gpS选择墨卡托投影的原因
- 格式:doc
- 大小:39.50 KB
- 文档页数:4
地图投影为什么地图数学要素:地图投影、比例尺、控制点、坐标网、高程系、地图分幅等。
在我的印象中,比例尺从打小开始接触地图就强调其重要性,关联着距离量测。
当时还有指北针等要注意的事项,主要关注于地图的使用。
后来一不小心入了GIS的门,还得学会更深入的使用地图数据甚至是编制地图。
这时候,大学GIS第一门课程《地图投影》就来了。
当时的注意点完全被繁琐的公式迷惑,不过看着用C语言在那小黑块的屏幕画出一幅幅漂亮的投影地图,还是相当的快乐。
时至今日,又多了解些相关知识,重新回顾复习整理下。
在个人的认知地图中,限于区域范围,可认为是平面图形,加上自我中心位置和日常距离的估测,基本上就构成了认知坐标系,无需要什么投影知识。
事实上,地球表面是曲面,而地图是二维的平面,两者之间必然有个映射关系,(数学上的射影几何?)才可对应出大地坐标系。
分三个步骤来完成投影:1)确定地球椭球体(Spheroid/Ellipsoid),需要长半轴、短半轴、曲率三个参数。
(模拟地球的形状)2)若要逼近某特定地区,则需要大地基准(Geodetic Datum)。
(椭球体的原点the position of the origin、方向 the orientation、缩放比例 the scale等)我国现在采取西安1980坐标系基准点,同时也有国家1985高程基准。
3)如何投影,这就涉及高斯-克吕格投影等诸多投影方式的存在,等角等积等距离,方位圆柱圆锥等分类。
因此,就地图投影坐标系参数来看,分为两个部分:Ellipsoid 、 Datum ;Projection。
Ellipsoid与Datum是相关联的,一般提到某个Datum,则其Ellipsoid也包含在内;两者的对应关系是一对多,即一个Ellipsoid可以为多个Datum所用,不同的Datum的Ellipsoid可以是相同的。
由于世界各地区投影类型的不同,因此在叠加、复合不同来源空间数据时,必需首先进行投影转换、配准等设置。
墨卡托投影名词解释
墨卡托投影是一种常用的投影方式,也被称为正交投影或中心投影。
它是在以地球为基准的坐标系下,将地球表面的形状投影到二维平面上的投影方式。
在墨卡托投影中,地图上的每个点都被投影到一个平面上,这个平面与地球表面上的经纬度平面平行,并且与地球表面的大小相等。
墨卡托投影的优点是,它投影出的世界地图非常清晰,易于理解和比较不同国家和地区之间的大小和形状。
此外,墨卡托投影还能够很好地反映地球上的地形起伏和地貌特征。
然而,墨卡托投影也有一些缺点,比如它只适用于投影到二维平面上,无法反映三维物体的形状和表面特征。
此外,墨卡托投影也存在一些失真问题,特别是在投影距离较远或地形复杂的情况下。
随着技术的发展,墨卡托投影也在不断地被改进和替代。
现代地理信息系统最常用的是GPS投影和三角测量投影,这些投影方式能够更好地反映现实世界的形状和特征,并且适用于更广泛的应用场景。
墨卡托投影原理墨卡托投影是一种广泛使用的地图投影方法,常用于制作世界地图或大范围区域地图。
它由法国地理学家皮埃尔·阿蒙特·昂丹古·德·墨卡托(Pierre Armand Amédée François Marie de Mérode)于1569年提出,被称为“等角方位投影”。
墨卡托投影的原理基于数学计算,利用平行四边形网格将地球的曲面投影到一个平面上,以使地图在形状和比例上相对保持准确。
墨卡托投影的原理可以简单地解释为将地球表面分割成一系列小矩形,在每个小矩形内进行投影计算。
每个小矩形的形状和大小与真实地球表面上的实际地理区域相对应。
这种投影方法的关键是通过纬度线和经度线的网格结构来进行投影转换。
首先,墨卡托投影采用了等角方位投影的原则,即在地图上任意两点之间的距离与它们在地球上的实际距离相对应,并尽可能保持角度的一致性。
这意味着直线在地图上仍然是直线,角度在地图上仍然是相等的。
其次,墨卡托投影采用了正切函数来进行经纬度到平面坐标的转换。
经度线在地球上是等间隔的,而在墨卡托投影中,经度线变为等间距的垂直线。
纬度线则按照一定的比例进行放大,以保持地图的几何形状。
具体来说,墨卡托投影使用了以下公式进行经纬度到平面坐标的转换:x = R * (λ - λ0) * cos(φ)y = R * ln(tan(π/4 + φ/2))其中,x和y是平面上的坐标,R是地球的半径,λ是经度,λ0是一个参考经度,φ是纬度。
这样,通过将地球表面的每个小矩形分别进行投影计算,再将它们拼接在一起,就可以得到一个完整的墨卡托投影地图。
在地图上,墨卡托投影通过网格结构和坐标轴提供了地理位置的参考,使人们能够准确地表示和测量地球上不同位置的相对距离和方位。
墨卡托投影的优点是能够保持地图上的角度和形状的准确性,尤其适用于大范围区域的地图制作。
然而,由于墨卡托投影在纬度方向上的尺度变形较大,在高纬度地区会出现面积扭曲。
通用墨卡托投影(Universal Mercator projection)是一种平面地图投影方法,用于将地球表面的空间形态投影到平面地图上。
它是由荷兰地图学家墨卡托(Gerardus Mercator)于16世纪提出的。
通用墨卡托投影的几何原理是:将地球表面的空间形态投影到一个立体的柱体上,再将柱体的侧面剖开平铺到平面地图上。
在通用墨卡托投影中,将地球的赤道作为柱体的中心线,把赤道的投影向外延伸到地图的边缘,使得赤道在地图上显示为一条直线。
这样,通用墨卡托投影就能保留地球赤道周长的真实比例,但会导致地图的经纬度和面积发生变形。
通用墨卡托投影投影后的变形特征为:
经纬度比例不变,赤道周长的真实比例得到保留;
面积变形,投影后面积越远离赤道越小,导致极地地区的面积大大放大;
形状变形,投影后形状越远离赤道越扭曲。
通用墨卡托投影是一种常用的地图投影方法,用于制作海洋地图、航海地图、航空地图等。
由于它保留了经纬度比例的真实比例,使得航线的真实长度得到保留,因此在航海和航空领域中广泛使用。
但由于面积变形和形状变形的原因,通用墨卡托投影并不适用于所有地图制作,在研究地理统计数据时也要注意变形的影响。
介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|)一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”)1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。
基准纬线取至整度或整分。
1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。
2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。
一、填空(每空1分,共20分)1.子午卫星导航系统采用6颗卫星,并都通过地球的南北极运行。
2.按照《规范》规定,我国GPS测量按其精度依次划分为AA、A、B、C、D、E六级,其中C级网的相邻点之间的平均距离为15~10km,最大距离为40km。
3.在GPS定位测量中,观测值都是以接收机的相位中心位置为准的,所以天线的相位中心应该与其几何中心保持一致。
4.按照GPS系统的设计方案,GPS定位系统应包括空间卫星部分、地面监控部分和用户接收部分。
5.在使用GPS软件进行平差计算时,需要选择横轴墨卡托投影投影方式6.从误差来源分析,GPS测量误差大体上可分为以下三类:卫星误差,信号传播误差和接收机误差。
7.根据不同的用途,GPS网的图形布设通常有点连式、边连式、网连式及边点混合连接四种基本方式。
选择什么方式组网,取决于工程所要求的精度、野外条件及GPS接收机台数等因素。
8.美国国防部制图局(DMA)于1984年发展了一种新的世界大地坐标系,称之为美国国防部1984年世界大地坐标系,简称WGS-84 。
9.当使用两台或两台以上的接收机,同时对同一组卫星所进行的观测称为同步观测。
10.双频接收机可以同时接收L1和L2信号,利用双频技术可以消除或减弱电离层折射对观测量的影响,所以定位精度较高,基线长度不受限制,所以作业效率较高。
11.在定位工作中,可能由于卫星信号被暂时阻挡,或受到外界干扰影响,引起卫星跟踪的暂时中断,使计数器无法累积计数,这种现象叫整周跳变。
12.PDOP代表空间位置图形强度因子13.GPS工作卫星的主体呈圆柱形,整体在轨重量为843.68㎏,它的设计寿命为7.5 年,事实上所有GPS工作卫星均能超过该设计寿命而正常工作。
14.用GPS定位的方法大致有四类:多普勒法、伪距法、射电干涉测量法、载波相位测量法。
目前在测量工作中应用的主要方法是静态定位中的伪距法和载波相位测量法。
15.在接收机和卫星间求二次差,可消去两测站接收机的相对钟差改正。
墨卡托投影特点及应用墨卡托投影是一种广泛应用于地理信息系统中的地图投影方法。
它是由法国地图学家墨卡托(Pierre Méchain)和卡尔·弗里德里希·高斯(Carl Friedrich Gauss)共同发展而成的。
墨卡托投影的特点及其应用如下:1. 特点:(1) 等角特性:墨卡托投影在赤道附近具有等角特性,即保持地图上的角度和形状不变。
这使得墨卡托投影在航海、飞行和导航等领域具有重要意义。
(2) 等距特性:相比于其他地图投影方法,墨卡托投影在纬线上的等距性更好。
这种等距特性使得墨卡托投影在计算和测量距离时非常有用。
(3) 形状保持:相对于许多其他投影方法,墨卡托投影在地图上保持了地物的形状,特别是在低纬度地区。
因此,墨卡托投影在地理研究和地图绘制中被广泛采用。
(4) 适用范围广:墨卡托投影适用于任何纬度且覆盖范围广泛。
由于其适用性和便利性,墨卡托投影在全球地理信息系统(GIS)和地图导航应用中得到广泛应用。
2. 应用:(1) 地图制作:墨卡托投影是创建地图的常见投影方法之一。
许多世界地图和国家地图都是使用墨卡托投影方法绘制的。
这种投影在地图制作和显示方面的优点使其成为最常见的选择。
(2) 地理信息系统(GIS):墨卡托投影是GIS应用中最常用的投影方法之一。
墨卡托投影遵循了等正圆锥投影的原则,通过将整个地球表面分成若干个带状区域来进行投影。
这种方法在绘制公共交通线路、市区地图和地理分析方面具有广泛应用。
(3) 航海和飞行导航:墨卡托投影的等角特性使得它在航海和飞行导航中非常受欢迎。
它能够准确表示角度和方向,并能够保持地图上的直线和曲线形状。
这对于船舶和飞机导航来说非常重要,特别是在长距离航行和飞行中。
(4) 地区发展规划:墨卡托投影在地区发展规划中的应用也非常广泛。
它可以帮助规划人员更好地理解地理数据,更准确地评估地理区域的特点和潜力。
这种投影方法可以提供高质量的地理数据可视化,以支持城市规划、土地利用规划和可持续发展决策等。
地图投影的选择
选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。
海域使用的地图多采用保角投影,因其能保持方位角度的正确。
我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。
一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。
大地基准面的选择
地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。
我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。
因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。
本程序中采用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”):椭球体长半轴短半轴
Krassovsky 63782456356863.0188
IAG 7563781406356755.2882
WGS 8463781376356752.3142
椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的。
在目前的GIS商用软件中,大地基准面都通过当地基准面向WGS84的转换7参数来定义,即三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最后是比例校正因子,用于调整椭球大小。
北京54、西安80相对WGS84的转换参数至今没有公开,
实际工作中可利用工作区内已知的北京54或西安80坐标控制点进行与WGS84坐标值的转换,在只有一个已知控制点的情况下(往往如此),用已知点的北京54与WGS84坐标之差作为平移参数,当工作区范围不大时,如青岛市,精度也足够了。
以(32°,121°)的30°标准纬度墨卡托投影结果为例,北京54及WGS84基准面,两者投影结果在东西方向差距约196米,南北方向差距约57米(见下表),对于几十或几百万的地图来说,这一误差无足轻重,但在工程地图中还是应该加以考虑的。
输入坐标(度)北京54 墨
卡托投影
(米)
WGS84 墨卡托投影(米)
纬度
值(X)
3232422873242230
经度
值(Y)
1211167503611674840
墨卡托投影
(1)墨卡托投影性质
墨卡托(Mercator)投影,又名"等角正轴圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其赤道与圆柱相接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅标准纬线为零的“墨卡托投影”绘制出的世界地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
墨卡托投影的地图上长度和面积变形明显,标准纬线无变形,从标准纬线向两极变形增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
(2)墨卡托投影坐标
取零子午线或自定义原点经线与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成墨卡托平面直角坐标系,此投影标准纬线无变形。
单点转换
单点转换步骤如下:
(1)选择是墨卡托正转换还是反转换,缺省为经纬度转换到墨卡托投影坐标,投影坐标单位为米。
(2)选择大地基准面,缺省北京54,如果是GPS定位数据别忘了切换为WGS84。
(3)输入标准纬度,单位度。
(4)输入原点经度,单位度,缺省为零。
(5)如正向投影,选择经纬度输入数据格式,有三个选项,缺省为十进制度格式。
具体输入方式如下例:
格式原始纬度
值
原始经度
值
输入纬度
值
输入经度值
十进制度35.44590
1°
122.99734
4°
35.445901122.997344
度分35°26.7
541′
122°59.8
406′
3526.754112259.8406
度分秒35°26′
45.245″
122°59′
50.438″
352645.24
5
1225950.438
(6)正投影按选定格式在“输入”栏输入经纬度值,反投影输入以米为单位的X、Y坐标值。
(7)单击“单点转换”按钮。
(8)在“输出”栏查看计算结果。
批量转换
批量转换步骤如下:
(1)准备好需要转换的输入数据文件,要求是文本文件,分两列,第一列纬度值或纵向坐标值,第二列经度值或横向坐标值,两列之间用空格分开。
正向投影时,纬度值及经度值格式可以有三种选择(见表),缺省当作十进制度处理;反向投影时,纵向及横向坐标值必须以米为单位。
下例为度分秒格式(WGS84)的墨卡托正投影输入数据文件testdata.txt
350000.000 1220000.000
351600.519 1225959.506
345800.101 1225959.8
343600.336 1230000.26
341400.018 1225959.897
335159.17 1225959.46
333000.08 1230000.28
332300.674 1232000.103
(2)选择是墨卡托正转换还是反转换,缺省为经纬度转换到墨卡托投影坐标,投影坐标单位为米。
(3)选择大地基准面,缺省北京54,如果是GPS定位数据别忘了切换为WGS84。
(4)输入标准纬度,单位度,如“30”,表示标准纬度30°。
(5)输入原点经度,单位度,缺省为零。
(6)如正向投影,选择输入数据文件中的经纬度输入数据格式,有三个选项,缺省为十进制度格式。
(7)单击“批量转换”按钮。
弹出打开文件对话框,输入你的数据文件名。
(8)输入转换结果文件名,单击“保存”后,程序开始进行计算。
(9)打开输出文件查看计算结果,结果分五列,第一序号,第二列输入纬度值或纵向坐标值,第三列输入经度值或横向坐标值,第四列转换后纬度值或纵向坐标值,第五列转换后经度值或横向坐标值。
下例为度分秒格式(WGS84)的标准纬度30°,原点经度0°的正投影转换结果数据文件result.txt
1 350000 1220000 3587805.5 11771326.2
2 351600.519 1225959.506 3619142.9 11867799.2
3 345800.101 1225959.8 3583901 11867807.1
4 343600.336 1230000.26 3541028.3 11867819.4
5 341400.018 1225959.897 3498328.2 11867809.7
6 335159.1
7 1225959.46 3455798.3 11867798
7 333000.08 1230000.28 3413508.8 11867820
8 332300.674 1232000.103 3400100.7 11899977.3。