热膨胀系数和低密度的特点,适用于高频电路中要求较高的设计;二级材料在这些方面稍有折衷,适用于一般高频电路;三级材料则在这些方面相对较差,适用于一些次要的高频电路。
高频pcb材料分类
高频 PCB 材料主要用于制造高频电路板,以满足高频通信、雷达、卫星通信等领域对于信号传输和电磁干扰的要求。
根据介电常
数和损耗因子的不同,高频 PCB 材料可以分为多种类型,常见的分
类包括以下几种:
1. PTFE(聚四氟乙烯)基材料,PTFE 是一种低介电常数和低
损耗的材料,常见的有 Teflon、Rogers RO4000 系列等。
这类材料
适用于高频高速传输,具有优异的信号传输性能和稳定的介电性能。
2. 高频陶瓷基材料,这类材料以氧化铝陶瓷为基础,具有较高
的介电常数和较低的损耗因子,常见的有Rogers RO3000 系列。
适
用于要求较高介电常数和较低损耗的高频电路设计。
3. 高频混合介质基材料,这类材料采用混合介质技术,结合了
聚酰亚胺树脂和微玻璃纤维,具有较好的机械性能和高频性能,常
见的有Rogers RO4350B 等。
4. 高频聚酰亚胺基材料,这类材料以聚酰亚胺树脂为基础,具
有优异的高温性能和尺寸稳定性,常见的有Arlon、Isola 等系列。
5. 低介电常数基材料,这类材料主要以降低介电常数为主要特点,从而提高信号传输速度和减小信号传输损耗,常见的有Taconic 等系列。
总的来说,高频 PCB 材料在选择时需要根据具体的应用需求来进行综合考虑,包括信号传输性能、介电性能、机械性能、加工工艺等多个方面,以满足高频电路设计的要求。
PCB电路板板材介绍1.FR4板材FR4是一种玻璃纤维增强热固性树脂材料,是最常用的PCB板材之一、它具有良好的电绝缘性能、机械强度高、耐热性好等特点。
FR4板材常用于一般电路板生产,如通用消费电子产品、工业自动化设备等。
FR4板材具有较好的耐高温性能,可用于高温环境下的应用。
2.高TG板材高TG板材是在常规FR4板材的基础上提高玻璃化转变温度(Tg),通常指超过170℃的板材。
高TG板材适用于对耐高温性能要求较高的应用场景,如汽车电子、航空航天等领域。
高TG板材具有较好的耐高温抗老化性能,能满足复杂环境下的工作要求。
3.高频板材高频板材是一种具有较低介电常数和介质损耗的特殊板材,适用于高频电路设计。
高频板材常用于无线通信设备、射频电路、雷达等领域。
高频板材具有较低的信号传输损耗和色散特性,能够实现高频信号的稳定传输。
4.金属基板金属基板是一种以金属作为基材的PCB板材。
常见的金属基板材料有铝基板、铜基板和钢基板等。
金属基板具有良好的散热性能、机械强度好等特点,常用于功率电子器件、LED灯等高功率应用领域。
5.聚酰亚胺板材聚酰亚胺(PI)板材是一种具有优异的高温耐性和电绝缘性能的特殊板材。
它具有较低的介质损耗和介电常数,适用于高频高速电路设计。
聚酰亚胺板材常用于航空航天、医疗器械等高要求的应用领域。
6.柔性基板柔性基板是一种用薄膜材料制成的电路板,可以实现弯曲和折叠。
柔性基板具有轻薄、小巧、可弯曲性好等特点,常用于移动设备、可穿戴设备等有特殊要求的产品中。
除了上述介绍的常见板材外,还有许多其他材料可用于制作PCB电路板,如石墨烯、新型纳米材料等,这些材料具有高导热性、高导电性等特点,有望应用于未来的电路板制造中。
总之,PCB电路板的板材选择是一个根据设计需求和应用场景来决定的过程。
不同的板材具有不同的特点和优势,设计人员需要根据具体情况进行选择,以确保电路板的性能和可靠性。
pcb板材料PCB的全称是Printed Circuit Board,即印刷电路板,是电子器件的重要组成部分,可以提供电子元件的固定、连接和电气信号的传输功能。
PCB板材料是制造电路板的基础材料,关系到电路板的性能和稳定性。
常见的PCB板材料有以下几种:1. FR-4板:FR-4即Epoxy Glass Fiber Laminate,是一种基于玻璃纤维和环氧树脂的传统PCB板材料。
它具有较好的电绝缘性能、机械强度和耐热性,广泛用于普通电子产品的制造。
2. 高频板:高频板材料是用于制作高频电路的特殊材料,通常采用聚合物增强材料和PTFE(聚四氟乙烯)复合材料。
它具有较低的介电常数和损耗因子,在高频信号传输中能够有效减少信号的衰减。
3. 金属基板:金属基板主要用于高功率、高散热的电路设计,通常采用铝基板、镍基板和铜基板。
金属基板能够良好地散热,提高电路的稳定性和可靠性。
4. 柔性板:柔性板材料采用聚酯薄膜、薄玻璃纤维布或胶粘无纺布等可弯曲的材料。
它具有较好的柔韧性和可折叠性,适用于需要弯曲或紧凑设计的电子产品。
5. 高温板:高温板材料通常采用聚酰亚胺(PI)和聚醚醚酮(PEEK)等高温耐高温材料。
这些材料具有较高的耐热性和耐化学性能,适用于高温工作环境下的电子器件。
6. 射频板:射频板材料采用聚合物增强材料和陶瓷材料复合。
它具有低介电常数、低介电损耗和较好的信号传输性能,适用于射频信号的传输和接收。
不同的PCB板材料适用于不同的电路设计和应用场景,选择合适的材料可以提高电路的性能和可靠性。
随着科技的进步和电子产品的不断发展,新型的PCB板材料也在不断涌现,为电子产品设计和制造提供更多的选择和可能性。
高速高频板供应商板材树脂类型S7439(EL230T )/S7240/ SYSTEL190T/FL700/FL700LD/IT200LK/ ITEQ/IT150DAFR408材料特性DK DF Tg Td (1GHZ)(1GHZ)( DSC )(TGA)3.80.0045200℃380℃3.90.005200℃360℃4.30.011220℃345℃3.70.003205℃350℃3.50.0025205℃350℃3.80.01200℃350℃3.560.0047172℃350℃3.770.011180℃360℃ISOLA NECLOPanasonicTUCEMC HITACHIROGERS ARLON TACONICFR4+碳氢化合物FR408HR 3.680.009200℃370℃IS680-345/ 3.450.0035192℃376℃N4103-13 3.70.009210℃365℃N4103-13EPCE( 氰酸酯 )3.70.009210℃350℃N4103-13SI 3.40.008210℃365℃N4103-13EPSI 3.40.008210℃350℃Mercurywave 9350/ 3.70.004200℃360℃M4 (R5725)FR4+PPO 3.80.005175℃362℃M6 (R5775K)PPO 3.60.002℃℃185410 TU-872/SLK/ 3.80.008200℃340℃TU-872/SLKSP///// EM828/ 3.70.008℃℃170380 FX-2/ 3.50.002℃℃180350 MCL-LX-67/ 3.50.005℃/235 RO4350B碳氢化合物 +陶瓷 3.480.0031℃℃280390 RO3003PTFE 陶瓷30.0013/500℃RO4533PTFE 陶瓷 3.30.0025/℃500 RO3730PTFE 陶瓷30.0016/℃500 TC350PTFE 陶瓷 3.50.002/℃567 AD300C PTFE 陶瓷 2.970.002/555℃CLTE-AT PTFE 陶瓷30.0013/℃529 Multiclad/ 3.70.004℃℃205432 RF35A2PTFE+ 玻纤 3.50.0011/℃528 TLY-5PTFE+ 玻纤 2.20.0009// TSM-30PTFE+ 玻纤30.0015//TACONICTLX-8RF35TLC-30PTFE+ 玻纤PTFE+ 玻纤PTFE+ 玻纤2.450.0015//3.50.0018//30.028//高频板材参数一览表性Z-CTE T288吸水率(50-260)( min )(%)/>60min0.08% 2.00%>60min0.10%/20min//20min//20min0.24%2.50%30min0.10%3.81%30min0.12% 3.50%200.15% 2.80%300.06%价格指数应用领域评估结论/网络设备、测量设备/背板、服务器、路由器///////////板厚≤ 2.0mm,Pitch ≥/0.8mm3.2板厚≤ 3.0mm,Pitch ≥/0.8mm2.90%60min0.10%5/3.40%100.10% 3.93.50%10+0.10% 3.93.50%10+0.10% 3.9汽车、航空、防卫、通讯3.20%10+0.10%4.3基础设备、半导体、高速2.50%40min0.15%/数据2.80%300.14%4/60min0.14% 5.8/20min/ 3.3/////3.3//30min////60min0.03%10.3///0.03%8.4/0.63%60min0.06%8.3卫星电视 LNB 、微带线、功率放大器//< 0.1%16.7通讯卫星、背板//< 0.02%25蜂窝基站天线//0.04%25基站天线、卫星传输天线1.20%> 60min0.05% 6.5功率放大器、过滤器、连接器/> 60min0.06%8.3基站天线、功率放大器/> 60min0.03%16.5汽车雷达、感应器1.20%> 60min0.10%4背板、功率放大器、接收器2.65%/0.02%18//< 0.02%/无线链路、发射机、功分//0.03%36器、合流器、过滤器、基站天线无线链路、发射机、功分//< 0.02%/器、合流器、过滤器、基站天线//0.03%14 //< 0.02%/备注(目前状态)未评估未评估未评估未评估未评估未评估初步评估 (F1)小批量生产 (F5)文件已标准化未评估文件已标准化(F5)未评估文件已标准化(F5)初步评估( F1)未评估未评估未评估未评估未评估小批量生产(F1&F5)初步评估 (F1)未评估未评估未评估未评估未评估未评估初步评估 (F1)未评估未评估未评估初步评估 (F1)未评估。
高速高频覆铜板工艺流程覆铜板又名基材,将补强材料浸以树脂,一面或两面覆以铜箔,经热压而成的一种板状材料,称为覆铜箔层压板。
它是做PCB的基本材料,常叫基材。
当它用于多层板生产时,也叫芯板(CORE)。
本文主要介绍的是高速高频覆铜板工艺流程。
高频覆铜板制备工艺与普通覆铜板流程类似:1、混胶:将特种树脂、溶剂、填料,按一定比例通过管道用泵打入到混胶桶中进行搅拌,需物料搅拌配制成带流动性的粘稠状胶液。
2、上胶烘干:将混合好的胶液用泵打入胶槽中,同时将玻纤布通过上胶机连续浸入到胶槽中,使胶水粘附在玻纤布上。
上胶后的玻纤布进入上胶机烤箱中高温烘干后成为粘结片。
3、粘切片裁剪后叠BOOK:经烘干后的粘结片按要求进行切边,将粘结片(1 张或多张)和铜箔进行叠配,输送至无尘室。
使用自动叠BOOK 机组合配好的料与镜面钢板。
4、层压:将组合好的半成品由自动输送机送至热压机进行热压,使产品在高温、高压及真空环境中保持数小时,以使粘结片、铜箔连结成一体,最终成为表面铜箔、中间绝缘层的覆铜板成品。
5、剪板:冷却之后将拆出的产品多余的边条修掉,同时根据客户要求,裁切成相应尺寸。
原材料配方直接影响到覆铜板介电常数与介电损耗,工艺生产核心难点在于上游原材料选择以及配方配比;树脂:传统环氧树脂由于本身具有含量较大的极性基团,介电性能较高,通过使用其他类型树脂例如:聚四氟乙烯、氰酸酯、苯乙烯马来酸酐、PPO/APPE 以及其他改性热固性塑料等低极化分子结构来实现低介电常数与低损耗材料。
填料:改善板材物理特性同时影响介电常数基板材料制造中的填充材料,是指基板材料组成中除增强纤维材料外,作为树脂填料的化工材料。
填充材料在整个基板材料用树脂中所占的比例、品种、表面处理技术等,都对基板材料的介电常数有所影响。
无机填料中较常使用的有:滑石粉、高岭土、氢氧化镁、氢氧化铝、硅微粉与氧化铝等。
填料的加入,可以有效降低产品的吸湿性,从而改善板材的耐热性,同时,还可以降低板材热膨胀系数。
高频高速板材正确选择技巧
随着微处理器和信号转换传输器件运行速度提升,数字电路的运行速度也达到一个更高层次:100Gbps。
使用通用的PCB板材将不能达到高速信号要求,电路板的选材将会决定产品的性能。
选择PCB板材必须在满足设计需求、可量产性、成本中间取得平衡点。
简单而言,设计需求包含电气和结构可靠性这两部分。
通常在设计非常高速的PCB板子(大于GHz的频率)时这板材问题会比较重要。
例如,现在常用的FR-4材质,在几个GHz的频率时的介质损Df(Dielectricloss)会很大,可
能就不适用。
举例来说,10Gb/S高速数字信号是方波,它可以看作是不同频率的正弦波信号的叠加。
因此10Gb/S包含许多不同频率信号:5Ghz的基波信号、3阶15GHz、5阶25GHz、7阶35GHz信号等。
保持数字信号的完整性以及上下沿的陡峭程度和射频微波(数字信号的高频谐波部分达到了微波频段)的低损耗低失真传输一样。
因此,在诸多方面,高速数字电路PCB选材和射频微波电路的需求类似。
在实际的工程操作中,高频板材的选择看似简单但需要考虑的因素还是非常多的,通过本文的介绍,作为PCB设计工程师或者高速项目负责人,对板材的特性及选择有一定的了解。
了解板材电性能、热性能、可靠性等。
并。
PCB高频板材等级划分标准
一、电气性能
1. 绝缘电阻:高频板材应具有较高的绝缘电阻,以确保电路的稳定性和安全性。
2. 介质损耗:高频板材的介质损耗应较低,以减少信号传输过程中的能量损失。
3. 传输速度:高频板材应具有较高的传输速度,以满足高速数字信号的传输需求。
二、机械性能
1. 抗弯强度:高频板材应具有较高的抗弯强度,以承受电路板在组装和使用过程中的机械应力。
2. 表面硬度:高频板材的表面硬度应适中,以防止在使用过程中受到磨损和划伤。
3. 耐冲击性:高频板材应具有较好的耐冲击性,以抵抗意外撞击和振动带来的影响。
三、热稳定性
1. 耐热性:高频板材应具有较好的耐热性,以承受高温环境下的工作条件。
2. 热膨胀系数:高频板材的热膨胀系数应与所使用的材料相匹配,以避免因温度变化而产生的应力或变形。
3. 耐燃性:高频板材应具有较好的耐燃性,以防止火灾等意外情况的发生。
四、耐腐蚀性
1. 耐化学腐蚀:高频板材应具有较好的耐化学腐蚀性,以抵抗各种化学物质的侵蚀。
2. 耐环境腐蚀:高频板材应具有较好的耐环境腐蚀性,以适应各种恶劣环境条件下的工作。
五、成本效益
1. 材料成本:高频板材的价格应适中,以满足不同客户的需求。
2. 加工成本:高频板材的加工成本应合理,以降低生产成本和提高生产效率。
3. 总体成本效益:综合考虑电气性能、机械性能、热稳定性、耐腐蚀性和成本效益等因素,选择最适合的高频板材等级,以确保在满足性能要求的同时,实现成本效益的最大化。
高频常用板材介电常数全文共四篇示例,供读者参考第一篇示例:高频常用板材介电常数指的是在高频电磁场中,材料对电场的响应能力的衡量值,是衡量材料性能的重要参数之一。
介电常数是一个复数,表示了材料对电场的响应的强度和相位差。
在高频通信、雷达、微波等领域的应用中,对材料的介电常数有着严格的要求,选择合适的介电常数的材料可以有效地提高系统性能。
常见的高频常用板材包括玻璃纤维增强复合材料、聚酰亚胺、聚四氟乙烯、陶瓷等。
这些材料在不同的应用领域有着不同的介电常数值,下面将对其中几种常见的板材的介电常数进行介绍。
1. 玻璃纤维增强复合材料玻璃纤维增强复合材料是一种常用的高频板材,具有良好的机械性能和耐热性能,广泛应用于雷达天线、通信天线、微波器件等领域。
其介电常数在高频范围内一般在3-5之间,具有较好的介电性能,能够满足多种应用场景的需求。
2. 聚酰亚胺3. 聚四氟乙烯4. 陶瓷不同的高频常用板材具有不同的介电常数值,选择合适的材料可以有效地提高系统的性能。
在实际应用中,需要根据具体的需求来选择合适的材料,以达到最佳的效果。
希望以上内容对您有所帮助。
第二篇示例:介电常数是一个描述材料对电场响应能力的物理量,通常用εr来表示。
在电磁领域中,介电常数是非常重要的参数,它能够帮助我们了解材料在电场作用下的性质和特点。
不同的材料具有不同的介电常数,这也直接影响了材料在电场中的性能和应用。
1. FR-4玻纤板FR-4玻纤板是一种常见的复合板材,由玻璃纤维和环氧树脂组成。
它具有优异的机械性能和耐热性能,在电子领域中被广泛应用。
FR-4板材的介电常数一般在4.5左右,具有较好的介电性能,能够满足高频电路的要求。
2. PTFE板材PTFE是一种具有优异化学稳定性和耐热性能的聚合物材料,被广泛应用于高频电路和微波领域。
PTFE板材的介电常数通常在2.1左右,具有较低的介电损耗和较好的介电性能,适用于高频电路和微波器件的制造。
3. RO4350B板材RO4350B 是一种低介电损耗的复合板材,具有较高的玻璃转化温度和热稳定性。
浅谈 PCB高频板、板材材料及高频参数摘要:随着通讯和计算机技术的迅速发展,对印制板技术的研发提出了越来越高的要求,系统工作频率从MHz频段向GHz频段转移,其所追求的即是信息处理的高速化、存储容量的海量化以及系统能耗的绿色化。
在这一发展方向下,作为海量信号载体的高频印制电路板应运而生,并承担着信息传输的艰巨任务。
主要对PCB高频板的定义与特点、常见板材类型和复介电常数进行了简单的论述。
关键词:PCB高频板;板材类型;复介电常数1.引言伴随着信息化的高速发展,计算机、无线通信、数据网络等已经融入到了我们生活中的方方面面。
电子设备高频化是发展趋势,尤其在无线网络、卫星通讯的发展过程中,信息产品走向高速与高频化,通信产品走向容量大速度快的无线传输,因此每一代新产品的诞生都离不开高频板。
1.PCB高频板1.PCB高频板的定义高频板是指电磁频率较高的特种线路板,用于高频率(频率大于300MHz或者波长小于1米)与微波(频率大于3GHz或者波长小于0.1米)领域的PCB,是在微波基材覆铜板上利用普通刚性线路板制造方法的部分工序或者采用特殊处理方法而生产的电路板。
一般来说,高频板可定义为频率在1GHz以上线路板。
1.1.PCB高频板的特点1.效率高介电常数小的高频电路板,损耗也会很小,而且先进的感应加热技术能够实现目标加热的需求,效率非常高。
当然,注重效率的同时,也有环保的特性,十分适合当今社会的发展方向。
1.1.1.速度快由于传输速度与介电常数的平方根成反比,那么介电常数越小,传输速度就越快。
这正是高频电路板的优点所在,它采用特殊材质,不仅保证了介电常数小的特性,还保持运行的稳定,对于信号传导来说非常重要。
1.1.1.可调控度大高频电路板广泛应用于各个行业。
如对精密金属材质加热处理需求的高频电路板,在其领域的工艺中,不仅可实现不同深度部件的加热,而且还能针对局部的特点进行重点加热,无论是表面还是深层次、集中性还是分散性的加热方式,都能轻松完成。
PCB电路板板材介绍PCB电路板(Printed Circuit Board)是电子产品中常见的一种基础组成部件,用于连接和支持电子元器件,并传递电信号和电能。
PCB电路板的性能和质量直接影响到整个电子产品的性能和可靠性,其中板材是PCB电路板的核心部分。
本文将介绍PCB电路板的常见板材及其特点。
1.硬质板材硬质板材是最常见的PCB电路板材料之一,其主要成分是玻璃纤维布与环氧树脂树脂的复合材料。
硬质板材具有良好的机械性能、热稳定性和电气性能,因此特别适合用于制作复杂的多层PCB电路板。
硬质板材根据其玻璃纤维布的厚度,可分为FR-4、FR-5等等级,FR-4是最常用的硬质板材。
硬质板材的主要优点是高强度、良好的耐热性和耐腐蚀性。
2.软质板材软质板材相对于硬质板材而言,其玻璃纤维布的厚度较薄。
软质板材通常采用聚酰亚胺(Polyimide)树脂作为基材。
聚酰亚胺软质板材具有良好的耐高温性能、柔韧性和耐化学性能,因此在一些特殊应用场景中非常适用,如高温环境下的电子产品、柔性电子产品等。
软质板材的主要优点是良好的柔韧性、较低的介电常数和介电损耗。
3.金属基板金属基板是将铜箔与金属基材复合而成的材料。
金属基板通常采用铝基或铜基材料。
金属基板的主要优点是良好的散热性能和机械强度,因此广泛应用于需要高功率和高可靠性的电子产品中,如LED照明产品、汽车电子产品等。
金属基板的主要缺点是制造工艺复杂,成本较高。
4.杂质基板杂质基板是以纯纸质或玻璃纤维纸质为基材的一种特殊PCB板材。
其主要应用于一些低成本、低性能要求的电子产品中,如普通计算机键盘、游戏手柄等。
杂质基板的主要优点是制造成本低、易于加工。
除了以上介绍的常见板材外,还有一些特殊用途的板材,如陶瓷基板、高频板等,其具有特殊的性能和特点,适用于一些特定的应用场景。
在选择PCB板材时,需要根据具体的应用需求、成本要求和性能要求来进行选择。
综上所述,PCB电路板的板材是其性能和可靠性的关键因素。
高频概念高频pcb指的是高频电路板。
高频及感应加热技术目前对金属材料加热效率最高、速度最快,且低耗环保。
它已经广泛应用于各行各业对金属材料的热加工、热处理、热装配及焊接、熔炼等工艺中。
它不但可以对工件整体加热,还能对工件局部的针对性加热;可实现工件的深层透热,也可只对其表面、表层集中加热;不但可对金属材料直接加热,也可对非金属材料进行间接式加热。
等等。
因此,感应加热技术必将在各行各业中应用越来越广泛。
高频板制作要求高频pcb板属于高难度板之一,所以必须尽量满足制作要求。
∙一钻孔1,钻孔进刀速要慢为180 /S要用新钻嘴,上下垫铝片,最好单PNL钻孔,孔内不可遇水2,过整孔剂PTH孔样板可用浓硫酸(最好不用)30Min3, 磨板沉铜线路和正常双面一样制作4,特别注意:高频板不用除胶渣。
∙二防焊1.高频板如果需要绿油打底的在阻焊前不允许磨板,在MI中盖红章。
2.高频板如果基材上需要印绿油的要印两次绿油(防止基材上绿油起泡),从蚀刻出来和退锡前不可磨板,只可风干。
第一次打底,用43T网版正常印刷分段烤板:50度50Min 75度50Min 95度50Min 120度50Min 135度50Min 150 50Min度,用线路菲林曝光,显影后才可磨板,第二次正常制作。
需要在MI中备注:第一次打底用线路菲林对位。
3.高频板如果部分基材上需要印绿油、部分基材上不印绿油,需要出“打底菲林”,打底菲林只保留基材上绿油,打底烤板后再进行第二次正常制作。
以下图片为018212的需要特别出“打底菲林”。
特别注意类似018092基材上不印绿油的只能印一次绿油(见下图,蓝色部为绿油开窗),防止第一次绿油打底后基材上绿油无法显影掉。
三喷锡喷锡前要加烤150度30Min 才可喷锡四线路公差无要求的线宽公差做到±0.05mm 有要求按客户要求制作。
五板材要用指定的板材见要求。
因为板材价格较贵,能只开1PNL就只开1PNL。
PCB板的材质分类对高频电路而言,PCB的材质太重要了!有必要了解了解,不然到时候哪出问题了都一头雾水。
常用的PCB板分类如下:电木板:使用推荐最高频率100MHZ;价格低强度弱,现在已经很少用。
纸质树脂板:使用推荐最高频率300MHZ;价格中强度弱。
玻璃树脂板:使用推荐最高频率1GHZ;价格中而坚硬,是目前使用两最大的品种。
铁富龙:一种专用的PCB材质板料,最高频率5GHZ;价格高而易碎,很少见。
陶瓷材料:呵呵,这就不说了,加工和切割都得激光或高速水加工机床。
一般在厚膜电路及航天工业里才用到;想了解它也不难,老式烂电视机里一般都能找到一两块。
前言我國的資訊電子工業近年來在政府及產業界的大力推動下,已躋身成為世界主要的生產供應國,為臺灣再創經濟奇蹟,也因此帶動了中游之電子零組件業及上游原材料的蓬勃發展。
在整個資訊、通訊、以及消費性電子產業中,「印刷電路板」實可稱為不可或缺之重要零組件。
由印刷電路板業之產銷供需情形,即可反映出3C產業的榮枯興衰與技術水準之高低。
印刷電路板能將電子零組件連接在一起,使其發揮整體功能,因此是所有電子資訊產品不可或缺的基本構成要件。
因此PCB (Printed Circuit Board)經常被稱為是「電子系統產品之母」或「3C產業之基」。
我國印刷電路板工業肇始於1969年美國安培公司來台設廠生產,而國內電路板業者雖經多次全球性不景氣波及,但發展迄今卻仍締造了總產值/總產量皆雙雙位居全世界第三位的紀錄。
目前,政府已將電路板工業列為策略性輔導的工業之一,藉以鞏固我國在全世界資訊電子工業之地位。
印刷電路板應用範圍廣佈民生機械、產業機械及國防機械上。
其產值約佔全球電子零組件產值之6%,而每年之成長率則在15~40%左右。
而印刷電路板製造業是集光學、電學、化學、機械、材料及管理科學的綜合工業,也是國內電子工業的兩大零件製造業之一。
印刷電路板的製作過程是應用印刷、照相、蝕刻及電鍍等技術製造細密的配線,作為支撐電子零件及零件間電路相互接續的組裝基地。
高速PCB设计如何正确选择PCB板材?(2019-07-09 16:26:52)转载▼标签:pcba生了,特别是高速SerDes 接口,信号具有非常快的上升时间,数字信号可以携带比自身重复频率更高频的能量,这些较高的高频能量成分,用来构造理想的快速转换的数字信号。
今天的高速串行总线,在时钟速率的第5 次谐波上往往有大量的能量集中。
现在有许多高速数字应用,速度为10 Gbit/s或更高。
这些应用使用5 GHz的基频和15 GHz,25 GHz等的谐波。
在此频率范围内,大多数常见的PCB材料在介质损耗(Df)方面会有非常显着的差异,并导致严重的信号完整性的问题。
这是高速数字PCB使用专为高频应用而设计的特殊板材的原因之一。
这些材料的配方具有低损耗因数,在很宽的频率范围内具有最小的变化。
这些板材过去常用于高频RF应用,甚至现在用于77 GHz及更高的应用。
除了介质损耗因素的改进外,这些板材还配有严格的厚度控制和Dk控制,更佳有利于保障信号完整性。
2019台北电脑展上AMD发布第三代Ryzen锐龙处理器的情况,AMD采用7纳米的CPU 除了在性能上开始压制英特尔之外,其配套的X570 芯片组也引入了对PCIe 4.0 的支持,采用PCIe 4.0 NVMe的SSD也开始陆续推向市场,而预计两年后,PCIe 5.0规范也将发布。
PCIe 5.0 的数据速率将达到恐怖的32GT/s,从而加重频率相关的插入损耗。
选择的PCB 材料会对各个区域的插入损耗产生巨大影响。
如果在设计PCB时不考虑板材对高速信号的影响,老司机也会翻车!选择PCB板材时必须在满足PCB设计需求、可量产性、成本中间取得平衡点。
简单而言,设计需求包含电气和结构可靠性这两部分。
通常在设计非常高速的PCB板子(大于GHz的频率)时板材问题才会比较重要。
例如,现在常用的FR-4材质,在几个GHz的频率时的介质损耗Df(Dielectricloss)会很大,可能就不适用。
由介电层(树脂 Resin ,玻璃纤维 Glass fiber ),及高纯度的导体 (铜箔 Copper foil )二者所构成的复合材料( Composite material),其所牵涉的理论及实务不输于电路板本身的制作. 以下即针对这二个主要组成做深入浅出的探讨.3.1介电层3.1.1树脂 Resin3.1.1.1前言目前已使用于线路板之树脂类别很多,如酚醛树脂( Phonetic )、环氧树脂( Epoxy )、聚亚醯胺树脂( Polyamide )、聚四氟乙烯(Polytetrafluorethylene,简称PTFE或称TEFLON),B一三氮树脂(Bismaleimide Triazine 简称BT )等皆为热固型的树脂(Thermosetted Plastic Resin).3.1.1.2 酚醛树脂 Phenolic Resin是人类最早开发成功而又商业化的聚合物.是由液态的酚(phenol)及液态的甲醛( formaldehyde 俗称formalin )两种便宜的化学品, 在酸性或碱性的催化条件下发生立体架桥( Crosslinkage )的连续反应而硬化成为固态的合成材料.其反应化学式见图3.1 1910 年有一家叫 Bakelite 公司加入帆布纤维而做成一种坚硬强固,绝缘性又好的材料称为 Bakelite,俗名为电木板或尿素板. 美国电子制造业协会(NEMA-Nationl Electrical Manufacturers Association) 将不同的组合冠以不同的编号代字而为业者所广用, 现将酚醛树脂之各产品代字列表,如表 NEMA 对于酚醛树脂板的分类及代码表中纸质基板代字的第一个 "X" 是表示机械性用途,第二个 "X" 是表示可用电性用途. 第三个 "X" 是表示可用有无线电波及高湿度的场所. "P" 表示需要加热才能冲板子( Punchable ),否则材料会破裂, "C" 表示可以冷冲加工( cold punchable ),"FR" 表示树脂中加有不易着火的物质使基板有难燃(Flame Retardent) 或抗燃(Flame resistance) 性.纸质板中最畅销的是XXXPC及FR-2.前者在温度25 ℃以上,厚度在.062in以下就可以冲制成型很方便,后者的组合与前完全相同,只是在树脂中加有三氧化二锑增加其难燃性.以下介绍几个较常使用纸质基板及其特殊用途:A 常使用纸质基板a. XPC Grade:通常应用在低电压、低电流不会引起火源的消费性电子产品, 如玩具、手提收音机、电话机、计算器、遥控器及钟表等等.UL94对XPC Grade 要求只须达到HB 难燃等级即可.b. FR-1 Grade:电气性、难燃性优于XPC Grade,广泛使用于电流及电压比XPC Grade 稍高的电器用品,如彩色电视机、监视器、VTR、家庭音响、洗衣机及吸尘器等等.UL94要求FR-1难燃性有V-0、V-1与V-2不同等级,不过由于三种等级板材价位差异不大,而且考虑安全起见,目前电器界几乎全采用V-0级板材.c. FR-2 Grade:在与FR-1比较下,除电气性能要求稍高外,其它物性并没有特别之处,近年来在纸质基板业者努力研究改进FR-1技术,FR-1与FR-2的性质界线已渐模糊,FR-2等级板材在不久将来可能会在偏高价格因素下被FR-1 所取代.B. 其它特殊用途:a. 铜镀通孔用纸质基板主要目的是计划取代部份物性要求并不高的FR-4板材,以便降低PCB的成本.b. 银贯孔用纸质基板时下最流行取代部份物性要求并不很高的FR-4作通孔板材,就是银贯孔用纸质基板印刷电路板两面线路的导通,可直接借由印刷方式将银胶(Silver Paste) 涂布于孔壁上,经由高温硬化,即成为导通体,不像一般FR-4板材的铜镀通孔,需经由活化、化学铜、电镀铜、锡铅等繁杂手续.b-1 基板材质1) 尺寸安定性:除要留意X、Y轴(纤维方向与横方向)外,更要注意Z轴(板材厚度方向),因热胀冷缩及加热减量因素容易造成银胶导体的断裂.2) 电气与吸水性: 许多绝缘体在吸湿状态下,降低了绝缘性,以致提供金属在电位差趋动力下发生移行的现象,FR-4在尺寸安性、电气性与吸水性方面都比FR-1及XPC 佳,所以生产银贯孔印刷电路板时,要选用特制FR-1及XPC的纸质基板 .板材.b.-2 导体材质 1) 导体材质银及碳墨贯孔印刷电路的导电方式是利用银及石墨微粒镶嵌在聚合体内, 藉由微粒的接触来导电,而铜镀通孔印刷电路板,则是借由铜本身是连贯的结晶体而产生非常顺畅的导电性.2) 延展性:铜镀通孔上的铜是一种连续性的结晶体,有非常良好的延展性,不会像银、碳墨胶在热胀冷缩时,容易发生界面的分离而降低导电度. 3) 移行性: 银、铜都是金属材质,容易发性氧化、还原作用造成锈化及移行现象,因电位差的不同,银比铜在电位差趋动力下容易发生银迁移(Silver Migration).c. 碳墨贯孔(Carbon Through Hole)用纸质基板.碳墨胶油墨中的石墨不具有像银的移行特性,石墨所担当的角色仅仅是作简单的讯号传递者,所以PCB业界对积层板除了碳墨胶与基材的密着性、翘曲度外,并没有特别要求.石墨因有良好的耐磨性,所以Carbon Paste最早期是被应用来取代Key Pad及金手指上的镀金,而后延伸到扮演跳线功能.碳墨贯孔印刷电路板的负载电流通常设计的很低,所以业界大都采用XPC 等级,至于厚度方面,在考虑轻、薄、短、小与印刷贯孔性因素下,常通选用0.8、1.0或1.2mm厚板材.d. 室温冲孔用纸质基板其特征是纸质基板表面温度约40℃以下,即可作Pitch为1.78mm的IC密集孔的冲模,孔间不会发生裂痕,并且以减低冲模时纸质基板冷却所造成线路精准度的偏差,该类纸质基板非常适用于细线路及大面积的印刷电路板.e. 抗漏电压(Anti-Track)用纸质基板人类的生活越趋精致,对物品的要求且也就越讲就短小轻薄,当印刷电路板的线路设计越密集,线距也就越小,且在高功能性的要求下,电流负载变大了,那么线路间就容易因发生电弧破坏基材的绝缘性而造成漏电,纸质基板业界为解决该类问题,有供应采用特殊背胶的铜箔所制成的抗漏电压用纸质基板2.1.2 环氧树脂 Epoxy Resin 是目前印刷线路板业用途最广的底材.在液态时称为清漆或称凡立水(Varnish) 或称为 A-stage, 玻璃布在浸胶半干成胶片后再经高温软化液化而呈现黏着性而用于双面基板制作或多层板之压合用称 B-stage prepreg ,经此压合再硬化而无法回复之最终状态称为 C-stage.2.1.2.1传统环氧树脂的组成及其性质用于基板之环氧树脂之单体一向都是Bisphenol A 及Epichlorohydrin 用 dicy 做为架桥剂所形成的聚合物.为了通过燃性试验(Flammability test), 将上述仍在液态的树脂再与Tetrabromo-Bisphenol A 反应而成为最熟知FR-4 传统环氧树脂.现将产品之主要成份列于后: 单体 --Bisphenol A, Epichlorohydrin架桥剂(即硬化剂) -双氰 Dicyandiamide简称Dicy速化剂 (Accelerator)--Benzyl-Dimethylamine ( BDMA ) 及 2- Methylimidazole ( 2-MI )溶剂 --Ethylene glycol monomethy ether( EGMME ) Dimethy formamide (DMF) 及稀释剂 Acetone ,MEK.填充剂(Additive) --碳酸钙、硅化物、及氢氧化铝或化物等增加难燃效果. 填充剂可调整其Tg.A. 单体及低分子量之树脂典型的传统树脂一般称为双功能的环气树脂 ( Difunctional Epoxy Resin),见图3.2. 为了达到使用安全的目的,特于树脂的分子结构中加入溴原子,使产生部份碳溴之结合而呈现难燃的效果.也就是说当出现燃烧的条件或环境时,它要不容易被点燃,万一已点燃在燃烧环境消失后,能自己熄灭而不再继续延烧.见图 3.3.此种难燃材炓在 NEMA 规范中称为 FR-4.(不含溴的树脂在 NEMA 规范中称为 G-10) 此种含溴环氧树脂的优点上,很难通过 MILP-55110E 中 4.8.4.4 之固着强度试验. 由于玻璃束未能被树脂填满,很容易在做镀通孔时造成玻璃中渗铜 (Wicking) 的出现,影响板子的可信赖度. B. 此四氟乙烯材料分子结构,非常强劲无法用一般机械或化学法加以攻击, 做蚀回时只有用电浆法. C. Tg 很低只有 19 度 c, 故在常温时呈可挠性, 也使线路的附着力及尺寸安定性不好. 表为四种不同树脂制造的基板性质的比较. 3.1.2.5 BT/EPOXY树脂BT树脂也是一种热固型树脂,是日本三菱瓦斯化成公司(Mitsubishi Gas Chemical Co.)在1980年研制成功.是由Bismaleimide及Trigzine Resin monomer二者反应聚合而成.其反应式见图3.8.BT树脂通常和环氧树脂混合而制成基板. A. 优点a. Tg点高达180℃,耐热性非常好,BT作成之板材,铜箔的抗撕强度(peel Strength),挠性强度亦非常理想钻孔后的胶渣(Smear)甚少b. 可进行难燃处理,以达到UL94V-0的要求c. 介质常数及散逸因子小,因此对于高频及高速传输的电路板非常有利.d. 耐化性,抗溶剂性良好e. 绝缘性佳 B. 应用 a. COB设计的电路板由于wire bonding过程的高温,会使板子表面变软而致打线失败. BT/EPOXY高性能板材可克服此点. b. BGA ,PGA, MCM-Ls等半导体封装载板半导体封装测试中,有两个很重要的常见问题,一是漏电现象,或称 CAF(Conductive Anodic Filament),一是爆米花现象(受湿气及高温冲击).这两点也是BT/EPOXY板材可以避免的. 3.1.2.6 Cyanate Ester Resin 1970年开始应用于PCB基材,目前Chiba Geigy有制作此类树脂.其反应式如图3.9. A. 优点a. Tg可达250℃,使用于非常厚之多层板 b. 极低的介电常数(2.5~3.1)可应用于高速产品.B. 问题 a. 硬化后脆度高. b. 对湿度敏感,甚至可能和水起反应. 3.1.2玻璃纤维3.1.2.1前言玻璃纤维(Fiberglass)在PCB基板中的功用,是作为补强材料.基板的补强材料尚有其它种,如纸质基板的纸材, Kelvar(Polyamide聚醯胺)纤维,以及石英(Quartz)纤维.本节仅讨论最大宗的玻璃纤维. 玻璃(Glass)本身是一种混合物,其组成见表它是一些无机物经高温融熔合而成,再经抽丝冷却而成一种非结晶结构的坚硬物体.此物质的使用,已有数千年的历史.做成纤维状使用则可追溯至17世纪.真正大量做商用产品,则是由Owen-Illinois及Corning Glass Works两家公司其共同的研究努力后,组合成Owens-Corning Fiberglas Corporation于1939年正式生产制造. 3.1.2.2 玻璃纤维布玻璃纤维的制成可分两种,一种是连续式(Continuous)的纤维另一种则是不连续式(discontinuous)的纤维前者即用于织成玻璃布 (Fabric),后者则做成片状之玻璃席(Mat).FR4等基材,即是使用前者,CEM3基材,则采用后者玻璃席. A. 玻璃纤维的特性原始融熔态玻璃的组成成份不同,会影响玻璃纤维的特性,不同组成所呈现的差异,表中有详细的区别,而且各有独特及不同应用之处.按组成的不同(见表),玻璃的等级可分四种商品:A级为高碱性,C级为抗化性,E级为电子用途,S级为高强度.电路板中所用的就是E级玻璃,主要是其介电性质优于其它三种.-玻璃纤维一些共同的特性如下所述:a.高强度:和其它纺织用纤维比较,玻璃有极高强度.在某些应用上,其强度/重量比甚至超过铁丝.b.抗热与火:玻璃纤维为无机物,因此不会燃烧c.抗化性:可耐大部份的化学品,也不为霉菌,细菌的渗入及昆虫的功击.d.防潮:玻璃并不吸水,即使在很潮湿的环境,依然保持它的机械强度.e.热性质:玻纤有很低的熬线性膨胀系数,及高的热导系数,因此在高温环境下有极佳的表现.f.电性:由于玻璃纤维的不导电性,是一个很好的绝缘物质的选择. PCB基材所选择使用的E级玻璃,最主要的是其非常优秀的抗水性.因此在非常潮湿,恶劣的环境下,仍然保有非常好的电性及物性一如尺寸稳定度. -玻纤布的制作: 玻璃纤维布的制作,是一系列专业且投资全额庞大的制程本章略而不谈. 3.2 铜箔(copper foil) 早期线路的设计粗粗宽宽的,厚度要求亦不挑剔,但演变至今日线宽3,4mil,甚至更细(现国内已有工厂开发 1 mil线宽),电阻要求严苛.抗撕强度,表面Profile等也都详加规定.所以对铜箔发展的现况及驱势就必须进一步了解. 3.2.1传统铜箔 3.2.1.1辗轧法 (Rolled-or Wrought Method) 是将铜块经多次辗轧制作而成,其所辗出之宽度受到技术限制很难达到标准尺寸基板的要求 (3 呎*4呎) ,而且很容易在辗制过程中造成报废,因表面粗糙度不够,所以与树脂之结合能力比较不好,而且制造过程中所受应力需要做热处理之回火轫化(Heat treatment or Annealing),故其成本较高.A. 优点. a. 延展性Ductility高,对FPC使用于动态环境下,信赖度极佳. b. 低的表面棱线Low-profile Surface,对于一些Microwave电子应用是一利基.B. 缺点. a. 和基材的附着力不好. b. 成本较高. c. 因技术问题,宽度受限. 3.2.1.2 电镀法(Electrodeposited Method) 最常使用于基板上的铜箔就是ED铜.利用各种废弃之电线电缆熔解成硫酸铜镀液,在殊特深入地下的大型镀槽中,阴阳极距非常短,以非常高的速度冲动镀液,以 600 ASF 之高电流密度,将柱状 (Columnar) 结晶的铜层镀在表面非常光滑又经钝化的 (passivated) 不锈钢大桶状之转胴轮上(Drum),因钝化处理过的不锈钢胴轮上对铜层之附着力并不好,故镀面可自转轮上撕下,如此所镀得的连续铜层,可由转轮速度,电流密度而得不同厚度之铜箔,贴在转胴之光滑铜箔表面称为光面(Drum side ), 另一面对镀液之粗糙结晶表面称为毛面 (Matte side) .此种铜箔: A. 优点 a. 价格便宜. b. 可有各种尺寸与厚度. B. 缺点. a. 延展性差, b. 应力极高无法挠曲又很容易折断. 3.2.1.3 厚度单位一般生产铜箔业者为计算成本, 方便订价,多以每平方呎之重量做为厚度之计算单位, 如1.0 Ounce (oz)的定义是一平方呎面积单面覆盖铜箔重量1 oz (28.35g)的铜层厚度.经单位换算 35 微米 (micron)或1.35 mil. 一般厚度1 oz 及1/2 oz而超薄铜箔可达1/4 oz,或更低. 3.2.2 新式铜箔介绍及研发方向 3.2.2.1 超薄铜箔一般所说的薄铜箔是指 0.5 oz (17.5 micron ) 以下,表三种厚度则称超薄铜箔 3/8 oz 以下因本身太薄很不容易操作故需要另加载体 (Carrier) 才能做各种操作(称复合式copper foil),否则很容易造成损伤.所用之载体有两类,一类是以传统 ED 铜箔为载体,厚约2.1 mil.另一类载体是铝箔,厚度约3 mil.两者使用之前须将载体撕离. 超薄铜箔最不易克服的问题就是 " 针孔 " 或 " 疏孔 "(Porosity),因厚度太薄,电镀时无法将疏孔完全填满.补救之道是降低电流密度,让结晶变细. 细线路,尤其是5 mil以下更需要超薄铜箔,以减少蚀刻时的过蚀与侧蚀. 3.2.2.2 辗轧铜箔对薄铜箔超细线路而言,导体与绝缘基材之间的接触面非常狭小,如何能耐得住二者之间热膨胀系数的巨大差异而仍维持足够的附着力,完全依赖铜箔毛面上的粗化处理是不够的,而且高速镀铜箔的结晶结构粗糙在高温焊接时容易造成 XY 的断裂也是一项难以解决的问题.辗轧铜箔除了细晶之外还有另一项长处那就是应力很低 (Stress).ED 铜箔应力高,但后来线路板业者所镀上的一次铜或二次铜的应力就没有那么高.于是造成二者在温度变化时使细线容易断制.因此辗轧铜箔是一解决之途.若是成本的考量,Grade 2,E-Type的high-ductility或是Grade 2,E-Type HTE铜箔也是一种选择. 国际制造铜箔大厂多致力于开发ED细晶产品以解决此问题. 3.2.2.3 铜箔的表面处理 A 传统处理法 ED铜箔从Drum撕下后,会继续下面的处理步骤: a. Bonding Stage-在粗面(Matte Side)上再以高电流极短时间内快速镀上铜, 其长相如瘤,称"瘤化处理""Nodulization"目的在增加表面积,其厚度约 2000~4000A b. Thermal barrier treatments-瘤化完成后再于其上镀一层黄铜(Brass,是Gould 公司专利,称为JTC处理),或锌(Zinc是Yates公司专利,称为TW处理).也是镀镍处理其作用是做为耐热层.树脂中的Dicy于高温时会攻击铜面而生成胺类与水份,一旦生水份时,会导致附着力降底.此层的作用即是防止上述反应发生,其厚度约500~1000A c. Stabilization-耐热处理后,再进行最后的"铬化处理"(Chromation),光面与粗面同时进行做为防污防锈的作用,也称"钝化处理"(passivation)或"抗氧化处理"(antioxidant) B新式处理法 a. 两面处理(Double treatment)指光面及粗面皆做粗化处理,严格来说,此法的应用己有20年的历史,但今日为降低多层板的COST而使用者渐多.在光面也进行上述的传统处理方式,如此应用于内层基板上,可以省掉压膜前的铜面理处理以及黑/棕化步骤. 美国一家Polyclad铜箔基板公司,发展出来的一种处理方式,称为DST 铜箔,其处理方式有异曲同工之妙.该法是在光面做粗化处理,该面就压在胶片上,所做成基板的铜面为粗面,因此对后制亦有帮助. b. 硅化处理(Low profile) 传统铜箔粗面处理其Tooth Profile (棱线) 粗糙度。