裂项相消课件,
- 格式:ppt
- 大小:441.00 KB
- 文档页数:41
第5讲 简便计算(四)—— 列项相消法(拆分法)一:裂项相消法(拆分法):把一个分数拆成两个或两个以上分数相减或相加的形式,然后再进行计算的方法叫做裂项相消法,也叫拆分法。
二:列项相消公式(1)111(n 1)1n n n =-++ (2)()11k n n k n n k =-++ (3)1111()(n )n k n n k k=-⨯++ (4)()()()()()1111121122n n n n n n n ⎛⎫=-⨯ ⎪ ⎪+++++⎝⎭ (5)11a b a b a b+=+⨯ (6)22a b b a a b a b+=+⨯ 三:数列(1)定义:按一定的次序排列的一列数叫做数列。
(2)数列中的每一个数叫做这个数列的项。
依次叫做这个数列的第一项(首项)、第二 项、、、、、、第n 项(末项)。
(3)项数:一个数列中有几个数字,项数就是几。
四:等差数列(1)定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
而这个常数叫做等差数列的公差。
(2)等差数列的和=(首项+末项)×项数÷2(3)等差数列的项数=(末项-首项)÷公差+1(4)等差数列的末项=首项+公差×(项数-1)三:经典例题例1、111111112233445566778++++++⨯⨯⨯⨯⨯⨯⨯ (例1、例2、例3的运算符号都是加号相连,分母都可以分解为两个连续正整数的积可用公式111(n 1)1n n n =-++)例2、1111111 261220304256 ++++++例3、111111111 1+3+5+7+9+11+13+15+17+19 612203042567290110例4、111111 133557799111113 +++++⨯⨯⨯⨯⨯⨯例5、11111315356399++++例6、111111+3+5+7+9315356399144771*********⨯⨯⨯⨯⨯例8、22222 +++++ 1335572001200320032005⨯⨯⨯⨯⨯例9、3579111315-+-+-+261220304256例10、354963779110561220304256-+-+-(例9和例10的运算符号是一减一加,分母能分解成两个连续数相乘,分子恰好是这两个数相加的和。