《一次函数的应用》练习
- 格式:doc
- 大小:348.50 KB
- 文档页数:5
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。
一次函数的应用练习题一次函数的应用练习题1、一根弹簧的原长为12 cm ,它能挂的重量不能超过15 kg 并且每挂重1kg 就伸长21cm 写出挂重后的弹簧长度y (cm )与挂重x (kg )之间的函数关系式是()A 、y = 21x + 12(0<x ≤15)B 、y = 21x + 12(0≤x <15)C 、y = 21x + 12(0≤x ≤15)D 、y = 21x + 12(0<x <15)2、假如甲、乙两人在一次赛跑中,路程S 与时间的关系如图⑵所示,那么可以知道:① 这是一次米赛跑;②甲乙两人中先到达终点的是;③乙在这次赛跑中的速度为米秒;3、幸福村村办工厂今年前五个月生产某种产品的总量(件)关于时间(月)的函数图象如图⑶所示,则该厂对这种产品来说()A 、1月至3月每月产总量逐月增加,4、5两月每月生产量逐月减少B 、1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月持平C 、1月至3月每月生产总量逐月增加,4、5两月均停止生产D 、1月至3月每月生产总量不变,4、5两月均停止生产4、荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往广州,这列货车可挂A 、B 两种不同规格的货厢50节,已知用一节A 型货厢的运费是0.5吨万元,用一节B 型货厢的运费是0.8万元。
⑴ 设运输这批货物的总运费为y (万元),用A 型货的节数为x (节),试写出y 与x 之间的函数关系式;⑵ 已知甲种货物35吨和乙种货物15吨,可装满一节A 型货厢,甲种货物25吨和乙种货物35吨吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,有哪几种运输方案?请你设计出来。
⑶利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?5、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件。
已知生产一件A 种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。
一次函数的应用1.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A 型手机和B型手机获得的利润分别为3000元和2000元.1求每部A型手机和B型手机的销售利润分别为多少元2该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求yn的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大3实际进货时,厂家对B型手机出厂价下调m30<m<100元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及2中的条件,设计出使这110部手机销售总利润最大的进货方案.2.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表1用含x,y的式子表示购进C型手机的部数;2求出y与x之间的函数关系式;3假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P元与x部的函数关系式;②求出预估利润的最大值,并写出此时购进三款手机各多少部3.如图,某工厂D与A,B两地有公路、铁路相连,且A→C→D与B→E→D距离相等,BE=2CD,C→D→E的距离为120千米,A→C→D比C→D→E的距离远10千米.这家工厂从A地购买一批每吨1000元的原料运回工厂,全部制成产品后加工过程中有材料损耗,以每吨8000元把全部产品运到B地销售.已知公路运输费用为1.5元/吨千米,铁路运输费用为1.2元/吨千米,这两次运输共支出公路运费15000元,铁路运输97200元.请回答下列问题:1设该工厂从A地购买了x吨原料,运往B地的产品为y吨,根据题意,完成表格的填空:2试确定x,y的值,并求出这批产品全部销售后所获得的利润利润=售价﹣原料成本﹣运输费用4.现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:1求这两种货车各用多少辆2如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式写出自变量的取值范围;3在2的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费5.为增强公民的节水意识,合理利用水资源,某市自1月1日起对市区民用水价格进行调整,实行阶梯式水价,调整后的收费价格如下表所示:1若小亮家1月份的用水量是7m3,直接写出小亮家1月份的电费;2若调价后每月支出的水费为y元,每月的用水量为xm3,求y与x 之间的函数关系式并注明自变量的取值范围;3若小亮家2、3月份共用水16m33月份用水量2月份,共缴费26元,问小亮家2、3月份的用水量各是多少6.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.1若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双2在1条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a0<a<20元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润7.某服装店购进10套A服装和20套B服装的费用为2000元,20套A服装和10套B服装的费用为2200元.1求每套A服装和B服装的进价;2该商店计划一次购进两种款式的服装共100套,其中A款进货量不少于65套,进货费用不超过7500元,计划A每套售价120元,B 每套售价90元,设购进A款x套,这100套的销售总利润为y元.①求y与x的函数关系式;②该商店购进A、B各多少套,才能使销售利润最大3若实际进货时,厂家只对A款出厂价上调m0<m<20元,若商店保持A、B两种的售价不变,请你根据以上信息及2中的条件,直接设计出使这100套服装销售总利润最大的进货方案.8.为了迎接“五一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.1若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件2该专卖店为使甲、乙两种服装共200件的总利润利润=售价﹣进价不少于26700元,且不超过26800元,则该专卖店有几种进货方案3在2的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a0<a<20元出售,乙种服装价格不变,那么该专卖店要获得最大利润应如何进货一次函数的应用答案1.分析1设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意列出方程组求解;2①据题意得,y=﹣50n+16500,②利用不等式求出n的范围,又因为y=﹣50x+16500是减函数,所以n取37,y取最大值;3据题意得,y=150110﹣n+100+mn,即y=m﹣50n+16500,分三种情况讨论,①当30<m<50时,y随n的增大而减小,②m=50时,m﹣50=0,y=16500,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.解:1设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,解得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;2①设购进B型手机n部,则购进A型手机110﹣n部,则y=150110﹣n+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴yn的函数关系式为y=﹣50n+16500n≥36;②∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650元,答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;3根据题意,得:y=150110﹣n+100+mn=m﹣50n+16500,其中,36≤n≤80,①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤80的整数时,均获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.2.解:160﹣x﹣y;2由题意,得900x+1200y+110060﹣x﹣y=61000,整理得y=2x﹣50.3①由题意,得P=1200x+1600y+130060﹣x﹣y﹣61000﹣1500,P=1200x+1600y+78000﹣1300x﹣1300y﹣61000﹣1500,P=﹣100x+300y+15500,P=﹣100x+3002x﹣50+15500,整理得P=500x+500.②购进C型手机部数为:60﹣x﹣y=110﹣3x.根据题意列不等式组,得,解得29≤x≤34.∴x范围为29≤x≤34,且x为整数.∵P是x的一次函数,k=500>0,∴P随x的增大而增大.∴当x取最大值34时,P有最大值,最大值为17500元.此时购进A型手机34部,B型手机18部,C型手机8部3.解:1根据题意,得,解得CD=10,BE=20.则AC=120,DE=110.2根据题意,得,解得:.因此,这批产品全部销售后获得的利润为:300×8000﹣400×1000﹣15000﹣97200=1887800元.4.解:1设大货车用x辆,则小货车用18﹣x辆,根据题意得16x+1018﹣x=228,解得x=8,∴18﹣x=18﹣8=10.答:大货车用8辆,小货车用10辆;2w=720a+8008﹣a+5009﹣a+65010﹣9﹣a=70a+11550,∴w=70a+115500≤a≤8且为整数;3由16a+109﹣a≥120,解得a≥5.又∵0≤a≤8,∴5≤a≤8且为整数.∵w=70a+11550,且70>0,所以w随a的增大而增大,∴当a=5时,w最小,最小值为w=70×5+11550=11900.答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.5.解:1小亮家1月份的电费=5×1+7﹣5×2=9元;2当0<x≤5时,y=x;当5<x≤8时,y=1×5+2x﹣5=5+2x﹣10=2x﹣5;当x>8时,y=1×5+2×8﹣5+4x﹣8=5+6+4x﹣32=4x﹣21;∴y=.2设2月份用水am3,3月份用水16﹣am3,∵3月份用水高于2月份用水量,∴16﹣a>a,∴a<8,当0<x≤5时,16﹣a>11,根据题意得:a+416﹣a﹣21=26,解得:a=>5,舍去;当5<x≤8时,8≤16﹣a<11,根据题意得:2a﹣5+416﹣a﹣21=26,解得:a=6,∴a=6,16﹣a=10.∴该用户2月份用水6m3,3月份用水10m36.解:1设购进甲种运动鞋x双,由题意可知:80x+60100﹣x≤7500,解得:x≤75.答:甲种运动鞋最多购进75双.2因为甲种运动鞋不少于65双,所以65≤x≤75,总利润w=120﹣80﹣ax+90﹣60100﹣x=10﹣ax+3000,∵当10<a<20时,10﹣a<0,w随x的增大而减少,∴当x=65时,w有最大值,此时运动鞋店应购进甲种运动鞋65双,乙种运动鞋35双.7.解:1设每套A服装的进价为a元,B服装的进价为b元,依题意得:,解得:.答:每套A服装的进价为80元,B服装的进价为60元;2①∵购进A款服装x套,则购进B款服装100﹣x套,∵进货费用不超过7500元,∴80x+60100﹣x≤7500,∴x≤75,∵A款进货量不少于65套,∴65≤x≤75,∴y=120﹣80x+90﹣60100﹣x=0x+300065≤x≤75,且x为正整数.②∵在y=30x+3000中,k=10>0,∴y随x的增大而增大,∴当x=75时,y取最大值,此时100﹣x=25.故商店购进75套A服装和25套B服装才能使销售利润最大;3由已知得:y=120﹣80﹣mx+90﹣60100﹣x=10﹣mx+3000,当m<10时,10﹣m>0,则购进75套A 服装和25套B服装销售利润最大;当m=10时,10﹣m=0,则A、B两种服装随意搭配65≤A 种服装≤75,销售利润一样多;当m>10时,10﹣m∠0,则购进商店购进65套A服装和35套B服装才能使销售利润最大.8.解:1设购进甲种服装x件,则乙种服装是200﹣x件,根据题意得:180x+150200﹣x=32400,解得:x=80,200﹣x=200﹣80=120件,则购进甲、乙两种服装80件、120件;2设购进甲种服装y件,则乙种服装是200﹣y件,根据题意得:,解得:70≤y≤80,又∵y是正整数,∴共有11种方案;3设总利润为W元,W=140﹣ay+130200﹣y即w=10﹣ay+26000.①当0<a<10时,10﹣a>0,W随y增大而增大,∴当y=80时,W有最大值,即此时购进甲种服装80件,乙种服装120件;②当a=10时,利润是26000元不符合题意;③当10<a<20时,10﹣a<0,W随y增大而减小.当y=70时,W有最大值,即此时购进甲种服装70件,乙种服装130件.。
八年级数学上册《第四章一次函数的应用》练习题-带答案(北师大版)一、选择题1.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为( )2.父亲节,某学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还。
”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面的图象与上述诗意大致相吻合的是( )3.王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料.如图是王芳离家的距离与时间的函数图象.若黑点表示王芳家的位置,则王芳走的路线可能是( ).4.小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家、下面哪一个图象能大致描述他回家过程中离学校的距离S (千米)与所用时间t(分)之间的关系()A. B.C. D.5.小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x之间的关系的大致图象是()A. B. C. D.6.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()7.如左图是某蓄水池的横断面示意图,分为深水池和浅水池,•如果这个蓄水池以固定的流量注水,右图中能大致表示水的最大深度h与时间t之间的关系的图象是()8.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校,若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有( )个.①学校到劳动基地距离是2400米;②小军出发53分钟后回到学校;③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A.1B.2C.3D.4二、填空题9.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升元.10.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为平方米.11.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是______(只需填序号).12.物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如图所示.(1)下滑2 s时物体的速度为 m/s.(2)v(m/s)与t(s)之间的函数表达式为 .(3)下滑3 s时物体的速度为 m/s.13.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,关于y与x的函数关系如图所示,则甲车的速度是米/秒.14.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是 (填序号).三、解答题15.小李师傅驾车到某地办事,汽车出发前油箱中有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图.(1)请问汽车行驶多少小时后加油,中途加油多少升?(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.16.已知如图,一天上午6点钟,言老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间(时)的关系可用图中的折线表示,根据图中提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)请你用一段简短的话,对言老师从上午6点到中午12点的活动情况进行描述.17.某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?18.某蔬菜基地要把一批新鲜蔬菜运往外地,现有汽车和火车两种运输方式可供选择.方式一:使用汽车运输,装卸收费400元,另外每千米再加收4元;方式二:使用火车运输,装卸收费720元,另外每千米再加收2元.(1)请分别写出用汽车、火车运输的总费用y1、y2(元)与运输路程x(千米)之间的函数表达式;(2)你认为选用哪种运输方式较好,为什么?19.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h 以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.20.某公司有A产品40件,B产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润 (元) 如下表所示:A产品的利润/元B产品的利润/元甲店200 170乙店160 150件产品的总利润为W (元),求W关于x的函数关系式,并求出x的取值范围.(2)若要求总利润不低于17560元;有多少种不同的分配方案? 并将各种方案设计出来.(3)为了促销,公司决定仅对甲店A产品让利销售,每件让利a元,但让利后A产品的每件利润仍高于甲店B产品的每件利润.甲店的B产品以及乙店的A,B产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?参考答案1.D2.C3.B4.C5.C6.C7.C8.B9.答案为:7.09.10.答案为:100.11.答案为:④②12.答案为:(1) 5 .(2)v=52t.(3) 7.5(m/s).13.答案为:20;14.答案为:①②③.15.解:(1)3小时,31升;(2)因为汽车出发前油箱有油50升,汽车每小时用油12升,所以y=-12t+50(0≤t≤3);(3)汽车要准备油210÷70×12=36(升),因为45升>36升,所以油箱中的油够用。
一次函数的应用(1) 1.已知直线x-2y=-k+6和x+3y=4k+1的交点在第四象限内.(1)求k的取值范围(2)若k为非负整数,△P AO是以OA为底的等腰三角形,点A的坐标为(2,0)点P 在直线x-2y=-k+6上,求点P的坐标.2.已知直线y1= 2x-6与y2= -ax+6在x轴上交于点A,直线y = x与y1、y2分别交于点C、B.(1)求a的值;(2)求三条直线所围成的ΔABC的面积.3.点P按A→B→C→M的顺序在边长为1的正方形边上运动,M是CD边上的中点.设点P经过的路程x为自变量,△APM 的面积为y,求y与x的函数关系式并画出大致图像.4.某长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(公斤)的一次函数,其图象如图所示.求:(1)y与x之间的函数关系式(2)旅客最多可免费携带行李的公斤数.5.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从38元/千克下调了x元时,销售量为y千克.(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,问这天的销售利润是多少?6.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件.已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你给设计出来;(2)设生产A、B两种产品获总利润为y (元),其中一种的生产件数为x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?7.我边防局接到情报,近海外有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶.如图所示,图中L1 L2分别表示两船相对于海岸的距离S(海里)与追赶时间(分)之间的关系.根据图象解答下列问题:(1)哪条直线表示B到海岸的距离与追赶时间之间的关系?(2)A、B哪个速度快(3)15分内B能否追上A?(4)当A逃到离海岸12海里的公海时,B将无法对其进行检查,照此速度B能否在A逃入公海前将其拦截?8.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组所走路程甲y(千米)、乙y(千米)与时间x(小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了____________小时;(2)甲组的汽车排除故障后,立即提速赶往灾区,请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米.请通过计算说明,按图像所表示的走法是行李票费用(元)行李重量(公斤)【课后练习】1.方程组⎩⎨⎧+==-3214x y y x 的解是 ,则一次函数y =4x -1与y =2x +3的图象交点为 .2.方程2x -y =2的解有 个,用x 表示y 为 ,y 是x 的 函数. 3.函数y =-2x +1与y =3x -9的图象交点坐标为 ,这对数是方程组 的解. 4.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 . 5.有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的.已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完,现已知水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q (升)随时间t (分)变化的图象是( )6.设一个等腰三角形的周长为45,一腰为x ,底为y ,⑴写出y 用x 表示函数关系式.确定自变量x 的取值范围.⑵求出当x =15时,y 的值,并指出此时三角形是什么三角形?7.扬州火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往广州,这列货车可挂A 、B 两种不同规格的货厢50节,已知用一节A 型货厢的运费是0.5吨万元,用一节B 型货厢的运费是0.8万元.(1)设运输这批货物的总运费为y (万元),用A 型货的节数为x (节),试写出y 与x 之间的函数关系式;(2) 已知甲种货物35吨和乙种货物15吨,可装满一节A 型货厢,甲种货物25吨和乙种货物35吨吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,有哪几种运输方案?请你设计出来.(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?8.某校计划用2300元的限额内,租用汽车送234名学生和6名教师外出活动。
1、(2011•吉林)有甲乙两个均装有进水管和出水管的容器,初始时,两容器同时开进水管,甲容器到8分钟时,关闭进水管打开出水管;到16分钟时,又打开了进水管,此时既进水又出水,到28分钟时,同时关闭两容器的进水管.两容器每分钟进水量与出水量均为常数,容器的水量y(升)与时间x(分)之间的函数关系如图所示,解答下列问题:(1)甲容器的进水管每分钟进水升,出水管每分钟出水升.(2)求乙容器内的水量y与时间x的函数关系式.(3)求从初始时刻到两容器最后一次水量相等时所需的时间.解答:解:(1)进水管的速度为:40÷8=5(升/分),出水管的速度为:(40﹣20)÷(16﹣8)=2.5(升/分).故答案为:5,2.5;(2)设y与时间x的函数关系式为y=k1x+b1,由图象可知(0,10),(5,15)在函数图象上,∴解得:.∴y=x+10;(3)由图象可知从初始时刻到两容器最后一次水量相等时所需的时间在16﹣28分之间,∵5﹣2.5=2.5,20+2.5(28﹣16)=50,∴当x=28时,y=50,设y=kx+b,(k≠0),把(16,20),(28,50)代入上式得,,解得:,∴y=2.5x﹣20,由题意得:x+10=2.5﹣20,解得:x=20.∴初始时刻到两容器最后一次水量相等时所需的时间为20分钟.2、(2011•葫芦岛)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.解答:解:(1)120÷1=120千米/时,故答案为120;(1分)(2)设s甲与t的函数关系为s甲=k1t+b,∵图象过点(3,60)与(1,420),∴解得∴s甲与t的函数关系式为s甲=﹣180t+600.(4分)设s乙与t的函数关系式为s乙=k2t,∵图象过点(1,120),∴k2=120.∴s乙与t的函数关系式为s乙=120t.(5分)(3)当t=0,s甲=600,∴两城之间的路程为600千米.(6分)∵s甲=s乙,即﹣180t+600=120t,解得t=2.∴当t=2时,两车相遇.(8分)(4)当相遇前两车相距300千米时,s甲﹣s乙=300,即﹣180t+600﹣120t=300,解得t=1.(9分)当相遇后两车相距300千米时,s乙﹣s甲=300,即120t+180t﹣600=300.解得t=3.(10分)3、(2010•湘潭)为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如图:(1)李明从家出发到出现故障时的速度为米/分钟;(2)李明修车用时分钟;(3)求线段BC所对应的函数关系式.(不要求写出自变量的取值范围)解答:解:(1)200;(2)5;(3)设线段BC解析式为:y=kx+b,依题意得:.解得:k=200,b=﹣1000所以解析式为y=200x﹣1000.4、(2010•铁岭)小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段EF所示.(1)小李到达甲地后,再经过小时小张到达乙地;小张骑自行车的速度是多少千米/小时.(2)小张出发几小时与小李相距15千米?(3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案)解答:解:(1)由图象可以看出在小张出发8小时时,小李已经到达,而小张到达时需要9小时,所以说小李到达甲地后,再经过1小时小张到达乙地,由v=知,小张骑自行车的速度是15千米/小时.(2)设线段AB的解析式为y1=k1x+b1,则解得所以线段AB的解析式为y1=60x﹣360;设线段CD的解析式为y2=k2x+b,则,解得,线段CD的解析式为y2=﹣15x+135;①当y1﹣y2=15,即60x﹣360﹣(﹣15x+135)=15,解得,x=;②当y2﹣y1=15,即﹣15x+135﹣(60x﹣360)=15,解得,x=.小张出发或小时与小李相距15千米;(3)当小张休息时走过的路程是15×4=60(千米),所以小李应走的路程是120﹣60=60(千米),小李走60千米所需的时间是60÷()=1,故小李出发的时间应为3≤x≤4.5、(2010•十堰)如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=﹣x+70,y2=2x﹣38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量?解答:解:(1)由题意得,当y1=y2时,即﹣x+70=2x﹣38,∴3x=108,x=36.当x=36时,y1=y2=34.所以该药品的稳定价格为36(元/件)稳定需求量为34(万件).(2)令y1=0,得x=70,由图象可知,当药品每件价格在大于36小于70时,该药品的需求量低于供应量.(3)设政府对该药品每件补贴a元,则有,解得.∴政府部门对该药品每件应补贴9元.6、(2010•绍兴)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图象.解答:解:(1)设直线AB的解析式为y=kx+b.∵直线AB经过点(1.5,70),(2,0),∴,解得.∴直线AB的解析式为y=﹣140x+280.∵当x=0时,y=280.∴甲乙两地之间的距离为280千米.(2)设快车的速度为m千米/时,慢车的速度为n千米/时.由题意可得,解得.∴快车的速度为80千米/时.∴快车从甲地到达乙地所需时间为t==小时;(3)∵快车的速度为80千米/时.慢车的速度为60千米/时.∴当快车到达乙地,所用时间为:=3.5小时,快车距甲地280米,∴C点坐标为:(3.5,280),此时慢车还没有到达甲地,若要到达甲地,这个过程慢车所用时间为:=小时,当慢车到达甲地,此时快车已经驶往甲地时间为:﹣3.5=小时,∴此时距甲地:280﹣×80=米,∴D点坐标为:(,),再一直行驶到甲地用时3.5×2=7小时.∴E点坐标为:(7,0),故图象如图所示:。
一次函数的应用一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息,已知甲先出发2秒.在跑步过程中,甲乙两人间的距离y(米)与乙出发的时间t(秒)的关系如图所示.给出下列结论:①a=8,②b=90,③c=120,其中正确的是()A.仅有①②B.仅有②C.仅有②③D.①②③2. 甲、乙两人沿同一公路从A地出发到B地,甲乘汽车,乙骑摩托车,从A地到B地的路程为120千米.若图中CD,OE分别表示甲、乙离开A地的路程S(千米)和时间t (小时)的函数关系的图象,则下列结论中错误的是()A.甲的速度为60千米/小时B.乙从A地到B地用了3小时C.甲比乙晚出发0.5小时D.甲到达B地时,乙离A地80千米3. 某市出租车公司规定:出租车收费与行驶路程关系如图所示,如果小明的姥姥乘出租车去小明家花了22元,那么小明的姥姥乘车路程有()千米.A.12B.13C.14D.154. 地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式y=35x+20来表示,则y随x的增大而()A.增大B.减小C.不变D.以上答案都不对5. 一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(ℎ)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D.4个6. 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A.20kgB.25kgC.28kgD.30kg7. 校运动会前,小明和小亮相约晨练跑步,小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮,两人并行跑了2分钟后,决定进行长跑比赛,比赛过程中小明的速度始终是180米/分,小亮的速度始终是220米/分.两人之间的距离y(米)与小明离开家的时间t(分钟)之间的函数图象如图所示,下列说法:①小明比赛前的速度为180米/分;②小明和小亮家相距540米;③小亮在跑步过程中速度始终保持不变;④小明离家7分钟时两人之间的距离为80米;⑤小亮从家出门跑了14分钟后,按原路以比赛时的速度返回,再经过0.9分钟两人相遇,其中一定正确的个数()A.1B.2C.3D.48. 三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.49. 某商场对顾客实行如下优惠方式:(1)一次性购买金额不超过1万元,不予优惠;(2)一次性购买金额超过1万元,超过部分9折优惠.某人第一次在该商场付款8000元,第二次又在该商场付款19000元,如果他一次性购买的话可以节省()A.600元B.800元C.1000元D.2700元10. 小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步,中途改为步行,到达图书馆恰好用时30min.小东骑自行车以300m/min的速度直接回家.两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,下列说法正确的有几个()①家与图书馆之间的路程为4000m;②小玲步行的速度为100m/min;③两人出发以后8分钟相遇;④两人出发以后2min、15mim、20min时相距3000m.A.1B.2C.3D.4二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 某公用电话亭打电话时,需付电话费y(元)与通话时间x(分钟)之间的函数图象如图所示,则小明打了8分钟电话需付话费________元.12. 如图所示,一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,设慢车行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的函数关系,则快车的速度是________千米/小时.13. 如图,l A,l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.若B的自行车不发生故障,保持出发时的速度前进,则与A相遇时,相遇点C的坐标是________.14. 甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后(寻找时间不计),继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流速度与水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(ℎ)之间的函数图象如图所示.则甲船顺流速度________km/ℎ.15. 某快递公司每天上午9:00−10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为________.16. 鞋号是指鞋子的大小,中国于60年代后期,在全国测量脚长的基础上制定了“中国鞋号”,1998年政府发布了基于Mondopoint系统,用毫米做单位的中华人民共和国国家标准GB/T3294−1998,被称为“新鞋号”,之前以厘米为单位的鞋号从此被称为“旧鞋号”.新旧鞋号部分对应表如下:(1)a的值为________;(2)若新鞋号为m,旧鞋号为n,则把旧鞋号转换为新鞋号的公式为________.17. 周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发________小时后与小明相遇.18. 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(ℎ),两车之间的距离为y(km),图中的折线表示y 与x 之间的函数关系. 根据图象回答以下问题:①甲、乙两地之间的距离为________km ; ②图中点B 的实际意义________; ③求慢车和快车的速度;④求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.19. 甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的关系如图所示.则有下列结论: ①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154或256或56. 其中正确的结论有________个.20. 如图,l 1反映了甲离开A 地的时间与离A 地的距离的关系l 2反映了乙离开A 地的时间与离开A 地距离之间的关系,根据图象填空:(1)当时间为0时,甲离A地________千米;(2)当时间为________时,甲、乙两人离A地距离相等;(3)图中P点的坐标是________;(4)l1对应的函数表达式是:S1=________;(5)当t=2时,甲离A地的距离是________千米;(6)当S=28时,乙离开A地的时间是________时.三、解答题(本题共计 10 小题,每题 10 分,共计100分,)21. 某市为了鼓励居民节约用水,采用分段计费的方法按月计算每个家庭的水费,月用水量不超过20立方米时,按2元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按2元/立方米收费,超过部分按2.6元/立方米计费.设某个家庭月用水量为x立方米时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x的函数解析式.(2)小明家第二季度交纳水费的情况如下:小明家这个季度共用水多少立方米?22. 高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车取游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?23. 某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费1.8元,超计划部分每吨按2.0元收费.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费1.8元,超计划部分每吨按2.0元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①当用水量小于等于3000吨时:________;②当用水量大于3000吨时:________.(2)某月该单位用水3200吨,水费是________ 元;若用水2800吨,水费________ 元.(3)若某月该单位缴纳水费9400元,则该单位用水多少吨?24. 某班级计划暑假组织部分学生夏令营.甲、乙旅行社的服务质量相同,且对外报价都是300元/人,该班联系时,甲旅行社表示可给予每位学生八折优惠;乙旅行社表示,可先免去一位学生的夏令营费用,其余学生九折优惠.(1)分别写出两旅行社所报夏令营费用y(元)与人数х(人)的函数表达式;(2)若有11人参加夏令营,选择哪个旅行社更划算?(3)人数在什么范围内,选甲旅行社较划算?人数在什么范围内,选乙旅行社较划算?25. 某城市居民用水实行阶梯收费,每户每月用水量如果未超过10吨,按每吨3元收费.如果超过10吨,未超过的部分每吨仍按3元收费,超过的部分按每吨5元收费.设某户每月用水量为α吨,应收水费为y元.(1)分别写出每月用水量未超过10吨和超过10吨,y与x之间的函数关系式;(2)若该城市某户5月份水费70元,该户5月份用水多少吨?26. 某商店一种商品的定价为每件20元.商店为了促销,决定如果购买5件以上,则超过5件的部分打七折.(1)用表达式表示购买这种商品的货款y(元)与购买数量x(件)之间的函数关系;(2)当x=4,x=6时,货款分别为多少元?27. 甲、乙两车从A地去C地,甲车先走,全程保持40km/ℎ的速度,途经B地,停留10min,然后再去往C地并在C地停下.乙车比甲车晚出发,全程保持60km/ℎ的速度.如图中的图象分别表示甲、乙两车距离A地的路程y1(单位:km),y2(单位:km)与乙车出发时间x(单位:ℎ)的函数关系.请结合图中信息解答下列问题.(1)m=________,甲车比乙车早出发________ℎ;(2)求点H的坐标,并说明它的实际意义;(3)在甲车到达C地之前,乙车出发多长时间,甲、乙两车相距10km?28. 某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,火车与汽车在路上耽误的时间分别为2小时和3.1小时,其它主要参考数据如下:(1)如果A市与本市之间的距离为x千米,请分别求出选择火车的总费用y1(元)和选择汽车的总费用y2(元)关于x(千米)的函数关系式(总费用=运费+装卸费用+损耗);(2)你若是该市水果批发部门的经理,要想将这种水果运往本市销售,你将选择哪种运输方式比较合算呢?29. 现在正是草莓热销的季节,某水果零售商店分两批次从批发市场共购进草莓40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元(1)设第一次购进草莓的箱数分别为a箱、b箱,求a,b的值;(2)若商店对这40箱草莓先按每箱60元销售了x箱,其余的按每箱35元.全部售完.①求商店销售完全部草莓所获利润y(元)与x(箱)之间的函数关系式:②当x的值至少为多少时,商店才不会亏本.(注:按整箱出售,利润=销售总收入一进货总成本)30. 快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图.请结合图象信息解答下列问题:(1)慢车的速度是________千米/小时,快车的速度是________千米/小时;(2)求m的值,并指出点C的实际意义是什么?(3)在快车按原路原速返回的过程中,快、慢两车相距的路程为150千米时,慢车行驶了多少小时?参考答案与试题解析一次函数的应用一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一次函数的应用【解析】易得乙出发时,两人相距10m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程600可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值【解答】解:甲的速度为:10÷2=5(米/秒);乙的速度为:600÷100=6(米/秒);b=6×100−5×(100+2)=90(米);6a−5×(a+2)=0,解得a=10,c=100+90÷5=118(秒),正确的有②.故选:B2.【答案】A【考点】一次函数的应用【解析】根据图象得出信息,然后利用待定系数法求出CD、OE的解析式进行解答判断即可.【解答】解:设甲的解析式为y=kx+b,可得:{120=2k+b40=k+b,解得:{k=80b=−40,所以解析式为:y=80x−40,把y=0代入解析式中,可得:0=80x−40,解得:x=0.5,所以甲的速度为:120÷(2−0.5)=80,故A错误;由图象可得乙的速度为:40÷1=40,所以乙的时间为:120÷40=3小时,故B正确;甲比乙晚0.5小时,故C正确;甲到达B地时,乙离A地2×40=80千米,故D正确;故选A.3.【答案】B【考点】一次函数的应用【解析】如图,设AB 的解析式为y =kx +b ,由待定系数法求出其解析式,将y =22代入解析式就可以求出结论.【解答】解:设AB 的解析式为y =kx +b ,由题意,得{6=3k +b 14=8k +b, 解得:{k =85b =65. ∴ 直线AB 的解析式为y =85x +65(x ≥3). 当y =22时,22=85x +65,解得:x =13. 故选B .4.【答案】A【考点】二次函数的性质正比例函数的性质一次函数的性质 【解析】题目所给信息:“某个地点y 与x 的关系可以由公式y =35x +20来表示”,由一次函数的性质,可知:当系数大于零时,y 随x 的增大而增大,然后根据一次函数的图象性质可知道y ,x 的关系【解答】由题目分析可知:在某个地点岩层温度y 随着所处深度x 的变化的关系可以由公式y =35x +20来表示,由一次函数性质,进行分析,因为35>0,故应有y 随x 的增大而增大.5.【答案】B【考点】一次函数的应用【解析】根据函数图象直接得出甲乙两地之间的距离;根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;设慢车速度为3xkm/ℎ,快车速度为4xkm/ℎ,由(3x +4x)×4=560,可得x =20,从而得出快车的速度是80km/ℎ,慢车的速度是60km/ℎ.由题意可得出:快车和慢车相遇地离甲地的距离,当慢车行驶了7小时后,快车已到达甲地,可求出此时两车之间的距离即可.【解答】解:由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大知直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误; ∴ 设慢车速度为3xkm/ℎ,快车速度为4xkm/ℎ,∴ (3x +4x)×4=560,x =20∴ 快车的速度是80km/ℎ,慢车的速度是60km/ℎ.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km ,故④错误, 当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240−3×60=60km ,故③正确.故选:B .6.【答案】A【考点】一次函数的应用【解析】根据图中数据,用待定系数法求出直线解析式,然后求y =0时,x 对应的值即可.【解答】解:设y 与x 的函数关系式为y =kx +b ,由题意可知{300=30k +b ,900=50k +b ,所以k =30,b =−600,所以函数关系式为y =30x −600,当y =0时,即30x −600=0,得x =20.故选A .7.【答案】B【考点】一次函数的应用【解析】根据函数图象可以求出小明比赛前的速度为(540−440)÷1=100米/分,甲乙两家的距离为540米,根据速度×时间=路程就可以求出小亮在比赛前的速度与220比较久可以确定是否发生变化,根据比赛时甲乙的速度关系就可以求出比赛2分钟时甲乙的距离,⑤先求出14分钟时小亮在小明前面的距离,再由相遇问题就可以求出结论.【解答】解:由函数图象及题意,得①小明比赛前的速度为:(540−440)÷1=100米/分≠180米/分,故①错误;②小明与小亮家相距:540米;故②正确;③小亮在比赛前的速度为:440÷2−100=120米/秒≠220米/秒;故③错误;④小明离家7分钟时两人之间的距离为:(7−5)(220−180)=80米,故④正确;⑤小亮从家出门跑了14分钟后两人之间的距离为:(15−5)(220−180)=400米,小亮返回时与小明相遇的时间为:400÷(180+220)=1分钟,故⑤错误.∴正确的个数有2个.故选B.8.【答案】D【考点】一次函数的应用【解析】本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.【解答】解:由图可知:甲、乙的起始时间分别为0ℎ和2ℎ;因此甲比乙早出发2小时;在3ℎ−4ℎ这一小时内,甲的函数图象与x轴平行,因此在行进过程中,甲队停顿了一小时;两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/ℎ.这四个同学的结论都正确,故选D.9.【答案】B【考点】一次函数的应用【解析】分别求出第一次及第二次如果不打折需要付款的金额,然后按照优惠政策计算即可.【解答】解:第一次购买付款8000元,可知没有得到打折优惠,第二次付款19000元,获得了打折优惠,设如果不打折第二次应付x元,则10000+(x−10000)×0.9=19000,解得:x=20000,故他一次性购买的话需要付款:10000+(28000−10000)×0.9=26200元,则可节省27000−26200=800元.故选B.10.【答案】C【考点】一次函数的应用【解析】从图象中得出小玲跑步的速度,步行的速度,以及小东骑车到家的时间,逐个判断其正确性,最后得出答案.【解答】图象过(0, 4000),因此家与图书馆之间的路程为4000m,因此①正确,小玲步行的速度为(4000−2000)÷(30−10)=100m/min;因此②正确,小玲跑步的速度为2000÷10=200m/min;相遇时间为4000÷(200+300)=8分钟,因此③正确,④家和图书馆之间的距离为4000米,两人同时出发,相向而行,两人相距3000米时,可能在相遇前、相遇后两种情况,因此两人出发以后2min、15mim、20min时相距3000m.是错误的.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】3.8【考点】一次函数的应用【解析】根据图形可得:需付电话费y(元)与通话时间x(分钟)之间的函数关系为分段函数,分为两段:当0<x≤3时,应付的电话费为0.6元;当x>3时,设y与x的解析式为y=kx+b(k≠0),将(3, 0.6)与(4, 1)代入,得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出此时y与x的函数解析式,然后根据打了8分钟,判断应代入x>3时的解析式,即可求出需付的费用.【解答】解:由图形可得:当0<x≤3时,y=0.6元;当x>3时,设y与x的解析式为y=kx+b(k≠0),将(3, 0.6)与(4, 1)代入得:{3k+b=0.6;4k+b=1,解得:{k=0.4b=−0.6,∴y=0.4x−0.6,∵8>3,∴打了8分钟应付费为0.4×8−0.6=3.8元.故答案为:3.8.12.【答案】1662 3【考点】一次函数的应用【解析】由图可知,甲、乙两地的路程为1000千米,甲、乙两车相遇的时间为4小时,慢车从乙地到甲地的时间为12小时,根据快车的速度=(两车车距÷4)−(两车车距÷12),即可解答.【解答】解:由图可知,甲、乙两地的路程为1000千米,甲、乙两车相遇的时间为4小时,慢车从乙地到甲地的时间为12小时,∴快车的速度为:10004−100012=16623(千米/小时).故答案为:16623.13.【答案】(1, 15)【考点】一次函数的应用【解析】根据已知得出图象经过点(0.5, 7.5),得出正比例函数解析式,以及S A=at+b,图象经过(0, 10),(3, 25),求出解析式即可,将两解析式结合求出交点即可.【解答】解:若B的自行车不发生故障,保持出发时的速度前进,图象是正比例函数解析式,∴s=at,图象经过点(0.5, 7.5),∴s=15t,S A=at+b,图象经过(0, 10),(3, 25),∴{b=1025=3a+b,∴{a=5b=10,∴S A=5t+10;∴{s=15ts=5t+10,∴15t=5t+10;∴t=1,S=15,∴点C的坐标是(1, 15).故答案为:(1, 15)14.【答案】9【考点】一次函数的应用【解析】根据观察图象,可得乙船逆流行驶的速度,根据逆流行驶时,甲乙的速度相同,可得甲逆流行驶的路程,再根据甲顺溜行驶的路程,可得答案.【解答】解:设甲船顺流的速度为akm/ℎ,乙船在逆流中行驶的速度为24÷4=6(km/ℎ)甲船在逆流中行驶的速度为6km/ℎ,甲船在逆流中行驶的路程为6×(2.5−2)=3(km)由图象得2a−3+(3.5−2.5)a=24,解得a=9km/ℎ,故答案为:9.15.【答案】9:20【考点】一次函数的应用【解析】分别求出甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数关系式,求出两条直线的交点坐标即可.【解答】设甲仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 1=k 1x +40,根据题意得60k 1+40=400,解得k 1=6,∴ y 1=6x +40;设乙仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 2=k 2x +240,根据题意得60k 2+240=0,解得k 2=−4,∴ y 2=−4x +240,联立{y =6x +40y =−4x +240,解得{x =20y =160 , ∴ 此刻的时间为9:20.16.【答案】44m =5n +50【考点】一次函数的应用【解析】(1)由新旧鞋号图表数据可知,旧鞋号随着新鞋号的变化而变化,新鞋号乘以0.2减去10就为旧鞋号,所以可求a 值为44,(2)由图表数据可以直接写出新旧鞋号之间的函数关系式为:n =0.2m −10,所以可以求得m =5n +50,还可以利用待定系数法,设m =kn +b ,代入两组新旧鞋号数据构成的两个点的坐标即可求得k ,b 的值.【解答】设m =kn +b ,代入(34, 220),(36, 230).所以,{34k +b =22036k +b =230 ,解得,{k =5b =50. 故m =5n +50,代入m =270,可得,n =44,所以a 的值为44.由(1)可得,m =5n +50,17.【答案】0.7【考点】一次函数的应用【解析】根据一次函数图象结合速度=路程÷时间可分别求出小明及爸爸的速度,设爸爸出发t 小时后与小明相遇,此时,小明出发了(t +0.3)小时,根据路程=速度×时间结合相遇时两人行驶的路程相同,即可得出关于t 的一元一次方程,解之即可得出结论.【解答】解:爸爸的速度为36÷(1−0.1)=40(千米/小时),小明的速度为36÷(1.2+0.3)=24(千米/小时).设爸爸出发t小时后与小明相遇,此时,小明出发了(t+0.3)小时,根据题意得:40(t−0.1)=24(t+0.3),解得:t=0.7.答:爸爸出发0.7小时后与小明相遇.故答案为:0.7.18.【答案】900,当快车或慢车出发4小时两车相遇【考点】一次函数的应用【解析】①由A点坐标可知甲、乙两地之间的距离;②由B点横坐标与纵坐标代表的意义可得出;③慢车速度为路程与慢车到达目的地的所用的时间之比,快车的速度为两车速度和减去慢车的速度可得;④通过点B和点C坐标,用待定系数法确定一次函数的解析式.【解答】解:①由A点坐标为(0, 900)可知甲、乙两地之间的距离为900km;②由B点坐标为(4, 0),可知两车出发4小时后相遇;③慢车速度为90012=75(km/ℎ),快车速度为9004−90012=150(km/ℎ);④设线段BC所表示的y与x之间的函数关系式为y=kx+b,将点B(4, 0)和C点(6, 450)代入得:{0=4k+b450=6k+b;求得:k=225,b=−900.故线段BC所表示的y与x之间的函数关系式:y=225x−900(4≤x≤6).19.【答案】4【考点】一次函数的应用【解析】此题暂无解析【解答】解:由图象可知,A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴ ①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得,k=60∴y甲=60t.设乙车离开A城的距离y与t的关系式为y乙=mt+n把(1,0)和(4,30)代入可得{m +n =04m +n =300解得{m =100n =−100, y 乙=100t −100令y 甲=y 乙可得:60t =100t −100解得t =2.5即甲、乙两直线的交点横坐标为t =2.5此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,③正确; 令|y 甲−y 乙|=50,可得|60t −100t +100|=50,即100−40t =50 当100−40t =50时,可解得ℎ=54 当100−40t =−50时,可解得t =154 又当t =56时,y 甲=50,此时乙还没出发,当t =256时,乙到达B 城,y 甲=250综上可知当t 的值为54或154或256或t =256时,两车相距50千米,④正确;综上,正确的有①②③④.故答案为:4.20. 【答案】10;(2)由图象可知,当时间等于5时,甲、乙两人离A 地距离相等; 故答案为:5;(3)由图象可得,点P 的坐标为(5, 20);故答案为:(5, 20);(4)设l 1对应的函数表达式是:S 1=kt +b ,∵ 点(0, 10),(5, 20)在此函数的图象上,∴ {10=b 20=5k +b解得,k =2,b =10即l 1对应的函数表达式是:S 1=2t +10,故答案为:2t +10;(5)当t =2时,S 1=2×2+10=14千米,故答案为:14;(6)设l 2对应的函数表达式是:S 2=mt ,∵ 点(5, 20)在此函数的图象上,∴ 20=5m ,解得,m =4,即l2对应的函数表达式是:S2=4t,令S2=28时,28=4t,得t=7,故答案为:7.【考点】一次函数的应用【解析】(1)由图象可以得到当时间为0时,甲离A地的距离是多少;(2)由图象可以得到甲、乙两人离A地距离相等时的时间;(3)由图象可以得到点P的坐标;(4)设出l1对应的函数表达式,然后根据点(0, 10),(5, 20)在此函数的图象上,可以求得相应的函数解析式;(5)将t=2代入l1的函数解析式,可以求得S1的值,从而可以解答本题;(6)设出l2对应的函数表达式,然后根据点(5, 20)在此函数的图象上,可以求得l2对应的函数表达式,然后令S2=28,可以求得相应的t的值,本题得以解决.【解答】解:(1)由图象可知,当时间为0时,甲离A地10千米,(2)由图象可知,当时间等于5时,甲、乙两人离A地距离相等;(3)由图象可得,点P的坐标为(5, 20);(4)设l1对应的函数表达式是:S1=kt+b,∵点(0, 10),(5, 20)在此函数的图象上,∴{10=b20=5k+b解得,k=2,b=10即l1对应的函数表达式是:S1=2t+10,(5)当t=2时,S1=2×2+10=14千米,(6)设l2对应的函数表达式是:S2=mt,∵点(5, 20)在此函数的图象上,∴20=5m,解得,m=4,即l2对应的函数表达式是:S2=4t,令S2=28时,28=4t,得t=7,三、解答题(本题共计 10 小题,每题 10 分,共计100分)21.【答案】解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,。
一次函数的应用典型练习题1、若点(1,2)及(m,3)都在正比例函数y=kx的图象上,求m的值.2、已知直线y=kx+b经过点(-2,-1)和点(2,-3),求这条直线的函数解析式.3、某一次函数的图象平行于直线,且过点(4,7),求函数解析式.4、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式.5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,求y与x之间的函数关系式.6、声音在空气中传播的速度y(米/秒)(简称音速)是气温x(℃)的一次函数,下表列出了一组不同气温时的音速:(1)求y与x之间的函数关系式;(2)气温x=22(℃)时,某人看到烟花燃放5秒后才听到声音响,那么此人与燃放的烟花所在地约相距多远?7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示:(1)分别写出x≤5和x>5时,y与x的函数解析式;(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准.(3)若某户居民该月用水3.5吨,则应交水费多少元?若该月交水费9元,则用水多少吨?8、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒).(1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式.(2)就乒乓球盒数讨论去哪家商店购买合算?9、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示.(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式;(2)两种租书方式每天租书的收费分别是多少元?何选择这两种租书方式比较合算?10、预防“非典”期间,某种消毒液A市需要6吨,B市需要8吨,正好M市储备有10吨,N市储备有4吨,预防“非典”领导小组决定将这14吨消毒液调往A市和B市,消毒液的运费价格如下表,设从M市调运x吨到A市.(1)求调运14吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费的多少?11、已知一次函数y=(m-1)x+2m+1(1)若图象经过原点,求m的值;(2)若图象平行于直线y=2x,求m的值;(3)若图象交y轴于正半轴,求m的取值范围;(4)若图象经过一、二、四象限,求m的取值范围;(5)若图象不过第三象限,求m的取值范围;(6)若随的增大而增大,求m的取值范围.12、已知一次函数 y=-x+b 与 y=2x+a 的图像都经过A(-2,0),且与轴分别交于B、C 两点,求△ABC的面积.13、若直线y=3x+b与两坐标轴所围成的三角形的面积为6,求b的值.14、无论m为何值,直线y=x+2m与y=-x+4的交点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限15、已知y=y1+y2,其中y1与x成正比例,y2与(x-2)成正比例,又当x=-1时,y=2;当x=2时,y=5. 求y与x的函数关系式.16、为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:比赛进行到第12轮(每队均比赛12场)A队积19分(1)请通过计算,判断A队胜、平、负各几场;(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元)17、已知A、B两地相距300千米,现有甲、乙两车同时从A地开往B地,甲车匀速行驶2小时到达AB中点C地,停留2小时后,再匀速行驶1.5小时到达B地;乙车以每小时v千米(v≠75)的速度行驶(1)设s (千米)、t (小时)分别表示甲车离开A地的路程和时间,试在下列条件下:①0≤t≤2 ②2<t≤4 ③4<t≤5.5分别求出s与t的关系式,并在所给的坐标系中画出它的图象;(2)若甲、乙两车在途中恰好相遇两次(不含A、B两地),试确定v的取值范围.18、某地长途汽车客运公司规定:旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(千克)的一次函数,其图象如图所示.求(1)y与x之间的函数关系式;(2)旅客最多可免费携带行李的千克数.19、在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.(1)写出y与x的函数关系式;并写出x的取值范围(2)当x为何值时,四边形APCD的面积为2.5?(3)当点P沿A B C D路线从A运动到D,点P运动的路程为x ,写出⊿PAD的面积y与x的函数关系式,并画出此函数的图象20、某单位计划10月份组织员工到外地旅游,甲、乙量旅行社的服务质量相同,且对外报价都是200元,该单位联系时,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示,可先免去一位游客的旅游费用,其余游客九折优惠.(1)求出当人数为x时,甲、乙旅行社所需要的费用(2)当x取何值时,甲、乙旅行社的费用相同(3)人数在什么范围内,应选甲旅行社;在什么范围内,应选乙旅行社?21、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:⑴加油飞机加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?⑵求加油过程中,运输飞机的余油量 Q1(吨)与时间 t(分钟)的函数关系式;⑶运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由.22、杨嫂在再就业中心的扶持下,创办了”润扬”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息: ①买进每份0.2元,卖出每份0.3元; ②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份; ③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以第份0.1元退回报社.(1)填表:一个月内每天买进该种晚报的份数100 150当月利润(单位:元)(2)设每天从报社买进该种晚报x份(120 ≤x ≤200) 时,月利润y元,试求出y与x的函数关系式,并求月利润的最大值.23、宝应县上网方式有三种:方式一:每月80元包干;方式二:每月上网时间(x)与上网费用(y)的函数关系如图所示;方式三:以0小时为起点,每小时收费1.6元,月收费不超过120元.(1)写出三种方式的函数关系式.(2)小华家每月上网60个小时,选用哪种方式上网合算?24、一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示.试根据图象,回答下列问题:(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达B地;(2)求解下列问题:①快车追上慢车需几个小时? ②求慢车、快车的速度.25、下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车运输公司计划装运甲、乙、(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装乙、丙两种蔬菜的汽车各多少辆?(2)某公司计划用20辆汽车装甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不小于1车),如何安排装运,可使公司获得最大利润,最大利润是多少?26、在抗击”非典”时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只,已知生产一只A型可获利0.5元,生产一只B型口罩可获利0.3元.设该厂在这次任务中生产了A型口罩x万只.问(1)该厂生产A型口罩可获利多少万元?生产B型口罩可获得利润多少元?(2)设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求出自变量x的取值范围;(3)如果你是该厂厂长: ①在完成任务的前提下,你如何安排生产A 型和B型B口罩的只数,使获得的总利润最大?最大利润是多少? ②若要在最短的时间内完成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是几天?。
专题5.5 一次函数的应用【八大题型】【浙教版】【题型1 行程问题】 (1)【题型2 工程问题】 (2)【题型3 利润最大问题】 (4)【题型4 费用最低问题】 (6)【题型5 调运问题】 (7)【题型6 体积问题】 (9)【题型7 几何图形问题】 (10)【题型8 其他问题】 (11)【题型1 行程问题】【例1】(2022春•大足区期末)甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当乙车到达A地时,甲车距A地150千米.【变式11】(2022•前进区校级开学)甲、乙两车从佳木斯出发前往哈尔滨,甲车先出发,1h以后乙车出发,在整个过程中,两车离开佳木斯的距离y(km)与乙车行驶时间x(h)的对应关系如图所示:(1)直接写出佳木斯、哈尔滨两城之间距离是多少km?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车在行驶过程中经过多长时间,与乙车相距18km.【变式12】(2022秋•舞钢市期末)甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个【变式13】(2022春•南川区期末)甲、乙两运动员在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的运动员原地休息.已知甲先出发1秒,两运动员之间的距离y(米)与乙出发的时间x (秒)之间的关系如图所示.给出以下结论:①a=7;②b=63;③c=80.其中正确的是()A.①②③B.②③C.①②D.①③【题型2 工程问题】【例2】(2022•李沧区一模)李沧区海绵工程建设过程中,需要将某小区内两段长度相等的人行道改造为透水人行道,人行道绿篱改造为下沉式绿篱.现分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设人行道的长度y(米)与施工时间x(时)之间关系的部分图象,请解答下列问题:(1)求乙队在2≤x≤6的时间段内,y与x的函数关系式;(2)若甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了任务,求甲队从开始施工到完成,所铺设的人行道共是多少米.【变式21】(2022春•华容县期末)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元.(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需用较少?【变式22】(2022春•庐江县期末)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x (时)的函数图象为折线BC﹣﹣CD﹣﹣DE,如图所示,从甲队开始工作时计时.(1)直接写出乙队铺设完的路面长y(米)与时间x(时)的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【变式23】(2022•无锡模拟)甲,乙两人同时各接受了300个零件的加工任务,甲比乙每小时加工的数量多,两人同时开工,其中一人因机器故障停止加工若干小时后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(小时)之间的函数关系,观察图象解决下列问题:(1)其中一人因故障,停止加工小时,C点表示的实际意义是.甲每小时加工的零件数量为个;(2)求线段BC对应的函数关系式和D点坐标;(3)乙在加工的过程中,多少小时时比甲少加工75个零件?(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每小时能加工80个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少小时时开始帮助乙?并在图中用虚线画出丙帮助后y与x 之间的函数关系的图象.【题型3 利润最大问题】【例3】(2022春•遵义期末)钓鱼成为越来越多人休闲娱乐的选择,鱼密度大的鱼塘的门票在300﹣600元不等,这让爱好钓鱼的钓友们喜欢到能回鱼的鱼塘垂钓(回鱼是指钓友钓上的鱼返卖给塘主),如果鱼情和钓鱼技能好的话还能获得一些利润.欢乐鱼塘的门票为450元5小时,回鱼标准为56斤以内为12元/斤,超过56斤的部分7元/斤:云门鱼塘门票为320元5小时,回鱼标准是律按8元/斤.(斤是重量单位,1斤0.5千克),设钓友获得的利润为y元,鱼的重量为x斤.(1)求在两家鱼塘钓鱼时y欢乐、y云门与x之间的函数关系式;(2)如图,在平面直角坐标系中,M,N为图象的交点,m,n分别为点M,N的横坐标,写出图中m,n的值分别为、;(3)钓友会根据自己的钓鱼技能和鱼塘的回鱼标准选择不同的鱼塘垂钓,请帮钓友们分析选择在哪家鱼塘钓鱼更划算?【变式31】(2022春•武汉期末)某商店销售一种产品,该产品成本价为6元/件,售价为8元/件,销售人员对该产品一个月(30天)销售情况记录绘成图象.图中的折线ODE表示日销量y(件)与销售时间x(天)之间的函数关系,若线段DE表示的函数关系中,时间每增加1天,日销量减少5件.(1)第25天的日销量是件,这天销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?销售期间日销售最大利润是多少元?【变式32】(2022•济宁二模)某商店购进了A,B两种家用电器,相关信息如下表:家用电器进价(元/件)售价(元/件)A m+2001800B m1700已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.(1)求表中m的值.(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?【变式33】(2022•长垣市模拟)某营业厅销售3部A型号和2部B型号的营业额为10800元,销售4部A型号和1部B型号的营业额为10400元.(1)求每部A型号和B型号的售价;(2)该营业厅计划一次性购进两种型号共50部,其中B型号的进货数量不超过A型号数量的3倍.已知A型和B型的进货价格分别为1500元/部和1800元/部,设购进A型号a部,这50部的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号各多少部时,才能使销售总利润最大,最大利润为多少元?【题型4 费用最低问题】【例4】(2022春•前郭县期末)共享电动车是一种新理念下的交通工具,主要面向3~10km的出行市场现有A、B品牌的共享电动车,收费与骑行时间之间的函数关系如图所示,其中A品牌收费方式对应y1,B 品牌的收费方式对应y2.(1)请求出两个函数关系式.(2)如果小明每天早上需要骑行A品牌或B品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为20km/h,小明家到工厂的距离为6km,那么小明选择哪个品牌的共享电动车更省钱呢?(3)直接写出第几分钟,两种收费相差1.5元.【变式41】(2022春•碑林区校级期末)某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?【变式42】(2022春•滦南县期末)某人因需要经常去复印资料,甲复印社直接按每次印的张数计费,乙复印社可以加入会员,但需按月付一定的会员费.两复印社每月收费情况如图所示,根据图中提供的信息解答下列问题:(1)乙复印社要求客户每月支付的会员费是元;甲复印社每张收费是元;(2)求出乙复印社收费情况y关于复印页数x的函数解析式,并说明一次项系数的实际意义;(3)当每月复印多少页时,两复印社实际收费相同;(4)如果每月复印200页时,应选择哪家复印社?【变式43】(2022春•石河子期末)某种黄金饰品在甲、乙两个商店销售,甲店标价280元/克,按标价出售,不优惠,乙店标价300元/克,但若买的黄金饰品重量超过3克,则超出部分可打八折出售.(1)分别写出到甲、乙商店购买该种黄金饰品所需费用y(元)和重量x(克)之间的函数关系,并写出定义域;(2)李阿姨要买一条重量不超过10克的此种黄金饰品,到哪个商店购买最合算?请说明理由.【题型5 调运问题】【例5】(2022•贺兰县模拟)云南某县境内发生地震,某市积极筹集救灾物资260吨从该市区运往该县甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:甲地(元/辆)乙地(元/辆)车型运往地大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【变式51】(2022春•扎鲁特旗期末)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)试问有无可能一天获得总租金是80050元?若有可能,请写出相应的调运方案;若无可能,请说明理由.【变式52】(2022春•海淀区校级期末)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾民安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D总计/tA200B x300总计/t240260500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.【变式53】(2022春•巴南区月考)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B县8辆,已知调运一辆农用车的费用如表:县名A B费用仓库甲4080乙3050(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式.(2)若要求总运费不超过900元.共有哪几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?【题型6 体积问题】【例6】(2022秋•邗江区月考)某水池的容积为90m3,水池中已有水10m3,现按8m3/h的流量向水池注水.(1)写出水池中水的体积y(m3)与进水时间t(h)之间的函数表达式,并写出自变量t的取值范围;(2)当t=1时,求y的值;当y=50时,求t的值.【变式61】(2022春•北京期末)如图,有一个装水的容器,容器内的水面高度是10cm,水面面积是100cm2.现向容器内注水,并同时开始计时.在注水过程中,水面高度以每秒0.2cm的速度匀速增加.容器注满水之前,容器内水面的高度h,注水量V随对应的注水时间t的变化而变化,则h与t,V与t满足的函数关系分别是()A.正比例函数关系,正比例函数关系B.正比例函数关系,一次函数关系C.一次函数关系,一次函数关系D.一次函数关系,正比例函数关系【变式62】(2022春•梁子湖区期末)水龙头关闭不严会造成漏水浪费,已知漏水量与漏水时间之间满足一次函数关系,八年级同学进行了以下实验:在漏水的水龙头下放置一个能显示水量的容器,每10分钟记录一次容器中的水量.下表是一位同学的记录结果,老师发现有一组数据记录有较大偏差,它是()组别12345010203040时间t(min)1 2.4 3.8 5.2 6.8水量w(ml)A.第2组B.第3组C.第4组D.第5组【变式63】(2022•宣城模拟)某容器有一个进水管和一个出水管,从某时刻开始的前4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水.已知进水管进水的速度与出水管出水的速度是两个常数,容器内水量y (升)与时间x (分钟)之间的关系如图所示.则每分钟的出水量为( )A .4升B .152升C .154升D .134升 【题型7 几何图形问题】【例7】(2022春•交城县期末)菜农张大叔要用63米的篱笆围一个矩形的菜地,已知在菜地的一边AB 边上留有1米宽的入口.设AB 边的长为x ,BC 边的长为y ,则y 与x 之间的函数关系式是( )A .y =63−2x 2B .y =63−2x+12C .y =63﹣2xD .y =632−12x 【变式71】(2022春•阿荣旗期末)已知等腰三角形周长为20(1)写出底边长y 关于腰长x 的函数解析式(x 为自变量);(2)写出自变量的取值范围;(3)在直角坐标系中,画出函数图象.【变式72】(2022秋•富民县校级期末)如图,正方形ABCD 的边长为6cm ,动点P 从A 点出发,在正方形的边上由A ⇒B ⇒C ⇒D 运动,设运动的时间为t (s ),△APD 的面积为S (cm 2),S 与t 的函数图象如图所示,请回答下列问题:(1)点P 在AB 上运动的速度为 ,在CD 上运动的速度为 ;(2)求出点P 在CD 上时S 与t 的函数关系式;(3)t为何值时,△APD的面积为10cm2?【变式73】(2022春•泰和县期末)如图1是一个大型的圆形花坛建筑物(其中AB与CD是一对互相垂直的直径),小川从圆心O出发,按图中箭头所示的方向匀速散步,并保持同一个速度走完下列三条线路:①线段OA、②圆弧A→D→B→C、③线段CO后,回到出发点.记小川所在的位置距离出发点的距离为y(即所在位置与点O之间线段的长度)与时间t之间的图象如图2所示,(注:圆周率π取近似值3)(1)a=,b=.(2)当t≤2时,试求出y关于t的关系式;(3)在沿途某处小川遇见了他的好朋友小翔并聊了两分钟的时间,然后继续保持原速回到终点O,请回答下列两小问:①小川渝小翔的聊天地点位于哪两点之间?并求出此时他距离终点O还有多远;②求他此行总共花了多少分钟的时间.【题型8 其他问题】【例8】(2022春•昌平区期末)某旅客携带x(公斤)的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李质量x(公斤)的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李质量x(公斤)的对应关系,行李的质量x(公斤)快递费不超过1公斤10元超过1公斤但不超过5公斤的3元/公斤部分5元/公斤超过5公斤但不超过15公斤的部分(1)如果旅客选择托运,求可携带的免费行李的最大质量为多少公斤?(2)如果旅客选择快递,当1≤x≤15时,求快递费y2(元)与行李质量x(公斤)的函数关系式;(3)某旅客携带25公斤的行李,设托运m(公斤)行李(10≤m<24,m为正整数),剩下的行李选择快递,m为何值时,总费用y的值最小,总费用的最小值是多少?【变式81】(2022春•正定县期中)弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…下列说法不正确的是()A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm【变式82】(2022秋•和平县期末)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)之间的关系,并画出如图所示的图象(AC是线段,射线CD平行于x轴).有下列说x+6;③观察第40天时,法:①从开始观察起,60天后该植物停止长高;②直线AC的函数表达式为y=15该植物的高度为14厘米;④该植物最高为15厘米.其中说法正确的是()A.①②③B.②④C.②③D.①②③④【变式83】(2022•阿城区模拟)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费,设每个家庭月用电量为x度时,应交电费为y元.具体收费情况如折线图所示,下列叙述错误的是()A.“基础电价”是0.5元/度B.“提高电价”是0.6元/度C.小红家5月份用电260度的电费是132元D.小红家4月份198元电费的用电量是129度。
一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。
一次函数的应用 题集一、一次函数与实际应用(1)(2)(3)1.某周六上午小明从家出发,乘车小时到郊外某基地参加社会实践活动.在基地活动小时后,因家里有急事,他立即按原路以千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为小时,小明离家的路程(千米)与(小时)之间的函数图象如图所示.(小时)(千米)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时.求线段所表示的函数关系式,不用写出自变量的取值范围.问小明能否在中午前回到家?若能,请说明理由;若不能,请算出中午时他离家的路程.【答案】(1)(2)(3) ;.不能在前回家,此时离家的距离为千米.【解析】(1)观察图象可知:小明去基地乘车小时后离基地的距离为千米,(2)(3)因此小明去基地乘车的平均速度是千米/小时;在返回时小明以千米/时的平均速度步行,行驶千米后遇到爸爸,∵两个人同时走,小明走了小时,即爸爸也走了小时,∴他爸爸在小时内行驶了千米,故爸爸开车的平均速度应是千米/小时.设线段所表示的函数关系式为,易得,,∴,解得,∴.小明从家出发到回家一共需要时间:(小时),从经过小时已经过了,∴不能在前回家,此时离家的距离:(千米).【标注】【知识点】函数图象与实际问题(1)(2)12(3)2.,两地相距千米,甲车从地出发匀速行驶到地,乙车从地出发匀速行驶到地.乙车行驶小时后,甲车出发,两车相向而行.设行驶时间为小时(),甲、乙两车离地的距离分别为,千米,,与之间的函数关系图象如图所示,根据图象解答下列问题:小时千米图小时千米图求,与的函数关系式.乙车出发几小时后,两车相遇?相遇时,两车离地多少千米?设行驶过程中,甲、乙两车之间的距离为千米,在图的直角坐标系中,已经画出了与之间的部分函数图象.图中点的坐标为,则.求与的函数关系式,并在图中补全整个过程中与之间的函数图象.【答案】(1)(2)12(3),.乙车出发小时后两车相遇,两车相遇时,两车相距地千米.当时,,当时,.画图见解析.【解析】(1)(2)12(3)设,,由图象可知,时,,时,,∴,,∴.由图象可知,,,时,,∴,,∴.故与的关系式分别为:,.两车相遇时,甲乙两车距地距离相等,∴,∴,∴.将代入中得.故乙车出发小时后两车相遇,两车相遇时,两车相距地千米.由图可知,乙车速度为(千米/小时).过程中甲车在地,乙车在行驶.时,甲乙两车相距千米.时,甲乙两车相距(千米).∴.由图可知,甲车速度为(千米/小时).由()可知甲乙两车在时相遇.∴当时,,当时,.,故整个过程中与函数图象如下图所示:小时千米【标注】【知识点】一元一次方程的行程问题-相遇问题(1)(2)(3)3.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向港,最终到达港.设甲、乙两船行驶后,与港的距离分别为、,、与的函数关系如图所示.甲乙填空:、两港口间的距离为 , .求图中点的坐标.若两船的距离不超过时能够相互望见,求甲、乙两船可以相互望见时的取值范围.【答案】(1)(2)(3); .或.【解析】(1)、两港口间距离,又由于甲船行驶速度不变,(2)(3)故,则.故答案为:;.由点求得,.当时,由点,求得,.当时,,解得,.此时.所以点的坐标为.根据题意知甲、乙两船的速度分别为小时、小时,①当时,根据题意可知甲船开始出发到达港这段时间,甲乙两船的距离从逐渐缩小,两船行驶时,乙船在甲船的前方:处,所以这段时间内,两船不能相互望见;②当时,乙船在甲船的前方(直至追上).依题意,,解得,即时,甲、乙两船可以相互望见;③当时,甲船在乙船的前方依题意,,解得,即时,甲、乙两船可以相互望见;④当时,甲船已经到达港,而乙船继续行驶向甲船靠近,依题意,,解得,即,甲、乙两船可以相互望见.综上所述,当或时,甲、乙两船可以相互望见.【标注】【知识点】一次函数的依据图象解决实际问题4.某地为了鼓励市民节约用水,采取阶梯分段收费标准,共分三个梯段,吨为基本段,吨为极限段,超过吨为较高收费段,且规定每月用水超过吨时,超过的部分每吨元,居民每月应交水费(元)是用水量(吨)的函数,其图象如图所示:(1)(2)(3)吨元求出基本段每吨水费,若某用户该月用水吨,问应交水费多少元?写出与的函数解析式.若某月一用户交水量元,则该用户用水多少吨?【答案】(1)(2)(3)元..吨.【解析】(1)(2)∵用水吨交水费元,∴基本段每吨水费元,∴若某用户该月用水吨,应交水费元.分三种情况:①当时,易得;②当时,设,∵,在直线上,∴,解得,∴;③当时,设,∵,在直线上,∴,解得,∴.综上所述,与的函数解析式为.(3)若某月一用户交水量元,设该用户用水吨.∵用水吨交水费元,用水吨交水费元,而,∴.由题意,得,解得.答:若某月一用户交水量元,则该用户用水吨.【标注】【能力】运算能力【知识点】一元一次方程的梯度计价问题【知识点】有理数乘除法与实际问题【知识点】一次函数与实际问题【思想】函数思想【思想】方程思想(1)(2)(3)5.某市按阶梯电价进行收费,阶梯电价收费标准为:若每月用电量为度及以下,收费标准为元/度,若每月用电量超过度,收费标准由两部分组成:①度按元/度收费,②超出度的部分按元/度收费.如果月用电量用(度)来表示,实付金额用(元)来表示,请分别写出这两种情况实付金额与月用电量之间的函数关系式.若小芳和小华家一个月的实际用电量分别为度和度,则实付金额分别为多少元?按照阶梯电价方案的规定,一居民家某月电费为元,请你计算这个家庭本月的实际用电量.【答案】(1)(2)(3).实付金额分别为元、元.这个家庭本月的实际用电量是度.【解析】(1)根据度时,按元/度收费,(2)(3)则当时,;根据超出度的部分按元/度收费得:当时,;故函数关系式为:.小芳家用电量是 度,则实付金额是:(元);小华家用电量是 度,则实付金额是:(元).答:实付金额分别为元、元.设这个家庭本月的实际用电量度,根据题意得:解得:,答:这个家庭本月的实际用电量是度.【标注】【知识点】一次函数与实际问题(1)(2)(3)6.在某次抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要台,乙地需要台;、两省获知情况后慷慨相助,分别捐赠该型号挖掘机台和台并将其全部调往灾区.如果从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元;从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从省调往甲地台挖掘机,、两省将捐赠的挖掘机全部调往灾区共耗资万元.省捐赠台省捐赠台甲灾区需台乙灾区需台请直接写出与之间的函数关系式及自变量的取值范围.若要使总耗资不超过万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资多少万元?【答案】(1)(2)(3)( ).两种.方案二可使总耗资最少为万元.【解析】(1)(2)(3) 省省台数(台)耗资(万元)台数(台)耗资(万元)甲区乙区或由上表可知化简得,又∵,,,∴自变量的取值范围为.,得,∵为整数且,∴,.∴调运方案有两种,如下列:方案一:甲乙方案二:甲乙由可知随的增大而减小,∴当时,,∴()问中的方案二可使总耗资最少为万元.【标注】【知识点】一次函数与实际问题(1)7.育才中学需要购置某种仪器,方案:到商家购买,每件元;方案:学校自己制作,每件元,另外需付制作工具的租用费元.设购置仪器件,方案与方案的费用(单位:元)分别为,.分别写出,的函数表达式.(2)(3)当购置仪器多少件时,两种方案的费用相同?若方案便宜,则仪器件数范围是多少?【答案】(1)(2)(3),.件..【解析】(1)(2)(3)(,且为整数),(,且为整数).依题意,得,即,解得,∴当购置的仪器为件时,两种方案的费用相同.∵,∴,解得.∴当需要的仪器件数为整数且时,选择方案便宜.【标注】【知识点】一次函数与实际问题【知识点】不等式组的方案选择问题二、一次函数与三角形面积(1)(2)8.已知一次函数的图象与轴交于点,且与正比例函数的图象相交于点,求:求点的坐标.求出这两个函数的图象与轴围成的的面积.【答案】(1)(2)..【解析】(1)(2)由题意知,,解得,,∴点的坐标为.令,则,∴,∴.【标注】【知识点】一次函数与面积(1)(2)9.如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与交于点.分别求出点,点的坐标.求四边形的面积.【答案】(1)(2),..【解析】(1)∵直线上所有点的坐标都是二元一次方程的解,∴当时,,(2)∴点的坐标为:,∵直线上所有点的坐标都是二元一次方程的解,∴时,,∴点的坐标为:.作轴于,,解得,∴点的坐标为,则四边形的面积四边形的面积的面积.【标注】【知识点】一次函数与面积10.在平面直角坐标系中,为坐标原点,已知及在第一象限的动点,且.则当时,点的坐标为 .【答案】【解析】∵,∴.∴∵∴.得:.∴,∴时,点坐标为.【标注】【知识点】一次函数与面积(1)(2)(3)(4)11.如图,直线的解析表达式为:,且与轴交于点,直线经过点、,直线,交于点.求点的坐标.求直线的解析表达式.求的面积.在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.【答案】(1)(2)(3)(4).直线的解析表达式为...【解析】(1)(2)(3)由,令,得,∴,∴.设直线的解析表达式为,,由图象知:、,、,代入表达式,∴,∴,∴直线的解析表达式为.由,(4)∴,∴,∵,∴.与底边都是,面积相等所以高相等,高就是点到直线的距离,即纵坐标的绝对值,则到距离,∴纵坐标的绝对值,点不是点,∴点纵坐标是,∵,,∴,∴,∴.【标注】【知识点】公式法求面积12.如图直线与轴、轴分别交于、两点,以线段为边在第一象限内作等腰直角,且,如果在第二象限内有一点,且的面积与的面积相等,求的值.【答案】【解析】∵直线与轴、轴分别交于、两点,∴,,,∴,又∵,∴,解得.【标注】【知识点】一次函数与面积,,三、一次函数与线段最值(1)(2)13.如图,一次函数的图象与、轴分别交于点、.求该函数的解析式.为坐标原点,设、的中点分别为、,为上一动点,求的最小值,并求取得最小值时点的坐标.【答案】(1)(2),点坐标为.【解析】(1)(2)将、代入得,.∴解析式为:.设点关于点的对称点为,连接、,则.∴,即、、共线时,的最小值是.连接,在中,;易得点坐标为.【标注】【知识点】一次函数与轴对称最值问题14.直角坐标系中,有两个点,,在轴上找一个点,在轴上找一点,使四边形的周长最短,此时点的坐标为.【答案】【解析】如图设所在直线的表达式为.由于、在直线上,有解得∴所在直线表达式为,它与轴交于.【标注】【知识点】四边形周长最小15.在平面直角坐标系中,点,点,在轴上存在一个点,直线上存在点,使得四边形的周长最小,求满足条件的、两点的坐标.xy OABCD【答案】,.【解析】将点、分别关于轴,对称到、,直线与轴,的交点即为、点,求得直线的解析式为,得:,.故答案为:,.【标注】【知识点】一次函数与轴对称最值问题(1)(2)16.如图,在直角坐标系中,,,点是轴正半轴上的一个动点.当点到,两点的距离相等时,求点的坐标.当点到,两点的距离之和最小时,求点的坐标,并求出此时的值.【答案】(1)(2)..【解析】(1)如图作的中垂线与轴交于,过作轴于,∵,∴,,∵,∴,设,则,又∵,,,,(2)∴,即,,得,∴.如图,作关于轴对称点,连接交于,则即为所求,∵,∴且,设所在直线解析式为()代入,得,∴,∴直线,∴当,,∴,.【标注】【知识点】一次函数与轴对称最值问题17.如图,直线的函数表达式为,且与轴交于点,直线经过点且与交于点,已知点的横坐标是.(1)(2)求点和点的坐标.在轴上求点的坐标,使得最小.【答案】(1)(2),..【解析】(1)(2)对于直线,令,得到,∴,∵点的横坐标为,∴.作点关于轴的对称点,连接交轴于,此时的值最小,设最小的解析式为,则有,解得,∴直线的解析式为,∴.A. B.C.D.18.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( ).【答案】C 【解析】∵在中,,,∴,,∵,点为的中点,∴,,∴,,作关于直线的对称点,连接交于,则此时,四边形周长最小,,∵直线的解析式为,设直线的解析式为,∴,解得:,∴直线的解析式为,解得,∴.故选.19.如图,已知点坐标为,点坐标为,在直线上有一点,满足轴,连接,,当线段位于何位置时,线段最短?求出的最小值,并求出点坐标.【答案】最小值是;点坐标为【解析】'坐标为,解析式为:,点坐标为,点坐标为,.【标注】【知识点】一次函数与轴对称最值问题,20.如图,平面直角坐标系中,已知点的坐标为,点的坐标为时,在轴上另取两点,,且.线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标.【答案】.【解析】如图,过点作轴的平行线,并且在这条平行线上截取线段,使,作点关轴的对称点,连接,交轴于点,在轴上截取线段,则此时四边形的周长最小.∵,∴,∵,∴,设直线的解析式为,则,解得.∴直线的解析式为,当时,,解得.故线段平移至如图所示位置时,四边形的周长最小,此时点的坐标为,∴点的坐标为.【标注】【知识点】一次函数与轴对称最值问题(1)(2)(3)21.如图,一次函数的图象与轴和轴分别交于点和,再将沿直线对折,使点与点重合、直线与轴交于点,与交于点.点的坐标为 ,点的坐标为 .在直线上是否存在点使得的面积为?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.求的长度.【答案】(1)(2)(3) ;存在,或..【解析】(1)已知函数为,∴令,则,(2)(3)令,则,∴,.∵,,∴以为底,则的高为,即点到的距离为,又∵点在,∴,∴或,∴或.在折叠后,,所以.因为,设,,则.在中,,由勾股定理知,即,去括号得,整理得,解得.故.【标注】【知识点】一次函数与直角三角形结合。
一次函数的应用典型练习题1、若点(1,2)及(m ,3)都在正比例函数y=kx 的图象上,求m 的值.2、已知直线y=kx+b 经过点(-2,-1)和点(2,-3),求这条直线的函数解析式.3、某一次函数的图象平行于直线 ,且过点(4,7),求函数解析式.4、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式.5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,求y 与x 之间的函数关系式.6、 声音在空气中传播的速度y (米/秒)(简称音速)是气温x (℃)的一次函数,下表列出了一组不同气温时的音速:(1)求y 与x(2)气温x=22(℃)时,某人看到烟花燃放5秒后才听到声音响,此人与燃放的烟花所在地约相距多远? 7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示:x y 21(1)分别写出x≤5和x>5时,y与x的函数解析式;(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准(3)若某户居民该月用水3.5吨,则应交水费多少元?若该月交水费9元,则用水多少吨?8、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒).(1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式.(2)就乒乓球盒数讨论去哪家商店购买合算?9、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示.(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式;(2)两种租书方式每天租书的收费分别是多少元?(3)若两种租书卡的使用期限均为一年,则在这一年中如何选择这两种租书方式比较合算?10、预防“非典”期间,某种消毒液A市需要6吨,B市需要8吨,正好M市储备有10吨,N市储备有4吨,预防“非典”领导小组决定将这14吨消毒液调往A市和B市,消毒液的运费价格如下表,设从M市调运x吨到A市.(1)求调运14吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费的多少?11、已知一次函数y=(m-1)x+2m+1(1)若图象经过原点,求m的值;(2)若图象平行于直线y=2x,求m的值;(3)若图象交y轴于正半轴,求m的取值范围;(4)若图象经过一、二、四象限,求m的取值范围;(5)若图象不过第三象限,求m的取值范围;(6)若随的增大而增大,求m的取值范围.12、已知一次函数 y=-x+b 与 y=2x+a 的图像都经过A(-2,0),且与轴分别交于B、C两点,求△ABC的面积.13、若直线y=3x+b与两坐标轴所围成的三角形的面积为6,求b的值.14、无论m为何值,直线y=x+2m与y=-x+4的交点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限15、已知y=y1+y2,其中y1与x成正比例,y2与(x-2)成正比例,又当x=-1时,y=2;当x=2时,y=5. 求y与x的函数关系式.16、为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:比赛进行到第12轮(每队均比赛12场)A队积19分(1)请通过计算,判断A队胜、平、负各几场;(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.17、已知A、B两地相距300千米,现有甲、乙两车同时从A地开往B地,甲车匀速行驶2小时到达AB中点C地,停留2小时后,再匀速行驶1.5小时到达B地;乙车以每小时v千米(v≠75)的速度行驶(1)设s (千米)、t (小时)分别表示甲车离开A地的路程和时间,试在下列条件下:①0≤t≤2 ②2<t≤4 ③4<t≤5.5分别求出s与t的关系式,并在所给的坐标系中画出它的图象;(2)若甲、乙两车在途中恰好相遇两次(不含A、B两地),试确定v的取值范围.18、某地长途汽车客运公司规定:旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(千克)的一次函数,其图象如图所示.求(1)y与x之间的函数关系式;(2)旅客最多可免费携带行李的千克数.19、在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.(1)写出y与x的函数关系式;并写出x的取值范围(2)当x为何值时,四边形APCD的面积为2.5?(3)当点P沿A B C D路线从A运动到D,点P运动的路程为x ,写出⊿PAD的面积y与x的函数关系式,并画出此函数的图象20、某单位计划10月份组织员工到外地旅游,甲、乙量旅行社的服务质量相同,且对外报价都是200元,该单位联系时,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示,可先免去一位游客的旅游费用,其余游客九折优惠.(1)求出当人数为x时,甲、乙旅行社所需要的费用(2)当x取何值时,甲、乙旅行社的费用相同(3)人数在什么范围内,应选甲旅行社;在什么范围内,应选乙旅行社?21、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:⑴加油飞机加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?⑵求加油过程中,运输飞机的余油量 Q1(吨)与时间 t(分钟)的函数关系式;⑶运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由.22、杨嫂在再就业中心的扶持下,创办了”润扬”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息: ①买进每份0.2元,卖出每份0.3元; ②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份; ③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以第份0.1元退回报社.(1)填表:一个月内每天买进该种晚报的份数100 150当月利润(单位:元)(2)设每天从报社买进该种晚报x份(120 ≤x ≤200) 时,月利润y元,试求出y与x的函数关系式,并求月利润的最大值.23、宝应县上网方式有三种:方式一:每月80元包干;方式二:每月上网时间(x)与上网费用(y)的函数关系如图所示;方式三:以0小时为起点,每小时收费1.6元,月收费不超过120元.(1)写出三种方式的函数关系式.(2)小华家每月上网60个小时,选用哪种方式上网合算?24、一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示.试根据图象,回答下列问题:(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达B地;(2)求解下列问题:①快车追上慢车需几个小时? ②求慢车、快车的速度.25、下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车运输公司计划装运甲、乙、丙三种蔬菜到(1)(2)某公司计划用20辆汽车装甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不小于1车),如何安排装运,可使公司获得最大利润,最大利润是多少?26、在抗击”非典”时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只,已知生产一只A型可获利0.5元,生产一只B 型口罩可获利0.3元.设该厂在这次任务中生产了A型口罩x万只.问(1)该厂生产A型口罩可获利多少万元?生产B型口罩可获得利润多少元?(2)设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求出自变量x的取值范围;(3)如果你是该厂厂长: ①在完成任务的前提下,你如何安排生产A型和B型B口罩的只数,使获得的总利润最大?最大利润是多少? ②若要在最短的时间内完成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是几天?Welcome !!! 欢迎您的下载,资料仅供参考!。
一次函数的应用练习题一、选择题1. 下列哪个选项表示的是一次函数?A. y = 2x^2 + 1B. y = 3x + 5C. y = √x + 2D. y = 4/x2. 一次函数y = 3x 2的图象经过哪个象限?A. 第一、二象限B. 第一、三象限C. 第一、二、三象限D. 第一、二、四象限3. 一次函数y = kx + b的图象与y轴的交点为(0,3),则b 的值为:A. 3B. 3C. 0D. 14. 下列哪个一次函数的图象是一条过原点的直线?A. y = 2x + 1B. y = 3xC. y = x 2D. y = x^2二、填空题1. 一次函数的一般形式是______。
2. 一次函数y = 5x 3的斜率为______,y轴截距为______。
3. 若一次函数y = kx + b的图象经过点(1,3)和(2,5),则k的值为______,b的值为______。
4. 当x > 0时,一次函数y = 2x + 7的值随着x的增大而______。
三、解答题1. 已知一次函数y = 4x 1的图象与x轴、y轴分别相交于点A、B,求线段AB的长度。
2. 一次函数y = kx + b的图象经过点(1,2)和(3,4),求该一次函数的表达式。
3. 在平面直角坐标系中,一次函数y = 3x + 6与y轴相交于点C,与x轴相交于点D,求三角形OCD的面积(O为坐标原点)。
4. 小明从家出发,沿直线道路去图书馆,距离图书馆的距离y(单位:千米)与时间x(单位:小时)的关系为y = 5 4x。
求小明家到图书馆的距离,以及小明走到图书馆所需的时间。
5. 某商品的原价为1000元,商场进行打折促销,折后价格为y 元,打折系数为x(0 < x < 1)。
求折后价格y与打折系数x之间的函数关系式。
四、应用题1. 甲、乙两地相距120公里,甲地有一辆汽车以每小时60公里的速度前往乙地,同时乙地有一辆摩托车以每小时40公里的速度前往甲地。
一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。
一次函数的应用[时间: 60分钟分值: 100分]一、选择题(每题4分,共32分)1. 已知正比例函数的图象如图所示,则这个函数的表达式为( )A.y=−12x B. y 12C. y=-2xD. y=2x2.如图,直线y= ax+b过点A(0,2),B(-3,0),则方程ax+b=0的解是( )A. x=2B. x=0C. x=-1D. x=-33.已知方程kx+b=0的解是x=3,则函数y= kx+b的图象可能是( )4.数形结合是解决数学问题常用的思想方法.如图,一次函数y= kx+b(k,b为常数,且k<0)的图象与直线y=13x都经过点A(3,1),当kx+b<13x时,根据图象可知,x的取值范围是( )A. x>3B. x<3C. x<1D. x>15. 小聪在画一次函数的图象时,他列表后,发现题中一次函数y=◆x+◆中的k和b看不清了,根据如下表格可知( )A. k=2,b=3B.k=−23,b=2x 0 3C. k=3,b=2D. k=1,b=-1 y 2 06. 身边的数学一辆汽车油箱中剩余的油量y(L)与已行驶的路程x( km)的对应关系如图所示,如果这辆汽车每千米耗油量相同,当油箱中剩余的油量为35 L时,该汽车已行驶的路程为( )A.150 kmB.165 kmC.125 kmD.350 km7.身体中的数据大拇指与小拇指尽量张开时,两指尖的距离称为“指距”,研究表明,一般情况下,人的身高h ( cm)与指距d( cm)之间的一次函数为h=9d+b,已知当d=20时,h=160,当某人的身高为178 cm时,他的指距约为( )A.21 cmB.22 cmC.23 cmD.24 cm8.甲、乙两车沿同一路线从A城出发前往B城,在整个行程中,汽车离A 城的距离y与时刻t的对应关系如图所示,关于下列结论:①A,B两城相距300 km;②甲车的平均速度是60 km/h,乙车的平均速度是100 km/h;③乙车先出发,先到达B 城;④甲车在9:30追上乙车.正确的有( )A.①②B.①③C.②④D.①④二、填空题(每题5分,共20分)9.如图,已知函数y=2x+b和y= ax-3的图象交于点(-2,-5),根据图象可得关于x 的方程2x+b= ax-3的解是.10.如图,一次函数y= kx+b的图象与正比例函数y=2x的图象互相平行,且经过点A,则一次函数y= kx+b 的表达式为.11.如图,在平面直角坐标系中,直线y=x-6分别与x轴、y轴交于点A,B,点P的坐标为(0,8).若点M在直线AB 上,则PM长的最小值为.12.生活应用快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s( km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是km/h.三、解答题(共48分)13.(18 分)如图,在平面直角坐标系中,直线l经过点A(0,2),B(-3,0).(1)求直线l的函数表达式;(2)若点M(3,m)在直线l上,求m的值;(3)若y=-x+n的图象过点B,交y轴于点C,求△ABC的面积.14.(16 分)已知A,B两地之间有一条长440千米的高速公路,甲、乙两车分别从A,B两地同时出发,沿此公路相向而行,甲车先以100千米/小时的速度匀速行驶200 千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A 地的路程y(千米)与各自的行驶时间x(小时)之间的函数关系如图所示.(1) m= ,n= ;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A 地的路程.15.(14 分) 我国航天事业发展迅速,2024年4月25 日20时59分,神舟十八号载人飞船成功发射.某玩具店抓住商机,先购进了1 000件相关航天模型玩具进行试销,进价为50元/件.(1)设玩具售价为x元/件,全部售完的利润为y元,求利润y(元)关于售价x(元/件)的函数表达式;(2)当售价定为60元/件时,该玩具销售火爆,该店继续购进一批该种航天模型玩具,并从中拿出这两批玩具销售利润的20%用于支持某航模兴趣组开展活动,在成功销售完毕后,资助经费恰好为10 000元,请问该店继续购进了多少件航天模型玩具?一、1. A 2. D 3. C 4. A5. B 【点拨】将x=0,y=2;x=3,y=0分别代入y= kx+b中,得b=2,3k+b=0,解得k=−23.故选B.6. A7. B 【点拨】把d=20,h=160代入h=9d+b,得160=9×20+b,解得b=-20.所以h=9d-20.当h=178时,178=9d-20,解得d= 22.所以他的指距约为22 cm.8. D 【点拨】由图象可知,A,B 两城相距300 km,乙车先出发,甲车先到达B城,故①符合题意,③不符合题意;甲车的平均速度是300÷3=100( km/h),乙车的平均速度是300÷5=60( km/h),故②不符合题意;由图象知,甲车在9:3 0追上乙车,故④符合题意.综上所述,正确的有①④.故选D.二、9. x=-210. y=2x-4 【点拨】由一次函数y= kx+b的图象与正比例函数y=2x的图象互相平行可得k=2,然后把点(1,-2)的坐标代入y=2x+b即可求出b的值.11.√2【点拨】如图,过P点作PQ⊥y轴交直线AB 于Q,由垂线段最短可知,当PM⊥AB时,PM的长有最小值.在y=x-6中,当x=0时,y=-6;当y=8时,x=14,所以B(0,-6), Q(14,8).因为P(0,8),所以PQ=14,PB=14.所以BQ=√BP2+PQ2=14√2.因为S PQB=12BP⋅PQ=12BQ⋅PM,即14×14=14√2PM,所以PM=7√2,所以PM长的最小值为√212.35 【点拨】因为快递员始终匀速行驶,所以快递员的行驶速度是8.750.55−2×(0.35−0.2)=35(km/ℎ).三、13.【解】(1)设直线l的函数表达式为y= kx+b.把点A(0,2),B(-3,0)的坐标分别代入,得b=2,-3k+b=0,解得k=23.所以直线l的函数表达式为y=23x+2(2)当x=3时, 23×3+2=4.所以m=4.(3)因为y=-x+n的图象过点B,所以3+n=0,所以n=-3,所以y=-x-3. 所以当x=0时,y=-3.所以C(0,-3).所以AC=5.因为B(-3,0),所以OB=3.所以S ABC=12AC⋅OB=12×5×3=152.14.【解】(1)2;6(2)两车相遇后,甲车的速度是(440-200)÷(6-2)=60(千米/小时),所以两车相遇后,甲车距A地的路程y与x 之间的函数关系式为y=200+60(x-2)=60x+80(2<x≤6).(3)乙车的速度为(440-200)÷2=120(千米/小时).所以乙车到达A地所需时间为440÷120=113(小时).当x=113时,y=60×113+80=300,所以当乙车到达A地时,甲车距A地的路程为300千米.15.【解】(1)函数表达式为y=1000(x-50)=1000x-50 000.(2)设该店继续购进了m 件航天模型玩具,根据题意,得(60-50)(1000+m)×20%=10 000,解得m=4 000.答:该店继续购进了4 000件航天模型玩具.。
一次函数的应用专题练习题1.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲、乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示,当甲车出发____h时,两车相距350 km.2.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮3.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(千米),甲行驶的时间为t(小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中正确结论的个数是( )A.4 B.3 C.2 D.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,关于y与x的函数关系如图所示,则甲车的速度是____米/秒.5.周末,小明骑自行车从家里出发到野外郊游,从家出发1 h后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家116h后,妈妈驾车沿相同路线前往湖光岩.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25 min时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线对应的函数解析式.6.小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?7.五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.(1)试求第几天销售量最大;(2)直接写出P关于n的函数关系式(注明n的取值范围);(3)经研究,该品牌衬衣的日销售量超过150件的时间为该品牌的流行期,请问:该品牌衬衣本月在市面上的流行期为多少天?8.某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)直接写出y与x之间的函数关系式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?答案:1. 32 分析:根据图象可得A 与C 的距离等于B 与C 的距离,根据行驶路程与时间的关系可得相应的速度,根据甲、乙之间的距离可得方程,解之可得答案.2. D3. B4. 205. 分析:(1)由函数图象的数据可得答案;(2)根据题意求出C 点的坐标和妈妈驾车的速度,由待定系数法即可求出CD 的解析式.解:(1)由题意得,小明骑车的速度为20÷1=20(km /h ),小明在南亚所游玩的时间为2-1=1(h ) (2)由题意得,小明从南亚所到湖光岩的时间为2560+116-2=14(h ),∴小明从家到湖光岩的路程为20×(1+14)=25(km ),∴妈妈驾车的速度为25÷2560=60(km /h ),易知C(94,25).设直线CD 对应的函数解析式为y =kx +b ,由题意得⎩⎪⎨⎪⎧0=116k +b ,25=94k +b ,解得⎩⎨⎧k =60,b =-110,∴直线CD 对应的函数解析式为y =60x -1106. 解:(1)s =⎩⎨⎧50t (0≤t ≤20)1000(20<t ≤30)50t -500(30<t ≤60)(2)可求爸爸所走的路程与步行时间的关系式为s=30t +250,由题意得50t -500=30t +250,解得t =37.5,即t =37.5 min 时,小明与爸爸第三次相遇 (3)由题意得30t +250=2500,解得t =75,即小明的爸爸到达公园需要75 min ,∵小明到达公园需要的时间是60 min ,而小明希望比爸爸早20 min 到达公园,60+20-75=5(min ),则小明在步行过程中停留的时间需减少5 min7. 分析:(1)设第a 天销售量最大,从而得出方程10+25(a -1)=15(31-a),解方程即可得出答案;(2)利用待定系数法求解;(3)利用不等式组的知识求解.解:(1)设第a 天的销售量最大,所以日销售量从最大开始减小到0的天数为(31-a),依题意得10+25(a -1)=15(31-a),解得a =12,故第12天的销售量最大(2)P =⎩⎨⎧25n -15(1≤n ≤12,且n 为整数)-15n +465(12<n ≤31,且n 为整数) (3)由题意得⎩⎨⎧25n -15>150,-15n +465>150,解得635<n <21,整数n 的值可取7,8,9,…,20,共14个,所以该品牌衬衣本月在市面上的流行期为14天8. 解:(1)y =⎩⎨⎧2x (0≤x ≤15,且x 为整数)-6x +120(15<x ≤20,且x 为整数)(2)当10≤x ≤20时,p =-15x +12,当x =10时,销售单价为10元,销售金额为10×20=200(元);当x =15时,销售单价为9元,销售金额为9×30=270(元) (3)若日销售量不低于24千克,则y ≥24,当0≤x ≤15时,y =2x ,由2x ≥24得x ≥12;当15<x ≤20时,y =-6x +120,由-6x +120≥24,得x ≤16,∴12≤x ≤16,∴“最佳销售期”共有16-12+1=5(天).∵p =-15x +12(10≤x ≤20),-15<0,∴p 随x 的增大而减小,∴当12≤x ≤16时,x 取12时p 有最大值,此时p =-15×12+12=9.6,即销售单价最高为9.6元。
4.4 一次函数的应用(1)基础导练1 •如果正比例函数的图象经过点(2,4),那么这个函数的表达式为______________ .2 •已知y与x成正比例,且x=3时,y二_6,则y与x的函数关系式是_____________ .3 •若直线y =kx +1,经过点(3,2),则k = ___________ .4. _____________________________________________________________ 已知一次函数y=kx—2,当x=2时,y=-6,贝U当x=—3时,y= ____________________ .5. 若一次函数y=kx-(2k+1)的图象与y轴交于点A(0,2),则k= _____________ .6 .已知点A(3,0),B(0, ;),C(1,m)在同一条直线上,则m= ___________ .7. 已知两条直线y i =漱 b , y^k2x b?的交点的横坐标为x o且k . 0 , k2 ::: 0,当x • x。
时,则( )A. % 二y?B. % y?C. mD. y - y?8. —次函数y二kx・b的图象经过点A (0,-2)和B(-3,6)两点,那么该函数的表达式是( )8 8A. y - -2x 亠6 B . y = -2x C. y - -8x - 6 D . y x —23 39. 正比例函数y二kx的图象经过点(1,-3),那么它一定经过的点是( )1 1A . (3, -1)B . (-,1)C . ( ~3,1)D . (-—,1)3 310 .正比例函数的图象经过点A(-3,5),写出这个正比例函数的解析式.11 .已知一次函数的图象经过点(2,1)和(-1,-3).(1)求此一次函数的解析式.(2)求此一次函数与x轴、y轴的交点坐标.能力提升12•北京到秦皇岛全程约400千米,汽车以每小时80千米的速度从北京出发,t小时后离秦皇岛s千米,写出s与t之间的函数关系式.13•某供电公司为了鼓励居民用电,采用分段计费的方法来计算电费,月用电量x (度)与相应电费y (元)之间的函数图象如图所示.(1) ______________________________________ 填空:当用电量为100度时,应交电费___________________ 元;(2) 当x _100时,求y与x的函数关系式;(3) 当用电量为260度时,应交电费多少元?14 .已知点M(4,3)和N(1,-2),点P在y轴上,且PM + PN最短,求点P的坐标.15•已知一次函数y寺m和y + n的图象都经过点A(2。
一次函数的应用练习一、基础训练1.一次函数y=2x-3与y=-x+1的图象的交点坐标为_______.2.直线y=-2x+b与x轴交于(-1,0),则不等式-2x+b<0的解集是_______.3.直线y=-x-2与y=x+3的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.直线y=kx+1与直线y=2x+m的交点坐标为(-3,4),则关于x,•y•的方程组的解为________.5.如图是表示一骑自行车者和一骑摩托车者沿着相同路线由甲地到乙地行驶过程中行驶时间与行驶距离变化的情况,已知甲,乙两地之间的距离是60千米,•请你根据此图回答:(1)谁出发得较早?早多长时间?谁先到达?(2)从自行车出发开始,几小时后两人在途中相遇?(3)当摩托车出发后,在什么时间段内,自行车在摩托车前?在什么时间段时,•自行车在摩托车后?(4)设行驶时间为x(时),自行车与摩托车离开甲地的距离分别为y1(千米),y2(千米),分别写出x与y1,y2之间的函数关系式.6.已知直线y=-23x+3与y=2x-1,求它们与y轴所围成的三角形的面积.7.如图,已知直线L1:y1=k1x+b1和L2:y2=k2x+b2相交于点M(1,3),根据图象判断:(1)x取何值时,y1=y2?(2)x取何值时,y1>y2?(3)x取何值时,y1<y2?8.在一次函数y=2x+3的图象上,求出和两坐标轴距离相等的点的坐标.二、提高训练9.某水电站的蓄水有2个进水口,1个出水口,每个进水口进水量与时间的关系如图7-5-12甲所示,出水口出水量与时间的关系如图7-5-12所示,已知某天0点到6点,•进行机组试运行,试机时至少打开1个水口,•且该水池的蓄水量与时间的关系如图7-5-12丙所示:给出以下判断:①0到到3点只进水不出水; ②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是()A.① B.② C.②③ D.①②③10.飞机起飞后所到达的高度与时间有关,描绘这一关系的图象可能为()11.小莉和小惠在一次400米跑测试中的情况如图所示,•你能在图中得到哪些信息?请至少写出三条.12.如图,L 1表示神风摩托厂一天的销售收入与摩托车的销售量之间的关系;L 2表示摩托厂一天的销售成本与销售量之间的关系. (1)写出销售收入与销售量之间的函数关系式; (2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时,销售收入等于销售成本? (4)一天的销售量超过多少辆时,工厂才能获利?13.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m 3时,按2元/m 3计费;月用水量超过20m 3时,其中的20m 3仍按2元/m 3收费,超过部分按2.6元/m 3计费.设每户家庭日用水量为xm 3时,应交水费y 元. (1)分别求出0≤x≤20和x>20时, y 与x 的函数表达式;(2)小明家第二季度交纳水费的情况如上:小明家这个季度共用水多少立方米?三、拓展训练月 份 四月份 五月份 六月份 交费金额30元34元42.6元14.请自选一个你感兴趣的问题情境,运用数学建模的方法来解决,具体要求:(1)叙述问题情境;(2)明确研究哪两个变量之间的关系;(3)叙述建模的方法和过程;(4)获得哪些有意义的结果.答案:1.(43,-13) 2.x>-1 3.B 4.3,4xy=-⎧⎨=⎩5.(1)自行车,2小时,摩托车(2)3小时(3)x<•3时,自行车在前;x>3时,摩托车在前(4)y1=10x,y2=30x-60 6.3 7.(1)x=1 (2)•x<1 (3)x>1 8.(-3,-3)或(-1,1)9.A 10.A 11.略 12.(1)y=x (2)y=12x+2 (3)4辆(4)4辆13.(1)y=2x,y=2.6x-12 (2)53m2 14.略感谢您的阅读,祝您生活愉快。
一次函数的应用1.如图,是某工程队修路的长度y(单位:m)与修路时间t(单位:天)之间的函数关系.该工程队承担了一项修路任务,任务进行一段时间后,工程队提高了工作效率,则该工程队提高效率前每天修路的长度是()米.A.150B.110C.75D.702.早上9点,甲车从A地出发去B地,20分钟后,乙车从B地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图,下列描述不正确的是()A.AB两地相距240千米B.乙车平均速度是90千米/小时C.乙车在12:00到达A地D.甲车与乙车在早上10点相遇3.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,在乙园采摘需总费用y2元.y1、y2与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘更多4.学过一次函数的知识后,某数学兴趣小组通过实验估计某液体的沸点,经过几次测量,得到如下数据当加热80s时,该液体沸腾,则其沸点温度是()时间t(单位:S)0102030液体温度y(单位:°C)15253545A.100°C B.90°C C.85°C D.95°C5.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过2千米但不超过5千米时,每千米的费用是()A.1元B.1.1元C.1.2元D.2.5元6.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A.20kg B.25kg C.28kg D.30kg7.王老师一家自驾游去了离家170千米的黄山,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,他们出发2小时时,离目的地还有()千米.A.40B.60C.110D.1308.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,之后只出水不进水,每分的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图.则下列说法正确的是( )A .进水管每分钟的进水量为4LB .当4<x ≤12时,y =54x +12 C .出水管每分钟的出水量为54LD .水量为15L 的时间为3min 或16min9.小明从家出发到商场购物后返回,如图表示的是小明离家的路程s (m )与时间t (min )之间的函数关系,已知小明购物用时30min ,返回速度是去商场的速度的1.2倍,则a 的值为( )A .46B .48C .50D .5210.声音在空气中传播的速度(简称声速)v (m /s )与空气温度t (℃)满足一次函数的关系(如表格所示),则下列说法错误的是( )温度t /℃ … ﹣20 ﹣10 0 10 20 30 … 声速v /(m /s )…318324330336342348……A .温度越高,声速越快B .当空气温度为20℃时,声速为342m /sC .声速v (m /s )与温度t (℃)之间的函数关系式为v =35t +330 D .当空气温度为40℃时,声速为350m /s11.物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)间有下表的关系.下列说法不正确的是()x/kg01234y/cm1517192123A.因变量y是自变量x的一次函数B.当弹簧长度为18cm时,所挂物体的质量为0.5kgC.随着所挂物体重量的增加,弹簧长度逐渐变长D.所挂物体的重量每增加1kg,弹簧长度增加2cm12.如图,落落同学从家沿着笔直的公路去跑步锻炼,她离开家的距离y(米)与时间t(分钟)的函数关系式的图象如图所示,下列结论中不正确的是()A.整个进行过程花了40分钟B.整个进行过程共跑了2700米C.在途中停下来休息了5分钟D.返回时休息后的速度比去的时候小60米/分13.某校增设了多种体育选修课来锻炼学生的体能,小颖从教学楼以1米/秒的速度步行去操场上乒乓球课,她从教学楼出发的同时小华从操场以5米/秒的速度跑步回教学楼拿球拍,再立刻以原速度返回操场上乒乓球课.已知小颖、小华之间的距离y(米)与出发时间x (秒)的部分函数图象,则下列说法错误的是()A.点C对应的横坐标表示小华从操场到教学楼所用的时间B.x=30时两人相距120米C.小颖、小华在75秒时第二次相遇D.CD段的函数解析式为y=﹣4x+40014.如图1是某湖最深处的一个截面图,湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=ah+P0,其图象如图2所示,其中P0为湖水面大气压强,a为常数且a>0,点M的坐标为(34.5,342),根据图中信息分析,下列结论正确的是()A.湖水面大气压强为76.0cmHgB.函数解析式P=ah+P0中P的取值范围是P<342C.湖水深20m处的压强为256cmHgD.P与h的函数解析式为P=8h+66(0≤h≤34.5)15.声音在空气中传播的速度v(简称声速)与空气温度t的关系(如下表所示),则下列说法错误的是()温度t/℃﹣20﹣100102030声速v/(m/s)318324330336342348 A.温度越高,声速越快B.在这个变化过程中,自变量是温度t,t是v的函数C.当空气温度为20℃,声速为342m/sD.声速v与温度t之间的关系式为v=35t+33016.小明同学在一次学科综合实践活动中发现,某品牌鞋子的长度ycm与鞋子的码数x之间满足一次函数关系,下表给出y与x的一些对应值:码数x26303442长度ycm18202226根据小明的数据,可以得出该品牌38码鞋子的长度为()A.24cm B.25cm C.26cm D.38cm17.美美在研究物体吸热与放热知识时,用相同的电加热器分别对质量为0.2kg的水和0.3kg的另一种液体进行加热,得到实验数据如图所示.下列说法错误的是()18的关系,并画出图象(AC是线段,射线CD平行于x轴),下列说法错误的是()19.李强一家自驾车到离家500km的九寨沟旅游,出发前将油箱加满油.如表记录了轿车行驶的路程x(km)与油箱剩余油量y(L)之间的部分数据:下列说法不正确的是()轿车行驶的路程x/km0100200300400…油箱剩余油量y/L5042342618…A.该车的油箱容量为50L B.该车每行驶100km耗油8LC.油箱剩余油量y(L)与行驶的路程x(km)之间的关系式为y=50﹣8xD.当李强一家到达九寨沟时,油箱中剩余10L油20.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm)与所挂物体质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg01234…y/cm88.599.510…A.y与x的函数表达式为y=8+0.5xB.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式中一次项系数表示“所挂物体质量每增加1kg弹簧伸长的长度”D.挂30kg物体时,弹簧长度为23cm一次函数的应用参考答案一.选择题(共20小题)1.C; 2.D; 3.D; 4.D; 5.A; 6.A; 7.A; 8.D; 9.D; 10.D;11.B;12.B;13.D;14.D;15.B;16.A;17.C;18.B;19.C;20.D;。
《一次函数的应用》练习题
一、典型例题:
1. 已知y+2与x 成正比例,且x=-2时,y=0.
(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?
(4)若点(m ,6)在该函数的图象上,求m 的值;
(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.
2. 判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.
3. 如图所示,已知直线y=x+3的图象与x 轴、y 轴交于A ,B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1的两部分,求直线l 的解析式.
4. 在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点.
(1)判断点(1,2),(4,4)M N 是否为和谐点,并说明理由;
(2)若和谐点(,3)P a 在直线()y x b b =-+为常数上,求点,a b 的值.
5. 如图,直线l 1:y =kx +b 平行于直线y =x -1,且与直线l 2:y =mx + 1 2
交于P (-1,0).
(1)求直线l 1、l 2的解析式;
(2)直线l 1与y 轴交于点A .一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线l 2上的点B 1处后,改为垂直于x 轴的方向运动,到达直线l 1上的点A 1处后,再沿平行于x 轴的方向运动,到达直线l 2上的点B 2处后,又改为垂直于x 轴的方向运动,到达直线l 1上的点A 2处后,仍沿平行于x 轴的方向运动,…照此规律运动,动点C 依次经过点B 1,A 1,B 2,A 2,B 3,A 3,…,B n ,A n ,…
①求点B 1,B 2,A 1,A 2的坐标;
②请你通过归纳得出点A n 、B n 的坐标;并求当动点C 到达A n 处时,运动的总路径的长.
6. 如图,在平面直角坐标系xOy 中,直线1y x =+与334
y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.
(1)求点A B C ,,的坐标.(2)当CBD △为等腰三角形时,求点D 的坐标.
(3)在直线AB 上是否存在点E ,使得以点E D O A ,,,为顶点的四边形是平行四边形?如果存在,直线写出BE
CD
的值;如果不存在,请说明理由.
二、巩固练习:
1. 如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,
那么从图象中可看出,复印超过100面的部分,每面收费( )
A 、0.4元
B 、0.45 元
C 、约0.47元
D 、0.5元
2. 在平面直角坐标系中,已知直线34
3+-=x y 与x 轴、y 轴分别交于A 、B 两点,点C(0,n)是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )
A.(0,43)
B.(0,3
4) C.(0,3) D.(0,4) 3. 如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )
4. 如图,已知A 点坐标为(5,0),直线y=x +b (b>0)与y 轴交于点B ,连接
AB ,∠α=75°,则b 的值为( ) A.3 B.
335 C.4 D.435 5. 如图所示,函数x y =1和3
4312+=x y 的图象相交于(-1,1), (2,2)两点.当21y y >时,x 的取值范围是( )
A .x <-1
B .—1<x <2
C .x >2
D . x <-1或x >2
6. 已知梯形ABCD 的四个顶点的坐标分别为A (-1,0),B (5,0),C (2,2),D (0,2),直线y=kx +2将梯形分成面积相等的两部分,则k 的值为( )
A. -
32 B. -92 C. -74 D. -7
2 7. 如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )
8. 如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么ABP △的面积S 与点P 运动的路程x 之间的函数图象大致是( )
9. 右图是某条公共汽车线路收支差额y 与乘客量x 的图像(收支差额=车票收入-支出费用) 由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格。
下面给出四个图像(如图所示)则( )
A .①反映了建议(2),③反映了建议(1)
B .①反映了建议(1),③反映了建议(2)
C .②反映了建议(1),④反映了建议(2)
D .④反映了建议(1),②反映了建议(2)
10. 如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在x
隧道内的长度y 之间的关系用图象描述大致是( )
11.某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km 计算,甲汽车租凭公司每月收取的租赁费为y 1元,乙汽车租凭公司每月收取的租赁费为y 2元,若y 1、y 2与x 之间的函数关系如图所示,其中x =0对应的函数值为月固定租赁费,则下列判断错误..的是( )
A .当月用车路程为2000km 时,两家汽车租赁公司租赁费用相同
B .当月用车路程为2300km 时,租赁乙汽车租赁公车比较合算
C .除去月固定租赁费,甲租赁公司每公里收取的费用比乙租赁公司多
D .甲租赁公司平均每公里收到的费用比乙租赁公司少
12. 甲、乙两人以相同路线前往距离单位10km 的培训中心参加学习.
图中l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (km)随时
间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;
②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出
发6分钟后追上甲.其中正确的有( )
A.4个
B.3个
C.2个
D.1个
13.如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0),则下列说法:
①y 随x 的增大而减小;②b >0;③关于x 的方程0kx b +=的解为2x =.其中 说法正确的有 (把你认为说法正确的序号都填上).
14. 如图所示,在矩形ABCD 中,动点P 从点B 出发,沿
BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,
△ABP 的面积为y ,如果y 关于x 的函数图象如图所示,
那么△ABC 的面积是 .
15.如图,一次函数2y=23
x -+的图象分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰Rt △ABC ,∠BAC=90°.求过B 、C 两点直线的解析式.
16. 如图,在平面直角坐标系中,点(30)C -,
,点A B ,分别在x 轴,y 轴的正半轴上,且满足2
310OB OA -+-=.(1)求点A ,点B 的坐标.
(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,
连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S
与t的函数关系式,并写出自变量的取值范围.
17.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米. 小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁.图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
18. 小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?。