终值和现值的计算(2)
- 格式:docx
- 大小:22.53 KB
- 文档页数:4
第二章一、时间价值的计算(终值与现值):F-终值P-现值A-年金i-利率n-年数1、单利和复利:单利与复利终值与现值的关系:终值=现值×终值系数现值=终值×现指系数终值系数现指系数单利:1+ni1/(1+ni)复利:(F/P,i,n)=(1+i)n(P/F,i,n)=1/(1+i)n2、二个基本年金:普通年金的终值与现值的关系:年金终值=年金×年金终值系数年金现值=年金×年金现值系数F=A(F/A,i,n)P=A(P/A,i,n)年金系数:年金终值系数年金现值系数普通年金:(F/A,i,n)=[(1+i)n-1]/i(P/A,i,n)=[1-(1+i)-n]/i 即付年金:(F/A,i,n+1)-1(P/A,i,n-1)+13、二个特殊年金:递延年金P=A[(P/A,i,m+n)-(P/A,i,m)]=A[(P/A,i,n)(P/F,i,m)]]永续年金P=A/i4、二个重要系数:偿债基金(已知F,求A)A=F/(F/A,i,n)资本回收(已知P,求A)A=P/(P/A,i,n)5、i、n的计算:折现率、期间、利率的推算:折现率推算(已知终值F、现值P、期间n,求i)单利i=(F/P-1)/n复利i=(F/P)1/n-1普通年金:首先计算F/A=α或P/A=α,然后查(年金终值F/A)或(年金现值P/A)系数表中的n列找出与α两个上下临界数值(β1<α<β2)及其相对应的i1和i2。
用内插法计算i:(i-I1)/(α-β1)=(I2-I1)/(β2-β1)永续年金:i=A/P期间的推算(已知终值F、现值P、折现率i,求n)单利n=(F/P-1)/i复利:首先计算F/P=α或P/F=α,然后查(复利终值F/P)或(复利现值P/F)系数表中的i行找出与α两个上下临界数值(β1<α<β2)及其相对应的n1和n2。
用内插法计算n:(i-n1)/(α-β1)=(n2-n1)/(β2-β1)普通年金:首先计算F/A=α或P/A=α,然后查(年金终值F/A)或(年金现值P/A)系数表中的i行列找出与α两个上下临界数值(β1<α<β2)及其相对应的n1和n2。
现值终值年金计算公式现值终值年金计算公式是一种用于确定未来现金流的价值的数学模型。
它可用于预测未来的投资回报或贷款需支付的利息。
1. 现值终值年金计算公式的基本概念现值终值年金计算公式是基于时间价值的理论,认为现金在不同时间点的价值是不同的。
它假设贷款或投资的现金流在一定时间内是均匀分布的,并考虑了货币的时间价值,即同样的金额在不同时间点的价值是不同的。
2. 现值终值年金计算公式的公式表达现值终值年金计算公式有多种表达方式,其中最常见的是以下两种形式:(1)现值公式:现值(PV)= 终值(FV)/ (1 + 利率(r))^ 期数(n)(2)终值公式:终值(FV)= 现值(PV)* (1 + 利率(r))^ 期数(n)3. 现值终值年金计算公式的应用场景现值终值年金计算公式可以在很多实际场景中应用,例如:- 个人投资规划:通过计算未来现金流的现值或者终值,可以帮助个人做出更好的投资决策。
- 财务管理:企业可以使用现值终值年金计算公式来评估不同投资项目的回报率,并作出相应的决策。
- 贷款计算:银行或金融机构可以使用现值终值年金计算公式来确定贷款的利息和还款金额。
4. 现值终值年金计算公式的注意事项在应用现值终值年金计算公式时,需要注意以下几点:- 确定利率:利率是计算过程中一个关键的参数,需要根据实际情况确定,例如商业贷款利率、投资回报率等。
- 确定期数:期数指的是现金流的发生次数,可以根据具体情况选择合适的时间段,例如年、月等。
- 考虑现金流方向:现值和终值要根据实际情况确定正负号,以反映现金流的流入或流出。
5. 现值终值年金计算公式的实例分析为了更好地理解现值终值年金计算公式的应用,我们以个人投资为例进行实例分析:假设小明决定每个月定期投资1000元,希望在10年后获得一定的回报。
如果假设投资回报率为5%,现值终值年金计算公式可以帮助他计算出该投资的现值和终值。
根据现值公式:现值(PV)= 1000 * (1 - (1 + 0.05)^ -120) / 0.05计算结果为:现值(PV)= 1000 * (1 - 1.647009)/ 0.05 ≈ 14825.17根据终值公式:终值(FV)= 1000 * ((1 + 0.05)^ 120 - 1) / 0.05计算结果为:终值(FV)= 1000 * (1.802784 - 1) / 0.05 ≈ 13505.68通过上述计算,我们可以得到小明投资现金流的现值约为14825.17元,终值约为13505.68元。
1、复利终值和现值(1)复利终值=现值×复利终值系数,即s = p×(1+i)n式中(1+i)n称为复利终值系数,记作(s/p,i,n)(2)复利现值=终值×复利现值系数,即p=s×(1+i)?C n式中(1+i)?C n称为复利现值系数,记作(p/s,i,n)【要点提示】①题目不作特别说明,i均为年利率;一年通常为360天;②题目不作特别指明,均采用复利计算时间价值。
2、普通年金终值和现值年金是指等额、定期的系列收支。
年金有两个特点:一是每次发生的金额相等;二是每次发生的时间间隔相等。
普通年金是指各期期末收付的年金。
(1)普通年金终值普通年金终值=年金×年金终值系数,即【要点提示】①年金不一定是每年发生一次,也可能是一个月发生一次;年金既可以是款项的支付,也可以是款项的收入。
②在考试中,该系数的具体数值通常会在试卷前面给出,故需要学会如何利用“年金终值系数表”获取具体的数值。
(2)偿债基金实际工作中,往往需要推算年金。
如果已知年金终值,求年金,就是求偿债基金。
计算偿债基金年金的方法实际上是将年金终值折算成年金。
偿债基金年金=终值×偿债基金系数=终值÷年金终值系数,即:A=s/(s/A,i,n)=s×(A/s,i,n)式中,(A/s,i,n) 称为偿债基金系数,它是年金终值系数的倒数。
(3)普通年金现值普通年金现值是指为在每期期末取得相等金额的款项,现在需要一次投入的金额;也可以理解为,在未来每期期末取得的相等金额的款项折算为现在的总的价值。
按照终值和现值的关系:现值=终值/(1+i)n,故:普通年金现值=年金×年金现值系数,即p=A×(p/A,i,n)(4)投资回收额如果已知年金现值求年金,就是求投资回收额。
计算投资回收额的方法实际上就是将年金现值折算成年金。
投资回收额=年金现值×投资回收系数=年金现值÷年金现值系数即:A= p×(A/p,i,n)= p/(p/A,i,n)式中,(A/p,i,n) 称为投资回收系数,它是年金现值系数的倒数。
终值和现值的计算公式是什么?
公式如下:
1、年金终值计算公式为:F=A*(F/A,i,n)=A*(1+i)n-1/i
其中(F/A,i,n)称作“年金终值系数”。
2、年金现值计算公式为:P=A*(P/A,i,n)=A*[1-(1+i)-n]/i
其中(P/A,i,n)称作“年金现值系数”。
扩展资料:
如果年金的期数n很多,用上述方法计算现值显然相当繁琐。
由于每年支付额相等,折算现值的系数又是有规律的,所以,可找出简便的计算方法。
先付年金现值:是其最后一期期末时的本利和,相当于各期期初等额收付款项的复利现值之和。
n期先付年金与n期普通年金的收付款次数相同,但由于付款时间不同,n期先付年金现值比n期普通年金的现值多计算一期利息。
因此在n期普通年金现值的基础上乘以(1+i)而将分母加1就得出n期先付年金的现值了。
客观题企业现在需购进一台设备,买价为 20000元,其应用年数为 10年,如果租用,则每年年初付租金 2500 元,不考虑其余的因素,如果利率 为 10%,则应采用购入的方式()。
答案:×解析:租金现值为 2500+2500( P/A ,10%,9)=2500+2500*5.7590=16897.5 (元),所以应该选择租赁的方式。
A 、 10×[( P/A , 10%, 15) - ( P/A , 10%, 5)] B 、 10×( P/A , 10%, 10) ( P/F 10%,5) C 、 10×[ ( P/A , 10%, 16) - ( P/A , 10%, 6)] D 、 10×[ ( P/A , 10%, 15) - ( P/A , 10%, 6)] 答案:AB解析:按递延年金求现值公式:递延年金现值 =A ×( P/A ,i ,n )×( P/F ,i ,m )=A ×[ ( P/A ,i , m+n )- ( P/A,i,m )],m 表示递延期,n+m 表示总期数,一定注意应将期初问题转化为期末,所以 m=5,n+m=15。
某企业向租赁公司租入设备一套,价值 200 万元,租期为 3 年,综合租赁费率为 10%,则每年年末支付的等额租金为( )A 、 60.42 万元 B 、 66.66 万元 C 、 84.66 万元 D 、 80.42 万元 答案: D解析:企业每年年末支付的租金 =200/ (P/A ,10%, 3)=200/2.4869=80.42 (万元)下列说法中正确的有()。
A 、复利终值系数和复利现值系数互为倒数B 、普通年金终值系数和偿债基金系数互为倒数C 、偿债基金系数和资本回收系数互为倒数D 、普通年金现值系数和资本回收系数互为倒数 答案: ABD解析:注意各种系数之间的对应关系。
货币时间价值知识点一:现值与终值的计算1.Q:某客户将从第3年末开始收到一份5年期的年金,每年金额为25,000元,如果年利率为8%,那么,他的这笔年金收入的现值大约是?这种题目为什么FV是0?请详细列出分析解题过程。
A:PV 即现值,也即期间所发生的现金流在期初的价值。
FV 即终值,也即期间所发生的现金流在期末的价值。
先求出5年年金的现值:PMT=25,000,I=8,N=5,g BEG,FV=0,求PV= 107,803.17,这一步是将所给年金理解为第4年年初起的期初年金,它的期间终点是第8年末,在这个时点上没有现金流,所以是0。
两种理解方式:先画出现金流量图(1)以第3-8年为年金期间,为期初年金:2.5PMT,8i,5n,0FV,g BEG,得到PV=-10.7803,这个值是第3年年末时点上的值,再折现到当前时点:10.7803FV,8i,3n,0PMT,g END,得到PV=-8.5578。
(2)以第2-7年为年金期间,为期末年金:2.5PMT,8i,5n,0FV,g END,得到PV=-9.9818,这个值是第2年年末时点上的值,再折现到当前点:9.9818FV,8i,2n,0PMT,得到PV=-8.5578。
2.Q:如果你的客户在第一年初向某投资项目投入150,000元,第一年末再追加投资150,000元,该投资项目的收益率为12%,那么,在第二年末,你的客户共回收的资金额大约是多少?请解释本题思路,以及财务计算器的操作步骤。
A:由于这个题中两次投入正好相等,所以可以理解为一个两年期的期初年金的终值问题,计算器操作步骤为:g BEG,2 n,,12 i,150,000 CHS PMT,0 PV,FV =356,160;另外一种方法是分别求出两次投入在第二年末的终值,然后再相加:150,000 CHS PV,2 n, 12 i, 0 pmt, FV 188,160, STO 1;150,000 CHS PV,1 n,12 i,0 PMT,FV 168,000,RCL 1 + 得356,160。
第二章一、时间价值的计算(终值与现值):F-终值P-现值A-年金i-利率n-年数1、单利和复利:单利与复利终值与现值的关系:终值=现值×终值系数现值=终值×现指系数终值系数现指系数单利:1+ni1/(1+ni)复利:(F/P,i,n)=(1+i)n(P/F,i,n)=1/(1+i)n2、二个基本年金:普通年金的终值与现值的关系:年金终值=年金×年金终值系数年金现值=年金×年金现值系数F=A(F/A,i,n)P=A(P/A,i,n)年金系数:年金终值系数年金现值系数普通年金:(F/A,i,n)=[(1+i)n-1]/i(P/A,i,n)=[1-(1+i)-n]/i 即付年金:(F/A,i,n+1)-1(P/A,i,n-1)+13、二个特殊年金:递延年金P=A[(P/A,i,m+n)-(P/A,i,m)]=A[(P/A,i,n)(P/F,i,m)]]永续年金P=A/i4、二个重要系数:偿债基金(已知F,求A)A=F/(F/A,i,n)资本回收(已知P,求A)A=P/(P/A,i,n)5、i、n的计算:折现率、期间、利率的推算:折现率推算(已知终值F、现值P、期间n,求i)单利i=(F/P-1)/n复利i=(F/P)1/n-1普通年金:首先计算F/A=α或P/A=α,然后查(年金终值F/A)或(年金现值P/A)系数表中的n列找出与α两个上下临界数值(β1<α<β2)及其相对应的i1和i2。
用内插法计算i:(i-I1)/(α-β1)=(I2-I1)/(β2-β1)永续年金:i=A/P期间的推算(已知终值F、现值P、折现率i,求n)单利n=(F/P-1)/i复利:首先计算F/P=α或P/F=α,然后查(复利终值F/P)或(复利现值P/F)系数表中的i行找出与α两个上下临界数值(β1<α<β2)及其相对应的n1和n2。
用内插法计算n:(i-n1)/(α-β1)=(n2-n1)/(β2-β1)普通年金:首先计算F/A=α或P/A=α,然后查(年金终值F/A)或(年金现值P/A)系数表中的i行列找出与α两个上下临界数值(β1<α<β2)及其相对应的n1和n2。