牛顿第二定律
- 格式:docx
- 大小:114.31 KB
- 文档页数:4
牛顿第二定律牛顿第二定律是经典力学中最基本、最重要的定律之一。
它描述了物体所受力与物体运动状态之间的关系。
根据牛顿第二定律,物体的加速度与施加在物体上的合力成正比,与物体的质量成反比。
本文将详细介绍牛顿第二定律的原理、公式及其应用。
一、定律的原理牛顿第二定律的原理可以总结为以下公式:F = ma其中,F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
该公式表明,一个物体所受的力越大,其加速度也越大;而物体的质量越大,则所受的力对其产生的加速度越小。
二、公式的推导牛顿第二定律的公式可以通过以下推导得到:首先,我们知道力的定义可以表示为:F = dp/dt其中,F表示力,p表示物体的动量,t表示时间。
根据动量的定义,我们有:p = mv其中,m表示物体的质量,v表示物体的速度。
对动量求导数得到:dp/dt = m(dv/dt) + v(dm/dt)将dp/dt代入力的定义中,得到:F = m(dv/dt) + v(dm/dt)由于质量m在运动过程中一般保持不变,所以dm/dt为0,上式可以简化为:F = m(dv/dt)根据加速度的定义a = dv/dt,上式可以再次简化为:F = ma三、应用举例牛顿第二定律可以应用于各种场景中,以下是几个常见的例子:1. 自由落体运动当物体在重力作用下自由下落时,其受到的合力仅为重力,根据牛顿第二定律,物体的加速度与重力之间满足:F = mg = ma其中,m表示物体的质量,g表示重力加速度,上式可以简化为:a = g这就是为什么在自由落体运动中,所有物体的加速度都相等且为重力加速度的原因。
2. 匀速圆周运动在匀速圆周运动中,物体受到向心力的作用,根据牛顿第二定律,向心力与物体的质量、向心加速度之间满足:F = mv²/r = ma其中,m表示物体质量,v表示物体在圆周上的速度,r表示圆周半径,上式可以简化为:v²/r = a这说明向心加速度与速度的平方成正比,与圆周半径的倒数成正比。
牛顿第二定律七个公式牛顿第二定律是经典力学中的基本原理之一,描述了力、质量和加速度之间的关系。
其公式可以表示为F = ma,其中F代表物体所受的合力,m代表物体的质量,a代表物体的加速度。
根据这个公式,我们可以通过给物体施加合适的力来控制物体的运动状态。
下面列举牛顿第二定律的七个公式,并对每个公式进行简单的解释:1. F = ma:这是牛顿第二定律最基本的公式。
它表明,物体所受的力(F)与其加速度(a)成正比,而与其质量(m)成反比。
因此,在同样的力下,质量越大的物体加速度越小,而质量越小的物体加速度越大。
2. F = Δp/Δt:这个公式将牛顿第二定律与动量定理联系起来。
它表明,物体所受的合力等于其动量改变率。
这个公式在研究碰撞等情况时非常有用。
3. F = G(m1m2/r^2):这个公式是万有引力定律的形式之一。
它表明,物体所受的引力等于质量之积与距离平方的倒数的乘积,与牛顿第二定律类似。
4. F = kx:这个公式是胡克定律的形式之一。
它表明,弹性力等于形变量与劲度系数的乘积。
这个公式在研究弹簧、弹性绳等物体的弹性性质时非常有用。
5. F = Bqv:这个公式描述了磁场中带电粒子所受的洛伦兹力。
它表明,粒子所受的力等于磁场强度、粒子电荷和其速度的乘积。
6. F = -k/r^2:这个公式描述了库仑力的形式。
它表明,两个带电粒子之间的力与它们之间的距离平方的倒数成反比。
7. F = -dU/dx:这个公式描述了势能的形式。
它表明,物体所受的力等于其势能对位置的负梯度。
这个公式在研究重力场、电场等情况时非常有用。
总之,牛顿第二定律是自然界中许多物理现象的基础,其公式在科学研究和工程应用中具有广泛的应用。
物理牛顿第二定律
1 牛顿第二定律
牛顿第二定律是1687年英国物理学家牛顿在《自然哲学的数学原理》中提出的一项重要定律。
它指出,物体在作用于物体的外力的作
用下,物体受到力的大小等于物体质量乘以加速度。
牛顿第二定律公式:F = ma
该公式表示,受力物体的加速度a受外力F及其质量m的影响而
变化,使其总量为F/m。
由此可知,受力物体的加速度越大,拉力越大。
2 法定变量
牛顿第二定律的构成有二:力F和加速度a。
F代表外力,m表示
施加外力的物体的质量,a代表受力物体的加速度。
加速度是从外力引起受力物体产生动量的变化程度,它决定着外力作用力大小。
3 其他因素
在计算牛顿第二定律时,要注意力的方向:面对方向相反的外力
的作用,它们的加速度也会受到影响。
比如,物体由北向南移动时,
它会受到南向移动的外力的抵消。
另外,还要注意外力的大小,越大的
外力可以使受力物体的加速度更大。
4 应用
牛顿第二定律是物理学中最基本的定律之一,也是非常重要的定律。
大多数物理学家都以牛顿第二定律为准绳,更深入地研究和解释物理学问题。
它不仅在工程领域,在生物、固体和化学领域也应用较为广泛。
初中物理之牛顿第二定律
牛顿第二定律是物理学中非常重要的一条定律,它描述了物体受力时产生加速度的关系。
根据牛顿第二定律,一个物体的加速度与作用在其上的力成正比,与物体的质量成反比。
牛顿第二定律的数学表达式为:
F = ma
其中,F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
牛顿第二定律指出,当作用在物体上的力增加时,物体的加速度也会增加;而当物体的质量增加时,物体的加速度会减小。
这个定律的重要性在于它可以用来解释物体在外力作用下的运动规律。
通过牛顿第二定律,我们可以计算物体在给定作用力下的加速度,进而预测物体的运动状态。
牛顿第二定律广泛应用于力学、动力学等领域。
它不仅对解释
宇宙中的运动现象有着重要的作用,也在工程领域中有着广泛的应用。
例如,在建筑设计中,我们可以通过使用牛顿第二定律来计算
桥梁、楼房等结构物所承受的力和应变情况。
总结一下,牛顿第二定律是初中物理中的重要内容,它描述了
物体在受力作用下的加速度与力和质量的关系。
通过牛顿第二定律,我们可以解释和预测物体的运动行为,在实际应用中也能发挥重要
的作用。
牛顿第二定律一、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式F=ma.理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,Fx =max,Fy=may, 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。
(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2.(5)应用牛顿第二定律解题的步骤:二、经典问题问题1:必须弄清牛顿第二定律的瞬时性。
牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
例1、如图2(a )所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度。
问题2:必须弄清牛顿第二定律的独立性。
当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。
牛顿第二定律概念解释
定律内容:物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.
牛顿第二定律的三个性质:
(1)矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定.牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同.
(2)瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系.牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应.
对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定.当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义.例如,物体在力F1和力F2的共同作用下保持静止,这说明物体受到的合外力为零.若突然撤去力F2,而力F1保持不变,则物体将沿力F1的方向加速运动.这说明,在撤去力F2后的瞬时,物体获得了沿力F1方向的加速度a1.撤去力F2的作用是使物体所受的合外力由零变为F1,而同时发生的是物体的加速度由零变为a1.所以,物体运动的加速度和合外力是瞬时对应的.(即F、a同生同灭)
(3)相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系.地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立.。
牛顿第二定律概念梳理:一、牛顿第二定律1.内容:物体的加速度跟所受的合力成正比,跟物体的质量成反比.加速度的方向跟合力的方向相同.2.表达式:F=ma.3.适用范围(1)牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.4.牛顿第二定律的“五性”(1)矢量性:公式F=ma是矢量式,任一时刻,F与a总是同向(2)瞬时性:a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受的合外力(3)因果性:F是产生加速度a的原因,加速度a是F作用的结果(4)同一性(有三层意思):①加速度a是相对同一个惯性系的(一般指地面);②F=ma中,F、m、a对应同一个物体或同一个系统;③F=ma中,各量统一使用国际单位(5)独立性①作用于物体上的每一个力各自产生的加速度都满足F=ma;②物体的实际加速度等于每个力产生的加速度的矢量和;③分力和加速度在各个方向上的分量也满足F=ma,即F x=ma x,F y=ma y。
二、两类动力学问题1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.三、单位制1.单位制由基本单位和导出单位共同组成.2.力学单位制中的基本单位有长度(m) ,质量(kg) ,时间(s).3.导出单位有力(N),速度(m/s),加速度(m/s2)等.4.国际单位制中的基本单位考点精析:应用牛顿第二定律解决两类动力学问题一、力、加速度、速度间的关系1.物体所受合外力的方向决定了其加速度的方向,合力与加速度的大小关系是F =ma ,只要有合力,不管速度是大,还是小,或是零,都有加速度,只有合力为零,加速度才能为零.一般情况下,合力与速度无必然的关系,只有速度变化才与合力有必然的联系. 2.合力与速度同向时,物体加速,反之减速.3.力与运动的关系:力是改变物体运动状态的原因,即:力→加速度→速度变化(运动状态变化).物体所受到的合外力决定了物体当时加速度的大小,而加速度的大小决定了单位时间内速度的变化量的大小.加速度大小与速度大小无必然的联系.4.加速度与力有瞬时对应的关系,即力变加速度也一定同时变,而此时速度没变化,因速度变化不能在瞬间实现,需时间保证. 二、应用牛顿第二定律的解题步骤1.明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.2.分析物体的受力情况和运动情况.画好受力分析图,明确物体的运动性质和运动过程. 3.选取正方向或建立坐标系.通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.基本物理量 符号 单位名称 单位符号 质量 m 千克 kg 时间 t 秒 s 长度 l 米 m 电流I 安[培] A 热力学温度 T 开[尔文] K 物质的量 n 摩[尔] mol 发光强度IV坎[德拉]cd4.求合外力F合.5.根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论.【例1】如图所示,质量m=10kg的物体在水平面上向左运动,物体与水平面间的动摩擦因数为0.2,与此同时物体受到一个水平向右的推力F=20N的作用,则物体产生的加速度是()(g取为10m/s2)A.0 B.4m/s2,水平向右C.2m/s2,水平向左 D.2m/s2,水平向右【练习】如图所示,质量为60kg的运动员的两脚各用750N的水平力蹬着两竖直墙壁匀速下滑,若他从离地12m高处无初速匀加速下滑2s可落地,则此过程中他的两脚蹬墙的水平力均应等于()(g=10m/s2)A.150N B.300NC.450N D.600N【例2】如图所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?【练习】如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A 点,然后释放,物体一直可以运动到B点,如果物体受到的阻力恒定,则() A.物体从A到O先加速后减速B.物体从A到O加速运动,从O到B减速运动C.物体运动到O点时所受合力为0D.物体从A到O的过程加速度逐渐减小【例3】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg.(g=10m/s2,sin37°=0.6,cos37°=0.8)(1)求车厢运动的加速度并说明车厢的运动情况.(2)求悬线对球的拉力.【练习】如图所示,一倾角为θ的斜面上放着一小车,小车上吊着小球m,小车在斜面上下滑时,小球与车相对静止共同运动,当悬线处于下列状态时,分别求出小车下滑的加速度及悬线的拉力.(1)悬线沿竖直方向;(2)悬线与斜面方向垂直;(3)悬线沿水平方向.【练习】如图所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上减速运动,a与水平方向的夹角为θ,求人受的支持力和摩擦力.【例4】质量为m的物体放在倾角为α的斜面上,物体和斜面间的动摩擦系数为μ,如沿水平方向加一个力F,使物体沿斜面向上以加速度a做匀加速直线运动,如下图,则F多大?【练习】如图所示,物体m原以加速度a沿斜面匀加速下滑,现在物体上方施一竖直向下的恒力F,则下列说法正确的是( )A.物体m受到的摩擦力不变B.物体m下滑的加速度增大C.物体m下滑的加速度变小D.物体m下滑的加速度不变【例5】如图所示,物体沿斜面由静止滑下,在水平面上滑行一段距离后停止,物体与斜面和水平面间的动摩擦因数相同,斜面与水平面平滑连接.下图中v、a、F f和s分别表示物体速度大小、加速度大小、摩擦力大小和路程.下图中正确的是()【练习】如图所示,放在光滑面上的木块受到两个水平力F1与F2的作用而静止不动,现保持F1大小和方向不变,F2方向不变,使F2随时间均匀减小到零,再均匀增加到原来的大小,在这个过程中,能正确描述木块运动情况的图像是图中的()【例6】科研人员乘气球进行科学考察,气球、座舱、压舱物和科研人员的总质量为990 kg.气球在空中停留一段时间后,发现气球漏气而下降,及时堵住,堵住时气球下降速度为 1 m/s,且做匀加速运动,4 s内下降了12 m,已知气球安全着陆的速度为2 m/s.为使气球安全着陆.向舱外迅速抛出重101 kg的重物.若空气阻力和泄漏气体的质量可忽略,重力加速度g取9.89 m/s2,求抛掉重物后气球达到安全着陆速度的时间.【练习】有一种大型游戏机叫“跳楼机”,参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40 m高处,然后由静止释放.可以认为座椅沿轨道做自由落体运动2 s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4 m高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10 m/s2)求:(1)座椅在自由下落结束时刻的速度是多大;(2)座椅在匀减速阶段的时间是多少;(3)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍.【例7】如图所示,物体从斜坡上的A 点由静止开始滑到斜坡底部B 处,又沿水平地面滑行到C 处停下,已知斜坡倾角为θ,A 点高为h ,物体与斜坡和地面间的动摩擦因数都是μ,物体由斜坡底部转到水平地面运动时速度大小不变,求B 、C 间的距离.【练习】如图所示,在光滑水平面AB 上,水平恒力F 推动质量为m =1 kg 的物体从A 点由静止开始做匀加速直线运动,物体到达B 点时撤去F ,接着又冲上光滑斜面(设经过B 点前后速度大小不变,最高能到达C 点,用速度传感器测量物体的瞬时速度,表中记录了部分测量数据),求: (1)恒力F 的大小. (2)斜面的倾角α.(3)t =2.1 s 时物体的速度.(g 取10 m/s 2)t(s) 0.0 0.2 0.4 … 2.2 2.4 2.6 … v(m/s) 0.00.40.8…3.02.01.0…θ A CBh牛顿第二定律 练习一、单项选择题1.如图所示,静止在光滑水平面上的物体A ,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短的过程中,物体的速度和加速度的变化情况是 ( ) A .速度增大,加速度增大B .速度增大,加速度减小C .速度先增大后减小,加速度先增大后减小D .速度先增大后减小,加速度先减小后增大2.质量为m 的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为F f ,加速度为a =13g ,则F f 的大小是 ( ) A .F f =13mg B .F f =23mgC .F f =mgD .F f =43mg3.由同种材料制成的物体A 和B 放在长木板上,随长木板一起以速度v 向右做匀速直线运动,如图所示.已知m A >m B ,某时刻木板停止运动,下列说法正确的是 ( ) A .若木板光滑,由于A 的惯性较大,A 、B 间的距离将增大B .若木板光滑,由于B 的惯性较小,A 、B 间的距离将减小C .若木板粗糙,A 、B 一定会相撞D .不论木板是否光滑,A 、B 间的相对距离都保持不变4.如图所示,位于光滑固定斜面上的小物块P 受到一水平向右的推力F 的作用.已知物块P 沿斜面加速下滑.现保持F 的方向不变,使其减小,则加速度 ( )A .一定变小B .一定变大C .一定不变D .可能变小,可能变大,也可能不变5.如图所示,在光滑水平面上,有两个质量分别为m 1和m 2的物体A 、B ,m 1>m 2,A 、B 间水平连接着一轻质弹簧秤.若用大小为F 的水平力向右拉B ,稳定后B 的加速度大小为a 1,弹簧秤示数为F 1;如果改用大小为F 的水平力向左拉A ,稳定后A 的加速度大小为a 2,弹簧秤示数为F 2.则以下关系式正确的是 ( )A .a 1=a 2,F 1>F 2B .a 1=a 2,F 1<F 2C .a 1=a 2,F 1=F 2D .a 1>a 2,F 1>F 26.如图所示,木块A置于木块B上,A、B质量均为0.05 kg.A、B两木块静止时,弹簧的压缩量为2 cm;再在木块A上施加一向下的力F,当木块A下降4 cm时,木块A和B静止,弹簧仍在弹性限度内,g取10 m/s2.撤去力F的瞬间,B对A的作用力的大小是()A.2.5 N B.0.5 NC.1.5 N D.1 N二、双项选择题1.第二十二届世界大学生冬季运动会自由滑比赛中,中国小将张丹/张昊毫无争议地再夺第一名,为中国队夺得第一枚本届大冬会金牌.花样滑冰表演刚开始时他们静止不动,如图所示,随着优美的音乐响起,他们在相互猛推一下后分别向相反方向运动,假定两人的冰刀和冰面间的动摩擦因数相同,已知张丹在冰面上滑行的距离比张昊滑行得远,这是由于() A.在推的过程中,张丹推张昊的力小于张昊推张丹的力B.在推的过程中,张丹推张昊的时间等于张昊推张丹的时间C.在刚分开时,张丹的初速度大于张昊的初速度D.在分开后,张丹的加速度的大小小于张昊的加速度的大小2.如图所示,匀速上升的升降机顶部悬有一轻质弹簧,弹簧下端挂有一小球.若升降机突然停止上升,在地面上的观察者看来,小球在继续上升的过程中()A.速度逐渐减小B.速度先增大后减小C.加速度逐渐增大D.加速度逐渐减小3.如图甲所示,在粗糙水平面上,物块A在水平向右的外力F的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是()A.在0~1 s内,外力F不断增大B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断减小D.在3~4 s内,外力F的大小恒定4.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图所示.在物体始终相对于斜面静止的条件下,下列说法中正确的是()A.当θ一定时,a越大,斜面对物体的正压力越小B.当θ一定时,a越大,斜面对物体的摩擦力越大C.当a一定时,θ越大,斜面对物体的正压力越小D.当a一定时,θ越大,斜面对物体的摩擦力越小三、计算题1.质量为100 t的机车从停车场出发,经225 m后速度达到54 km/h,此时司机关闭发动机,让机车进站,机车又行驶125 m才停在站上,设运动过程中阻力不变,求机车关闭发动机前所受到的牵引力的大小.2.如图所示,质量M=10 kg、倾角θ=30°的木楔ABC静置于粗糙水平地面上,动摩擦因数μ=0.02,在木楔的斜面上,有一质量m=1.0 kg的物块由静止开始沿斜面下滑,当滑行距离s=1.4 m时,其速度v=1.4 m/s.在此过程中木楔没有动,求地面对木楔的摩擦力的大小和方向.(g=10 m/s2)答案1.D 2.B3.D4.B5.A6.C1.BC2.AC3.BC 4.BC 1.1.4×105 N 2.0.61 N,方向水平向左。
牛顿第二定律的公式
牛顿第二定律公式:F=ma。
牛顿第二运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。
该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。
牛顿第二运动定律
牛顿第二运动定律只适用于质点。
对质点系,用牛顿第二运动定律时一般采用隔离法,或者采用质点系牛顿第二定律。
牛顿第二运动定律只适用于惯性参考系。
惯性参考系是指牛顿运动定律成立的参考系,在非惯性参考系中牛顿第二运动定律不适用。
牛顿第二运动定律只适用宏观问题。
解决微观问题必须使用量子力学。
当考察物体的运动线度可以和该物体的德布罗意波相比拟时,由于粒子运动不确定性关系式,物体的动量和位置已经是不能同时准确获知的量了,因而牛顿动力学方程缺少准确的初始条件无法求解。
牛顿第二定律
牛顿第二定律(Newton's second law of motion)表明,物体所受到的外力等于动量对时间的一阶导数(一次微分值)。
当物体在运动中质量不变时,牛顿第二定律也可以用质量与加速度的乘积表示。
1687年,英国物理泰斗艾萨克‧牛顿在钜著《自然哲学的数学原理》里,提出了牛顿运动定律,其中有三条定律,分别为牛顿第一定律、牛顿第二定律与牛顿第三定律。
牛顿第二定律又称为“加速度定律”。
牛顿第二定律被誉为经典力学的灵魂。
在经典力学里,它能够主导千变万化的物体运动与精彩有序的物理现象。
牛顿第二定律的用途极为广泛,它可以用来设计平稳地耸立于云端的台北101摩天大厦,也可以用来计算从地球发射火箭登陆月球的运动轨道。
牛顿第二定律是一个涉及到物体运动的理论,根据这定律,任意物体的运动所出现的改变,都是源自于外力的施加于这物体。
这理论导致了经典力学的诞生,是科学史的一个里程碑,先前只是描述自然现象的理论不再被采纳,取而代之的是这个创立了一种理性的因果关系架构的新理论。
实际而言,经典力学的严格的因果属性,对于西方思想与文明的发展,产生了很大的影响。
牛顿第二定律的概念
牛顿第二定律是经典物理学中的基本定律之一,它描述了物体加速度与作用力之间的关系。
以下是关于牛顿第二定律的详细解释:
1.定义
牛顿第二定律可以定义为:物体所受的合外力等于物体的质量乘以物体的加速度,即F=ma。
其中,F代表合外力,m代表物体的质量,a代表物体的加速度。
2.公式
牛顿第二定律的公式是F=ma,这个公式表明了作用力、质量和加速度之间的直接关系。
当物体受到的外力发生变化时,物体的加速度也会相应地变化。
3.物理意义
牛顿第二定律的物理意义是,当物体受到的合外力不为零时,物体将产生加速度,并且加速度的大小与合外力的大小成正比,与物体的质量成反比。
这意味着,如果物体所受的合外力增大,物体的加速度也会增大;如果物体所受的合外力减小,物体的加速度也会减小。
4.适用范围
牛顿第二定律适用于所有惯性参考系下的物体。
这意味着,在不受外力或所受合外力为零的情况下,物体将保持静止或匀速直线运动。
此外,牛顿第二定律也适用于宏观低速运动的物体,不适用于微观高速运动的粒子。
5.与第一定律的关系
牛顿第一定律(也称为惯性定律)指出,物体在没有外力作用时将保持静止或匀速直线运动。
而牛顿第二定律则进一步解释了物体在外力作用下的运动规律。
因此,牛顿第一定律是牛顿第二定律的基础,两者共同构成了经典力学的基本原理。
牛顿第二定律一、牛顿第二定律1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同.2.公式:F=ma3、对牛顿第二定律理解:(1)F=ma 中的F 为物体所受到的合外力.(2)F =ma 中的m ,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F 是系统受到的合外力,则m 是系统的合质量.(3)F =ma 中的 F 与a 有瞬时对应关系, F 变a 则变,F 大小变,a 则大小变,F 方向变a 也方向变.(4)F =ma 中的 F 与a 有矢量对应关系, a 的方向一定与F 的方向相同。
(5)F =ma 中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F =ma 中,F 的单位是牛顿,m 的单位是千克,a 的单位是米/秒2.(7)F =ma 的适用范围:宏观、低速【例1】如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m 的物体,一端用P N 的拉力,结果物体上升的加速度为a 1,后来将P N 的力改为重力为P N 的物体,m 向上的加速度为a 2则( )A .a 1=a 2 ;B .a 1>a 2 ;C 、a 1<a 2 ;D .无法判断简析:a 1=P/m ,a 2=p/(m +gP )所以a 1>a 2 注意: F =ma 关系中的m 为系统的合质量.二、突变类问题(力的瞬时性)(1)物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用的物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零(物体运动的加速度可以突变)。
(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A .轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。
牛顿第二定律即牛顿第二运动定律物体加速度的大小跟物体受到的作用力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
而以物理学的观点来看,牛顿运动第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”,即动量对时间的一阶导数等于外力之和。
牛顿第二定律说明了在宏观低速下,比例式表达:a∝F/m,F∝ma;用数学表达式可以写成F=kma,其中的k为比例系数,是一个常数。
但由于当时没有规定多大的力作为力的单位,比例系数k的选取就有一定的任意性,如果取k=1,就有F=ma,这就是今天我们熟知的牛顿第二定律的数学表达式。
1英文名称Newton's Second Law of Motion-Force and Acceleration2内容物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比。
加速度的方向跟作用力的方向相同.在国际单位中,力的单位是牛顿,符号N,它是根据牛顿第二定律定义的:使质量为1kg 的物体产生1m/s²加速度的力,叫做1N。
即1N=1kgm/s²。
3公式F合=ma注:单位为N(牛)或者kgm/s²(千克米每二次方秒)动量为p的物体,在合外力为F的作用下,其动量随时间的变化率等于作用于物体的合外力。
用通俗一点的话来说,就是以t为自变量,p为因变量的函数的导数,就是该点所受的合外力。
即:而当物体低速运动,速度远低于光速时,物体的质量为不依赖于速度的常量,所以有这也叫动量定理。
在相对论中F=ma是不成立的,因为质量随速度改变,而依然适用。
由实验可得在加速度一定的情况下,在质量一定的情况下。
(只有当F以N,m以kg,a以为单位时,F合=ma成立)牛顿第二定律可以用比例式来表示,这就是:a∝F/m 或F∝ma这个比例式也可以写成等式:其中k是比例系数。
[1](详见高中物理人教版教材必修一p74页)简介1、牛顿第二定律是力的瞬时作用规律。
4-3
一、选择题(本大题共6小题,每小题5分,共30分)
1.(多选)(2017·南通高一检测)某物体在粗糙水平面上受一水平恒定拉力F作用由静止开始运动,下列四幅图中,能正确反映该物体运动情况的图象是()
【解析】物体所受合力一定,由F=ma知加速度a恒定,故C错误,D正确;又由v=at知v与t 成正比,A正确;由s=1
2知s与t2成正比,故B错误。
2at
【答案】AD
2.(多选)(2017·成都高一检测)力F1单独作用在物体A上时产生的加速度a1大小为5 m/s2,力F2单独作用在物体A上时产生的加速度a2大小为2 m/s2,那么,力F1和F2同时作用在物体A上时产生的加速度a的大小可能是()
A.5 m/s2B.2 m/s2C.8 m/s2D.6 m/s2
【解析】设物体A的质量为m,则F1=ma1,F2=ma2,当F1和F2同时作用在物体A上时,合力的大小范围是F1-F2≤F≤F1+F2,即ma1-ma2≤ma≤ma1+ma2,加速度的大小范围为3 m/s2≤a≤7 m/s2,正确选项为A、D。
【答案】AD
3.(多选)如图所示,沿平直轨道运动的火车车厢中有一光滑的水平桌面,桌面上有一弹簧和小球,弹簧左端固定,右端拴着小球,弹簧处于原长状态。
现发现弹簧的长度变短,关于弹簧长度变短的原因,以下判断中正确的是()
A.火车可能向右运动,速度在增加
B.火车可能向右运动,速度在减小
C.火车可能向左运动,速度在增加
D.火车可能向左运动,速度在减小
【答案】AD
4.(2016·海南高考)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图所示。
已知物体与斜面之间的动摩擦因数为常数,在0~5 s、5~10 s、10~15 s内F的大小分别为F1、F2和F3,则()
A.F1<F2B.F2>F3
C.F1>F3D.F1=F3
【解析】加速下滑过程,有mg sin θ-F1-f=ma,匀速下滑过程,有mg sin θ-F2-f=0,减速下滑时,有F3-mg sin θ+f=ma,故有F1<F2<F3。
【答案】A
5.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断的瞬间,吊篮P和物体Q的加速度大小分别是()
A.a P=g a Q=g B.a P=2g a Q=g
C.a P=g a Q=2g D.a P=2g a Q=0
【解析】原来平衡,弹簧弹力F与Q重力mg相等。
细绳烧断瞬间,弹簧弹力不变,故Q所受合力
仍为零,故a Q=0;P受到重力mg和弹簧向下的压力mg,故加速度a P=F+mg
m
=2mg
m
=2g。
【答案】D
6.
(2017·玉溪高一检测)如图所示,在光滑水平面上有甲、乙两木块,质量分别为m1和m2,中间用一原长为L、劲度系数为k的轻质弹簧连接起来,现用一水平力F向左推木块乙,当两木块一起匀加速运动时,两木块之间的距离是()
A .L +Fm 2(m 1+m 2)k
B .L -Fm 1
(m 1+m 2)k
C .L -Fm 1m 2k
D .L +Fm 2
m 1k
【解析】 由牛顿第二定律,对甲、乙整体F =(m 1+m 2)a ,对甲kx =m 1a ,其中x 为弹簧的压缩量,解得x =m 1F (m 1+m 2)k ,所以两木块之间的距离为L -x =L -m 1F
(m 1+m 2)k
,B 正确。
【答案】 B
二、非选择题(本大题共2小题,共20分。
要有必要的文字说明和解题步骤,有数值计算的要注明单位)
7.(10分)(2017·沈阳高一检测)水平地面上的木箱质量为20 kg ,用大小为100 N 的水平力推木箱,恰好能使木箱匀速前进;若用同样大小的力与水平方向成37°角斜向上拉木箱,如图所示,木箱的加速度多大?(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)
【解析】 如图甲所示,木箱匀速运动时滑动摩擦力F f =μmg =F ,所以μ=F f mg =F mg =10020×10=0.5
木箱加速运动时,如图乙所示
水平方向由牛顿第二定律知 F cos 37°-μF ′N =ma 竖直方向F sin 37°+F ′N =mg
代入数据联立解得a =0.5 m/s 2 【答案】 0.5 m/s 2
8.(10分)质量为2 kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的v -t 图象如图所示。
g 取10 m/s 2,求:
(1)物体与水平面间的动摩擦因数μ; (2)水平推力F 的大小;
(3)0~10 s 内物体运动位移的大小。
【解析】 (1)物体做匀减速运动的时间为Δt 2=(10-6) s =4 s ,初速度为v 20=8 m/s ,末速度为v 2t =0,加速度为a 2,则a 2=v 2t -v 20
Δt 2
=-2 m/s 2
设物体所受的摩擦力为F f ,由牛顿第二定律得F f =ma 2 F f =-μmg
联立以上各式解得μ=0.2。
(2)物体做匀加速直线运动的时间为Δt 1=6 s ,初速度为v 10=2 m/s ,末速度为v 1t =8 m/s ,加速度为a 1,则
a 1=v 1t -v 10Δt 1
=1 m/s 2
根据牛顿第二定律,有F +F f =ma 1 联立以上各式解得F =6 N 。
(3)由匀变速直线运动位移公式,得
x =x 1+x 2=v 10Δt 1+12a 1Δt 21+v 20Δt 2+12a 2Δt 2
2=46 m 。
【答案】 (1)0.2 (2)6 N (3)46 m。