等静压成形
- 格式:ppt
- 大小:2.98 MB
- 文档页数:1
复杂金属零件热等静压整体成形技术
复杂金属零件热等静压整体成形技术是一种通过热等静压成形工艺制造复杂金属零件的方法。
该技术的核心是在金属原料加热到合适温度后,将其置于模具中,在高压和高温下施加力量,使金属原料充分填充模具的空腔。
在这个过程中,金属原料的温度和压力会导致其变形和流动,最终形成所需的复杂形状。
与传统的机械加工方法相比,复杂金属零件热等静压整体成形技术具有以下优点:
1. 高精度和高表面质量:热等静压成形可以实现近净成形,减少后续加工的需求,从而提高成品的精度和表面质量。
2. 省材料和节能环保:热等静压成形技术可以将金属原料的利用率提高到90%以上,减少材料浪费。
同时,相对于传统的
机械加工方法,热等静压成形不需要大量削减金属材料,节约能源,并且减少了废弃物和废气的产生,对环境更友好。
3. 生产效率高:热等静压成形可以一次完成多个工序,减少了制造过程中的中间传递和安装时间,提高了生产效率。
4. 适用性广:热等静压成形技术适用于各种金属材料,包括钢、铁、铝等,能够制造出各种形状和尺寸的复杂零件。
总之,复杂金属零件热等静压整体成形技术是一种先进的制造
方法,具有高精度、高效率、高环保等优点,被广泛应用于航空航天、汽车、船舶等领域的零部件制造。
粉末等静压成型及应用粉末等静压成型是一种常见的粉末冶金加工技术。
它通过将金属或陶瓷粉末填充到模具中,然后施加压力使其固化成形。
在这个过程中,粉末颗粒相互接触并结合,形成一体化的物体。
粉末等静压成型具有以下优点:成型精度高、尺寸精确、结构均匀、性能高、耐磨、内部无缺陷等。
因此,它被广泛应用于很多领域,包括汽车、航空航天、电子、机械等。
粉末等静压成型的过程包括几个关键步骤:1. 原料准备:首先需要选择合适的金属或陶瓷粉末作为原料。
这些粉末的颗粒大小、形状和成分对最终产品的质量和性能有重要影响。
通常情况下,粉末还需要经过预处理,如筛选、混合等。
2. 填充模具:将经过处理的粉末填充到模具中。
填充过程需要保证粉末均匀分布,并且要考虑到产品形状和尺寸的要求。
3. 施加压力:填充好粉末后,需要施加压力使其固化。
压力的大小取决于原料的特性和所需成品的要求。
通常情况下,压力需在几十到几百兆帕范围内。
4. 固化和烧结:施加压力后,粉末会被压实并结合成形。
接下来,产品需要经过固化和烧结的过程,以进一步增强其力学性能和密度。
5. 后处理:最后,成品需要进行后处理,如研磨、抛光、涂漆等,以增强其表面质量和外观。
粉末等静压成型的应用非常广泛。
以下是一些典型的领域和应用:1. 汽车工业:粉末等静压成型技术可以用于生产发动机零件、传动系统、悬挂系统等各种汽车部件。
这些部件通常需要高强度、高精度和复杂的形状,而粉末等静压成型可以满足这些要求。
2. 航空航天工业:航空航天领域对材料的要求非常高,需要具有轻量化、高强度和高耐热性能的部件。
粉末等静压成型可以制造出复杂的航空航天部件,如涡轮叶片、发动机零件等。
3. 电子行业:粉末等静压成型可以用于制造电子元器件,如传感器、连接器等。
这些元器件通常需要高精度和高可靠性,而粉末等静压成型可以实现精细的形状和尺寸控制。
4. 机械工业:粉末等静压成型可以用于制造各种机械零件,如齿轮、减振器、液压元件等。
等静压技术及应用1.等静压技术 (1)1.1等静压技术的介绍及发展情况 (1)1.2等静压技术的应用 (3)2.冷等静压技术 (4)2.1冷等静压在陶瓷中的应用 (4)2.2在粉末冶金中的应用 (6)2.3冷等静压技术在食品加工行业中的应用 (7)3.热等静压 (8)3.1热等静压技术在硬质合金中的应用 (9)3.2在粉末冶金中的应用 (11)3.3在陶瓷中的应用 (11)等静压技术1.1等静压技术的介绍及发展情况等静压成形技术是一种利用密闭高压容器内零件受到各向均等的超高压压力状态进行成形的先进制造技术,根据静压力基本方程(p=p+pgh),盛放在密闭容器内的液体,其外加压强p。
发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。
这就是说,在密闭容器内,施加于静止液体上的压强将以等值同时传到各点,这就是等静压成形的原理。
目前等静压技术的应用领域主要集中在粉末高压固化烧结、扩散连接及组件扩散连接等领域。
其分类也根据产品成形温度的不同分为冷等静压技术(常温,一般使用压力为100~ 630MPa)、温等静压技术(温度一般在80~120℃下,压力为300MPa 左右)热等静压技术(工作温度一般为1000~2200℃,工作压力常为100~200MPa。
)。
等静压技术作为一种先进成形技术,与传统的成形技术相比具有明显的优势,主要集中在:第一.等静压成形的产品,具有密度高而分布均匀、产品内部不存在气泡、成品晶粒间显微孔隙度很低,其力学性能与电性能均比别的成形方法好。
第二.等静压制品几乎无内应力,压坯可以直接进窑烧结,不会翘曲与开裂。
第三.制作长径比(长度与直径之比)很大的产品是轻而易举的事,而其他方法是则是事倍功半或者无法实现。
第四.制作高熔点、高硬度材料的大型产品及形状复杂的产品。
第五.等静压成形的坯体比其他成形方法制得坯体烧成温度低并且不会污染高纯度的压坯材料由于等静压技术有着传统材料成形方法所无法比拟的优点,并且随着新材料新工艺的不断出现,使得等静压设备的需求不断增加,其产品的应用领域不断扩大,特别是1955 年美国巴特尔研究所为了研制核反应堆的材料而开发了热等静压应用技术以来,经过70~80年代,各国开始的高技术热潮也有力地推动了HIP 技术的发展,将热等静压技术作为陶瓷、高温合金、复合材料成形的一种重要的工艺手段。
高密度粉末冶金成形方法研究及优化一、引言高密度粉末冶金成形技术是一种通过在粉末表面施加压力和温度实现金属材料成形的加工工艺。
该技术具有高效率、低成本、高精度、可逆性和可重复性等优点。
因此,在改进传统的金属成形过程以及开发新型金属材料时,高密度粉末冶金成形技术已成为一种备受关注的重要研究领域。
二、高密度粉末冶金成形方法的分类高密度粉末冶金成形技术根据成形前后粉末状况的变化,可分为以下几种方法:1. 等静压成形 (HIP)等静压成形是一种将高密度金属粉末放入成型模具中,先以低压力进行预压,随后在高温和高压力的条件下加以成形的加工方法。
等静压成形方法可以制造出具有高密度和高性能的复杂形状金属零件,如滚轮轴承、配气机构、燃气轮机叶片等等。
2. 烧结成型烧结成型是一种通过在制备过程中在粉末中添加一些粘结剂,使得粉末在高温条件下粘结在一起,然后进行成形的方法。
这种方法可以制造出高精度、高可靠性和抗热性能强的机械结构件和高强度、低密度的材料。
3. 挤压成形挤压成形是一种通过将金属粉末放入旋转式模具中,在模具两端施加压力来实现成形的加工方法。
这种方法较其他成形方式更为简单,适用于制作一些规则结构的中间件、链接件和管道接头。
4. 等离子粉末成形等离子粉末成形是一种将金属粉末喷射到等离子体火焰中进行高温加热,通过表面张力形成液态金属,并恰当地加压形成零件的一种成形工艺。
等离子粉末成形方法操作简单、可加工出具有高密度、高强度和高耐磨性的金属零件。
三、高密度粉末冶金成形方法的优化为了进一步提高高密度粉末冶金成形技术的加工效率、成形质量和材料性能,需要进行相应的优化。
优化方案一:材料的合理选择选择合适的材料是决定高密度粉末冶金成形成功与否的关键因素之一。
高密度粉末冶金成形的理想材料是那些粒度大小适中、形状均匀、流动性能好而且作为粉末冶金材料的化学成分方面相同或相似的金属粉末。
因此,选择质量优良、粘度适中的金属粉末是高密度粉末冶金成形过程中一个非常重要的环节。
陶瓷等静压成型工艺稿子一嘿,朋友!今天咱们来聊聊陶瓷等静压成型工艺,这可真是个有趣的话题呢!你知道吗,陶瓷等静压成型工艺就像是给陶瓷一个超级舒适的“按摩”,让它们乖乖地变成我们想要的形状。
想象一下,把陶瓷粉末放进一个软软的模具里,然后从各个方向均匀地施加压力。
这压力可厉害了,就像无数双温柔又有力的手,把陶瓷粉末紧紧地压在一起,不留一点缝隙。
这样做出来的陶瓷,密度均匀,强度高,品质那叫一个棒!而且哦,这个工艺能做出各种形状复杂的陶瓷制品。
不管是圆圆的碗,还是奇形怪状的装饰品,都不在话下。
就像是魔法一样,能满足我们各种奇思妙想。
在操作的时候,可不能马虎。
得控制好压力的大小和时间,不然陶瓷可能就“发脾气”,做不出完美的样子啦。
怎么样,是不是觉得陶瓷等静压成型工艺很神奇?我反正是被它深深吸引了,每次看到那些精美的陶瓷制品,都会想到背后这个厉害的工艺。
稿子二亲,咱们来唠唠陶瓷等静压成型工艺哈!这工艺啊,就像是陶瓷世界里的一场奇妙冒险。
一开始,把那些细细的陶瓷粉末准备好,就像给小士兵们排好队。
然后呢,把它们放进专门的模具里,这时候好戏才开始!从四面八方来的压力,均匀又稳定,就好像给这些小粉末来了一场“团结大会”,让它们紧紧地抱在一起,变成一个结实的整体。
你别小看这压力,它可是有讲究的。
太大了,陶瓷可能会受不了;太小了,又达不到理想的效果。
所以啊,这得靠师傅们的经验和技巧,就像大厨掌握火候一样,要恰到好处。
等静压成型后的陶瓷,那可真是让人眼前一亮。
表面光滑细腻,内部结构也特别紧实,质量杠杠的!用这样的陶瓷做出来的东西,既美观又耐用。
而且哦,这个工艺还能让陶瓷变得更有创意。
可以做出各种独特的形状和设计,满足不同人的喜好。
感觉就像是陶瓷在这个工艺的帮助下,尽情地展现自己的魅力。
怎么样,是不是对陶瓷等静压成型工艺有了新的认识?我反正每次想到这个,都觉得太神奇啦!。
1.为什么要控制松装密度:2.如何提高粉末的p松和流动性:松装密度高的粉末流动性也好,方法:粒度粗、形状规则、粒度组成用粗+细适当比例、表面状态光滑、无孔或少孔隙3.粉末颗粒有哪几种聚集形式,他们之间的区别在哪里:1、一次颗粒,二次颗粒(聚合体或聚集颗粒),团粒,絮凝体 2,通过聚集方式得到的二次颗粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华引力粘结而成的,其结合强度不大,用磨研、擦碎等方法或在液体介质中就容易被分散成更小的团粒或单颗粒;絮凝体是在粉末悬浮液中,由单颗粒或二次颗粒结合成的更松软的聚集颗粒4.雾化法可生产哪些金属粉末:常用于:铁、钢(低合金、高合金、不锈钢等), Cu、Al及其合金, Pb、Sn, Superalloy, Ti合金等.5.雾化法制取金属粉末有哪些优点,简述雾化法和气体雾化法的基本原理:优点:①易合金化—可制得预合金粉末(因需熔化), 但完全预合金化后, 又易使压缩性下降. 一般采用部分预合金.②在一定程度上, 粒度、形状易控制. ③化学成分均匀、偏析小, 且化学成分较还原粉为纯. ④生产规模大(2)都属于二流雾化法,即利用高速气流或高压水击碎金属液流,破坏金属原子间的键合力,从而制取粉末6.影响电解铜粉粒度的因素有哪些:(1)电解液的组成1)金属离子浓度的影响。
2)酸度(或H+浓度)的影响;3)添加剂的影响(2)电解条件1)电流密度的影响;2)电解液温度的影响;3)电解时搅拌的影响;4)刷粉周期的影响;5)关于放置不溶性阳极和采用水内冷阴极问题7.电解法可生产哪些金属粉末,为什么:、1)水溶液电解法:可生产铜、镍、铁、银、锡、铅,铬、锰等金属粉末,在一定条件下可使几种元素同时沉积而制得Fe-Ni、Fe-Cu等合金粉末。
(2)熔盐电解法:可以制取Ti、Zr、Ta、Nb、Th、U、Be等纯金属粉末,也可以制取如Ta-Nb等合金粉末以及各种难熔化合物(5如碳化物、硼化物和硅化物等)8.欲得细W粉,应如何控制各种因素:(1) 采用两阶段还原法,并控制WO2的粒度细;(2)减少WO3的含水量和杂质含量;(3)H2入炉前应充分干燥脱水以减少炉内水蒸气的浓度;(4)还原,从而可得细W粉);(5)采用顺流通H2法;(6)减小炉子加热带的温度梯度;(7)减小推舟速度和舟中料层的厚度;(8)WO3中混入添加剂(如重铬酸氨的水溶液)9.简述侧压力及其侧压系数:10.压制压力分配:压制压力分配:①使粉末产生位移、变形和克服粉末的内摩擦(粉末颗粒间的) —净压力P1;②用来克服粉末颗粒与模壁之间外摩擦的力—压力损失P2 .总压力为净压力与压力损失之和:压力降原因:粉末与模壁之间的摩擦力随压制压力而增减,在压坯高度上产生压力降压力分布不均匀的原因:由于粉末颗粒之间的内摩擦、粉末颗粒与模壁之间的外摩擦等因素影响, 压力不能均匀地全部传递, 传到模壁的压力始终小于压制压力.11.压坯中密度分布不均匀的状况及其产生的原因是什么?如何改善密度分布?密度分布不均匀的状况:一般,高度方向和横断面上都不均匀. ①平均密度从高而低降低.②靠近上模冲的边缘部分压坯密度最大; 靠近模底的边缘部分压坯密度最小.③当H/D(高径比)较大时,则上端中心的密度反而可能小于下端中心的密度. 产生的原因:压力损失改善压坯密度不均匀的措施:①在不影响压坯性能前提下, 充分润滑; ②采用双向压制; ③采用带摩擦芯杆的压模; ④采用浮动模; ⑤对于复杂形状采用组合模冲, 并且使各个模冲的压缩比相等; ⑥改善粉末压制性(压缩性、成形性)—还原退火;⑦改进模具构造或适当变更压坯形状 . ⑧提高模具型腔表面硬度和光洁度. HRC58~63,粗糙度9级以上.12.压坯可分为哪几类?压坯形状设计一般原则是什么?压坯形状分类①Ⅰ型柱状、筒状、板状等最简单形状压坯,如,汽车气泵转子.模具由阴模、一个上模冲、一个下模冲及芯棒等组成.②Ⅱ型端部有外凸缘或内凸缘的一类压坯; 如汽车转向离合器导承.模具由阴模、一个上模冲、两个下模冲及芯棒等组成.③Ⅲ型上、下端面都有两个台阶面的一类压坯,如汽车变速器毂.模具由阴模、两个上模冲、两个下模冲及芯棒等组成.④Ⅳ型下端面有三个台阶面的一类压坯,如汽车发动机的带轮毂.模具由阴模、一个上模冲、三个下模冲及芯棒等组成.⑤Ⅴ型上端面有两个台阶面、下端面有三个台阶面的一类压坯,如汽车的变速器齿毂.模具由阴模、两个上模冲、三个下模冲及芯棒等组成. 当压坯外凸缘的径向尺寸小时, 可用带台阴模成形的话, 则可压制成形下部有四个台阶面的压坯.13.什么是弹性后效?它对压坯有何影响?弹性后效:在去除P压后,压坯所产生的胀大现象。