博弈论百度百科
- 格式:docx
- 大小:37.60 KB
- 文档页数:3
博弈论的定义1. 博弈论的基本概念博弈论,是现代数学的一个分支学科,研究在多人决策环境中人们的策略选择以及可能产生的结果。
从经济学、管理学、政治学、心理学等方面来分析和解决问题时,博弈论可以为人们提供决策的基础。
因此,博弈论不仅在学术上很有价值,在实践中也具有很高的应用价值。
2. 博弈论的应用范围博弈论的应用范围广泛,如军事策略、商业竞争、政治谈判、社会决策、环境决策等领域。
另外,也被广泛应用于运输、公共建设、医学治疗等社会实践活动中。
3. 博弈论的基本元素博弈论的基本元素是“参与者”、“策略”、“收益”和“信息”。
“参与者”是指在某一决策环境中的所有相关人员,如消费者、企业、政府或其他组织和个人等。
“策略”是参与者在决策过程中选择的行动方案,也是促进参与者在决策中优化收益的关键。
“收益”或“效用”是参与者最终得到的结果,通常在博弈论中用数字来表示,这些数字可以是财务收入、数字权益等。
“信息”也是参与者在决策中极为重要的因素。
它可以分为完全信息和不完全信息两种,完全信息是指参与者对决策过程中的所有信息都有充分了解,而不完全信息是指参与者对决策过程中的某些信息存在不确定性。
因此,在不完全信息博弈中,有时决策者需要采取一些策略来“模糊化”自己的策略,以避免让其他人知道他们实际上所做的决策。
4. 博弈论的经典模型- 零和博弈零和博弈是博弈论的基本模型之一,是指参与者的利益总和为零。
在这种情况下,一个人赢得的收益等于另一个人失去的收益,如象棋、扑克等所有参与者的输赢情况总是相互抵消的。
- 非零和博弈非零和博弈是一种参与者的利益总和不为零的博弈。
在这种情况下,一方的收益可以与另一方的收益同时增加,如合作博弈中的合作关系。
- 合作博弈合作博弈是指参与者可以在决策中合作以实现双方或多方的利益最大化。
在此类博弈中,参与者通常需要通过协商和合作达成共识。
- 非合作博弈非合作博弈是指参与者在决策中只考虑自己的利益。
盘点博弈论&纳什均衡&囚徒困境&零和博弈&智猪博弈1.博弈论是什么博弈论(game theory),又译为对策论,或者赛局理论,经济学的一个分支,1944年冯·诺伊曼与奥斯卡·摩根斯特恩合著《博弈论与经济行为》,标志着现代系统博弈理论的的初步形成,因此他被称为“博弈论之父”。
博弈论被认为是20世纪经济学最伟大的成果之一。
目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
具有竞争或对抗性质的行为称为博弈行为。
在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。
为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。
比如日常生活中的下棋,打牌等。
博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。
2.纳什均衡(Nash equilibrium)3.囚徒困境(Prisoner’s Dilemma)纳什平衡的经典例子就是囚徒困境。
囚徒困境(Prisoner’s Dilemma)是博弈论的非零和博弈中具代表性的例子,反映个人最佳选择并非团体最佳选择。
或者说在一个群体中,个人做出理性选择却往往导致集体的非理性。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
1950年,由就职于兰德公司的梅里尔·弗勒德和梅尔文·德雷希尔拟定出相关困境的理论,后来由顾问艾伯特·塔克以囚徒方式阐述,并命名为“囚徒困境”。
经典的囚徒困境如下:警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人有罪。
于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检控对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。
博弈论是一种处理竞争与合作问题的数学决策方法;研究竞争中参加者为争取最大利益应当如何做出决策的数学方法;根据信息分析及能力判断,研究多决策主体之间行为相互作用及其相互平衡,以使收益或效用最大化的一种对策理论;研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。
博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。
博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
博弈的分类根据不同的基准也有所不同。
一般认为,博弈主要可以分为合作博弈和非合作博弈。
它们的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。
从行为的时间序列性,博弈论进一步分为两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。
博弈论介绍博弈论是一门研究决策者如何在不确定环境中做出决策的数学理论。
它是经济学、政治学、社会学以及其它社会科学中重要的工具之一,也被广泛应用于计算机科学、生物学等领域。
博弈论通过分析不同参与者的策略选择和结果预测,揭示了人类行为背后的数学原理和心理动机。
在博弈论中,参与者被称为玩家,他们的目标是最大化自己的效用。
博弈论的研究对象是博弈,即一种决策过程,其中多个决策者在有限资源环境中选择不同策略,以达到自己的目标。
博弈分为合作博弈和非合作博弈。
在合作博弈中,玩家可以通过合作来实现最优结果;而在非合作博弈中,玩家没有合作的选择,只能依靠自己的策略来最大化效用。
博弈论的基本元素包括玩家、策略和支付。
玩家是参与博弈的个体或组织,他们在决策过程中根据自己的目标和信息选择策略。
策略是指玩家在博弈中可选的行动,可以是单一的动作,也可以是一系列行动的组合。
支付是玩家在博弈结束时得到的结果,通常用于衡量玩家在博弈中的成功程度。
在博弈论中,最常用的分析工具是博弈矩阵。
博弈矩阵是一个二维表格,其中每个单元格表示不同玩家在不同策略组合下的支付。
通过分析博弈矩阵,我们可以推断玩家的最佳策略选择以及最终结果。
博弈论的核心概念之一是纳什均衡。
纳什均衡是指在一个博弈中,每个玩家的策略选择都是最佳的,给定其他玩家的策略选择不变。
换句话说,不存在玩家可以通过改变自己的策略来获得更好的结果。
纳什均衡并不一定是最优策略,只是所有玩家选择的最稳定状态。
除了纳什均衡,博弈论还涉及许多其他的解概念,如部分均衡、极大极小解等。
这些解概念提供了不同的策略选择和结果预测方法,使得博弈论在实际应用中更加有价值。
博弈论的应用范围非常广泛。
在经济学中,博弈论被用于分析市场竞争、价格战略以及拍卖等问题。
在政治学中,博弈论可以帮助我们理解选举、国际关系以及公共政策制定等方面的决策过程。
在社会学中,博弈论可以揭示社会规范、合作问题以及社会团体之间的关系。
在计算机科学中,博弈论被广泛应用于人工智能、机器学习和多智能体系统等领域。
博弈论基础
博弈论是一门多学科交叉学科,它结合经济学、哲学、数学、计算机科学和心理学等学科,研究决策定者之间彼此博弈的结果。
弈论的最初出现是在20世纪40年代,它的主要研究动因也跟当时的历史环境有关系。
由于当时的政治环境紧张,许多国家都在考虑如何在竞争环境中实现最优的结果。
在博弈论的研究过程中,研究者会研究各种策略,确定一个最优的策略,以实现最优的结果。
例如,它可以用来研究两个竞争者之间的博弈,以确定哪一个会是最佳策略。
在政治层面,它也可用来研究各国之间的军事战略,以此来保护每一方的最大利益。
博弈论的研究也和心理学有关系,它可以用来研究决策者的决策行为,了解决策者会采取怎样的策略,从而可以为决策者提供有效的决策建议,以实现最佳结果。
此外,博弈论也可以用于研究公司之间的竞争关系,通过研究公司所拥有的资源及其竞争优势,以及如何利用这些资源,实现最佳结果。
在博弈论的研究过程中,数学也是十分重要的,它需要研究者拥有良好的数学背景,以便更好地理解博弈论的基本概念,以及如何正确分析和解决博弈中遇到的问题。
博弈论是一门复杂的学科,不仅要求研究者拥有良好的数学背景,还要求研究者对经济学、社会学、心理学等学科有所了解,以及对复杂决策问题有一定的洞察力。
可以说,博弈论研究的结果有着深远的影响,它不仅可以用来研究决策者之间的博弈,还可以用于政治、军事、经济、社会及其他领域,以实现最优的结果。
因此,对博弈论的研究具有重要意义,虽然它是一门复杂的学科,但是它也可以为政治、经济、社会及其他领域提供有效的决策建议,以实现最佳结果。
博弈论介绍博弈论(Game Theory)是一门研究决策制定和策略选择的数学分支学科。
它最初由数学家约翰·冯·诺伊曼(John von Neumann)和经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern)于20世纪40年代共同发展起来,用于研究各种竞争、协作和冲突情境下的决策问题。
博弈论的应用领域涵盖了经济学、政治学、社会学、生物学、计算机科学等多个领域。
以下是博弈论的详细介绍:基本概念:博弈(Game):博弈是一种决策情境,涉及多个决策者(玩家)之间的相互影响和策略选择。
每个玩家可以采取不同的策略,而策略的选择会影响每个玩家的收益或效用。
玩家(Player):博弈中的参与者被称为玩家,每个玩家都追求最大化其自身的收益或效用。
策略(Strategy):策略是玩家的行动方案或选择,玩家根据自己的目标和信息来选择策略。
收益(Payoff):每个玩家根据博弈的结果获得一定的收益或效用,这些收益可以是正数、负数或零,反映了玩家的利益。
博弈类型:合作博弈(Cooperative Games):在这种类型的博弈中,玩家可以合作以实现共同的目标,并分配获得的利益。
著名的合作博弈包括合作博弈理论和核心。
非合作博弈(Non-Cooperative Games):在非合作博弈中,玩家之间缺乏明确的合作机制,每个玩家根据自己的利益做出决策。
著名的非合作博弈包括纳什均衡等。
重要概念:纳什均衡(Nash Equilibrium):纳什均衡是非合作博弈中的一个重要概念,指的是在博弈中,每个玩家根据其他玩家的策略选择,不能通过改变自己的策略来提高自己的收益。
纳什均衡是博弈中可能的结果之一。
博弈矩阵(Game Matrix):博弈矩阵是一种表示博弈的方式,它列出了每个玩家在每个可能策略组合下的收益。
通常用于描述双人零和博弈。
博弈树(Game Tree):博弈树是一种表示多人博弈的方式,它展示了博弈中玩家的策略选择和博弈结果的演化过程。
博弈论博弈论?
答:博弈论,又称为对策论(Game Theory)、赛局理论等,既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
在博弈论中,有几个重要的术语和概念:
1.参与人:指的是博弈中选择行动以最大化自己利益的决策主体(可能是个人或团体)。
2.行动:是参与人在博弈的某个时点的决策变量。
3.信息:是参与人有关博弈的知识,特别是有关“自然”的选择、其他参与人的特征和行动的知识。
4.策略:是参与人在给定信息集的情况下的行动规则,它规定参与人在什么时候选择什么行动。
5.收益:在博弈论中,收益或者支付是指在特定的策略组合下参与人得到的确定效用水平,或者是指参与人得到的期望效用水平。
6.均衡:是所有参与人的最优策略组合,通常记为s*=(s1*,…,si*,…,sn*)。
此外,博弈论的基本假设包括认知理性和行为理性。
认知理性要求人是自我利益的判断者,具有偏好的完备性和传递性;行为理性则要求人是自我利益的追求者,追求利益最大化。
博弈论的应用非常广泛,不仅应用于经济学的标准分析工具之一,还在金融学、证券学、生物学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有重要的应用。
博弈论百度百科
博弈论是一门研究决策制定和决策结果的学科,它是应用数学的一
个分支,通过运用数学和逻辑工具,探讨参与者在互动决策中的最佳
策略选择。
在博弈论中,参与者被称为玩家,他们根据自身利益和目
标来做出决策。
博弈论适用于各种不同领域的情境,包括经济学、政
治学、生物学等。
一、概述
博弈论的研究对象是策略性互动。
在一个博弈中,每个玩家都会依
据一定的策略选择进行行动,而这个选择可能会受到其他玩家的影响。
博弈论试图理解和分析在这种互动中,参与者如何做出决策,并找到
最优的解决方案。
博弈论的核心概念是博弈,一个博弈可以用一个四元组表示:(N, A, U, F),其中:
- N表示参与博弈的玩家集合;
- A表示每个玩家可选的行动集合;
- U表示每个玩家的效用函数,用于衡量不同结果对该玩家的好坏
程度;
- F表示每个玩家的信息集合。
信息集合是指每个玩家在博弈过程
中所了解的信息。
二、博弈论的重要概念
1. 纳什均衡
纳什均衡是博弈论中最重要的概念之一,指的是在一个博弈中,所
有玩家选择的策略组合,使得任何玩家都没有动机单方面改变自己的
策略。
纳什均衡是一个稳定状态,玩家之间不再有改变策略的动机。
2. 零和博弈与非零和博弈
博弈可以分为零和博弈和非零和博弈。
零和博弈是指参与博弈的玩
家的收益之和为零,即一方获利必然导致另一方的损失。
非零和博弈
是指参与博弈的玩家的收益之和不为零,即可以存在多方共同受益的
情况。
3. 微观博弈与宏观博弈
微观博弈是指研究个体玩家之间的策略性互动,关注的是个体决策
的结果。
宏观博弈是指研究整体群体之间的策略性互动,关注的是全
局结果。
三、应用领域
博弈论的研究在众多领域中都具有广泛的应用。
以下是博弈论在一
些领域的应用举例:
1. 经济学
博弈论在经济学领域中有着广泛的应用。
它可以用来研究市场竞争、合作与冲突、价格形成等经济问题。
例如,博弈论可以用来分析竞争
市场中的价格战和垄断市场中的价格定价策略。
2. 政治学
博弈论在政治学领域中也有着重要的应用。
它可以用来研究选举策略、议会决策、国际关系等政治问题。
例如,博弈论可以用来分析选
举中的选票策略和政府间的合作与冲突。
3. 生物学
博弈论在生物学领域中被广泛应用于进化论研究。
通过博弈论,可
以揭示进化中存在的合作与争斗等现象,并帮助理解物种适应环境的
策略。
四、发展与展望
博弈论作为一门交叉学科,正在不断发展和演进。
随着现代技术的
进步和应用领域的拓展,博弈论在实践中的应用和理论研究都将继续
深化。
未来,我们可以期待博弈论在人工智能、网络安全等领域的更
广泛应用,并产生更多的理论突破。
总结:
博弈论是一门重要的应用数学学科,通过研究参与者的决策策略和
最优解,帮助我们理解各种互动决策情境,并应用于经济学、政治学、生物学等领域。
博弈论的发展将为解决实际问题提供更多思路和方法。
希望本篇文章对你了解博弈论有所帮助。