误差理论与数据处理 第二章随机误差
- 格式:ppt
- 大小:2.12 MB
- 文档页数:9
第二章误差及分析数据的统计处理§2-1 定量分析中的误差定量分析的任务是准确测定试样中组分的含量。
但是,即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。
这说明客观上存在着难以避免的误差。
因此,我们在进行定量测量时,不仅要得到被测组分的含量,而且还应对分析结果作出评价,判断其准确性(可靠程度),找出产生误差的原因,并采取有效的措施,减少误差。
一、误差的表示:从理论上说,样品中某一组分的含量必有一个客观存在的真实数据,称之为“真值”。
测定值(x)与真实值(T)之差称为误差(绝对误差)。
误差 E = X - T误差的大小反映了测定值与真实值之间的符合程度,也即测定结果的准确度。
测定值> 真实值误差为正测定值< 真实值误差为负分析结果的准确度也常用相对误差表示。
相对误差E r = E / T×100%= (X-T) / T×100%用相对误差表示测定结果的准确度更为确切。
二、误差的分类根据误差的性质与产生原因,可将误差分为:系统误差、随机误差和过失误差三类。
(一)系统误差系统误差也称可定误差、可测误差或恒定误差。
系统误差是由某种固定原因引起的误差。
1、产生的原因(1)方法误差:是由于某一分析方法本身不够完善而造成的。
如滴定分析中所选用的指示剂的变色点与化学计量点不相符;又如分析中干扰离子的影响未消除等,都系统的影响测定结果偏高或偏低。
(2)仪器误差:是由于所用仪器本身不准确而造成的。
如滴定管刻度不准(1ml刻度内只有9个分度值),天平两臂不等长等。
(3)试剂误差:是由于实验时所使用的试剂或蒸馏水不纯造成的。
例如配制标准溶液所用试剂的纯度要求在99.9%;再如:测定水的硬度时,若所用的蒸馏水含Ca2+、Mg2+等离子,将使测定结果系统偏高。
(4)操作误差:是由于操作人员一些主观上的原因而造成的。
比如,某些指示剂的颜色由黄色变到橙色即应停止滴定,而有的人由于视觉原因总是滴到偏红色才停止,从而造成误差。
《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。
《误差理论与数据处理》第一章绪论1-1 •研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1) 正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2) 正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3) 正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2 •试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化) ;随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3 •试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5测得某三角块的三个角度之和为180°00' 02” ,试求测量的绝对误差和相对误差解:绝对误差等于:180°00 02 -180°=2相对误差等于:二- = - 0.00000308641 : 0.000031%180o 180 60 60 6480001-6 •在万能测长仪上,测量某一被测件的长度为50mm已知其最大绝对误差为1卩m,试问该被测件的真实长度为多少?解:绝对误差=测得值—真值,即:△ L = L- L o 已知:L= 50,^ L= 1卩m= 0.001mm,测件的真实长度L 0= L—A L= 50 - 0.001 = 49.999 ( mm1-7 •用二等标准活塞压力计测量某压力得100.2Pa,该压力用更准确的办法测得为100.5Pa , 问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。