经济博弈论1(精选)
- 格式:ppt
- 大小:2.54 MB
- 文档页数:2
经济博弈论案例第-部分 完全信息静态博弈一、两厂商生产同质产品的产量博弈在现实的市场结构中,完全竞争与垄断是两种极端的市场状态,处于这两种极端情况下厂商的决策相对而言是简单的。
在完全竞争市场上,由于有无穷多个竞争者,个别厂商的行为对市场价格的影响是微乎其微的,故厂商的决策是在均衡价格下各自选择自己的产量。
在垄断市场上,由于只存在一个厂商,这个厂商是在均衡需求下决定价格。
而现实中更多见的是有若干个厂商之间进行竞争,在生产同质产品的条件下,他们之间的战略选择是相互影响的,而且对市场价格的形成有重要的影响,这样的市场结构称为“寡头”。
处于寡头竞争市场下,若干厂商博弈的变量选择无非是产量或价格。
下面先介绍以产量为博弈变量的古诺模型。
奥古斯汀.古诺(Augustin Cournot )是19世纪著名的法国经济学家。
他在1838年提出的寡头竞争模型是纳什均衡应用的最早版本,是研究产业组织理论的重要基础。
在古诺模型中,是假设某一市场只有厂商1,厂商2两个厂商。
他们生产完全相同的产品(产品间有完全的替代性),每个厂商的战略是同时选择产量,支付是利润,它是两个厂商产量的函数。
若令q i 代表第i 个厂商的产量,i=1、2,即厂商1选择产量q 1,厂商2选择产量q 2,则总产量为∶Q = q 1+ q 2 ,设P 为市场的出清价格(可以将产品全部卖出去的价格),则P 是市场总产量的函数,P=P (Q )=P ( q 1+ q 2 ),为简化起见,令P 取如下的 线性形式∶P = a - ( q 1+ q 2 ),a 可理解为该产品的市场最大的需求量,为常数。
C i (q i )为成本函数。
假定两厂商均无固定成本,单位边际成本分别为C 1,C 2 。
则两厂商的利润函数分别为∶该例中两参与人有无限多种产量战略,但纳什均衡的概念对此仍然适用,即找到战略组合,使其利润最大,这就是数学中求极大值的问题。
因此,分别对u 1 ,u 2求偏导数并令其为零,则有∶若令C 1=C 2=C ,解此方程组,得纳什均衡产量∶纳什均衡产量下的利润为∶212111112111111)()]([)(q q q q c a q c q q a q q c Q p q u ---=-+-=-=222122222122222)()]([)(q q q q c a q c q q a q q c Q p q u ---=-+-=-=02)(*1*21=---q q c a 02*2*12=---q q c a )()(31*2*1c a q q -==221)(91c a u u -==为让该问题有个更直观的概念,令a=100,两厂商的边际成本C 1 = C 2 = C = 10,代入则有∶即两厂商在无固定成本,且边际成本相同时,各自选择生产30个单位的产量,且每个厂商得到900个单位的利润,这就是古诺纳什均衡。
经济博弈论
经济博弈论是经济学的一个重要分支,主要研究人们在博弈中对策略进行选择和应对的行为问题。
它使用博弈理论来研究参与者之间在竞争、合作、个人利益和公共利益之间如何权衡的问题,以及这种权衡如何影响最终的结果。
此外,经济博弈论还可以用来研究多个参与者之间的关系,包括市场竞争、产业结构和政治博弈等。
经济博弈论的基本原则是以多方参与者的利益为核心,从而使博够用来描述和分析市场竞争的结构。
因此,经济博弈的重要性就在于其能够为研究行为者之间的关系提供一个统一的理论框架,并使用该框架揭示协作和竞争的内容。
经济博弈论的主要研究方向包括对影响博弈结果的因素进行研究,特别是参与者之间的合作,如何改变博弈结果,以及参与者之间的关系如何改变博弈结果。
此外,研究者还可以考虑以下问题:博弈中的因素可能会为参与者创造什么样的合作机会;如何有效的利用这些机会;参与者通过不同策略的应用可能会有什么样的收益;博弈中参与者之间的关系如何影响其行为;参与者如何确定自己的最佳策略;参与者如何利用博弈理论来进行有效谈判;参与者如何在博弈中发挥影响力。
经济博弈论的结果可以用于许多不同的领域,如垄断组织和协议博弈,企业组织和政府政策,市场竞争,以及国际事务等。
它还可以有效地用于分析市场格局、市场结构和企业行为的影响,从而改善竞争环境,制定更好的市场结构,并防止市场滥用。
总而言之,经济博弈论的重要性在于它可以帮助我们更好地理解市场结构和企业行为之间的内在联系,进而改善社会经济环境,实现更加有效地公平竞争。
经济博弈论
经济博弈论是近代经济理论发展中重要的分支,它将经济学与博弈论相结合,
以揭示多人约定下各自更利选择的机制、利益调和机制、穿越謬误机制等。
高校与高等教育是受经济博弈论影响最为突出的行业,因此有必要充分从理论上用经济博弈论加以研究。
首先,高校与高等教育是一种多人博弈产业,而学生、考生、社会、考试团体、学校都是其中最直观的玩家。
借助经济博弈论,不同玩家之间的合作关系和竞争关系能够有效地映射出来,也就是说,当每个玩家根据自身的利益情况及其他玩家的行动而采取的行动,将会产生波及整个产业的结果。
其次,高校与高等教育领域内存在诸多不同的主体,这些主体有着不同的利益,他们可以通过经济博弈论达到自身利益最大化的目的。
比如,学校可以根据自身的能力水平,采取一些策略来动态调整自身的发展方向;学生则可以根据自己的实力来选择更符合自己能力的学习环境;考生则可以根据考试难度、考试内容结合其他考生的行动来择优考试学习信息。
此外,经济博弈论还可以帮助高等教育领域内的资源进行有效配置。
在个体角
度上,各玩家能够根据自身利益情况进行调整,在社会角度上,则可以通过合理调整资源配置、课程设置、教学管理等,使得高校与高等教育得到最大的收益,构成互利共赢的局面。
最后要指出的是,经济博弈论给了高校与高等教育领域一个全新的发展视角,
这个视角不仅能够有效统筹和调节高等教育的发展,还能及时发现市场中的穿越謬误,从而提高竞争力,促进高校与高等教育可持续发展。
论经济博弈论“博弈即一些个人、对组或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。
”博弈由英文“game”翻译过来,过去每每听到博弈一词.都觉得这是一个高深莫测、充满神秘色彩的领域,如今通过了系统的学习,才终于可以对“博弈”有一些粗浅的理解。
博弈论的英文名称为Gm,ne Theory,也翻译为对策论、游戏论。
作为一门现代学科体系,博弈论早在半个世纪以前就已经出现,但长期以来并没有受到足够重视,除了少数博弈论专家以外,很少有人知道它。
可是,近年来却受到高度的重视和青睐。
1994 年三位致力于博弈论基础理论研究的经济学家共同获得了诺贝尔经济学奖,使得博弈论作为重要的经济学分支学科的地位和作用得到了最具权威性的肯定。
此后1996年,诺贝尔经济学奖又由博弈论和信息经济学家莫里斯和维克瑞获得,这进一步肯定了博弈论在经济学中的重要地位,同时也从一个侧面体现出博弈理论已经渡过了成长期,步人了成熟期。
一、博弈论的发展进程博弈论思想虽然有着悠久的历史,但是作为一门系统的学科来说还相当的年轻。
近代以来,在学术研究的过程中许多学者逐渐认识到了博弈论的重要作用,对博弈理论进行了探索研究。
一般认为,对于博弈理论的最早研究可以追溯到18世纪初。
瓦德格拉夫(W aldegrave)在1713年提出了两人博弈的极小化极大混合策略解。
古诺(Coumot)和波特兰德(Bertrand)分别在1838年和1883年提出了博弈论最经典的模型,两位学者分别从产茸决策和价格决策分析垄断的双寡头竞争模型,确定了在竞争之下各自的最优反应函数。
但是作为一种理论来说,1944年,冯·诺依曼(VonNeumann)和奥·摩根斯坦(Morgenstem)合著了《博弈论与经济行为》在总结了以往关于博弈的研究成果的基础上,提出了博弈论的概念术语、一般框架和表述方法,提较系统的博弈理论,因此这被认为是博弈理论初步形成的标志。
1、纳什均衡的概念。
对于任一个博弈游戏来讲,一定存在这么一组策略,使得其对于任一个局中人而言都是最好的,如果其它的所有局中人不改变他们的策略的话。
2、非合作博弈与合作博弈的区别。
形成合作博弈的两个条件:(1)对联盟来说,整体收益大于其每个成员单独经营时的收益之和。
(2)对联盟内部而言,应存在具有帕累托改进性质的分配规则,即每个成员都能获得比不加入联盟时多一些的收益。
如何保证实现和满足这些条件,这是由合作博弈的本质特点决定的。
也就是说,联盟内部成员之问的信息是可以互相交换的,所达成的协议必须强制执行。
这些与非合作的策略型博弈中的每个局中人独立决策、没有义务去执行某种共同协议等特点形成了鲜明的对比。
因此可以说:形成合作博弈的原因是在某种制度约束下的集体理性战胜了个人理性。
3、解释下列概念:纯策略、混合策略、策略组合、纳什均衡、贝叶斯均衡、反应函数在完全信息博弈中,如果在每个给定信息下,只能选择一种特定策略,这个策略为纯策略。
纯策略是混合策略的特例。
按照一定的概率,从一套“纯策略”中随机选取实际的对策,称为混合策略。
混合策略是纯策略在空间上的概率分布,纯策略是混合策略的特例。
策略组合指参与者可能采取的所有行动方案的集合。
策略集合必须有两个以上元素,否则,无所谓对策,只是独自决策。
所谓贝叶斯纳什均衡是指这样一组策略组合:在给定自己的特征和其他局中人特征的概率分布的情况下,每个局中人选择策略使自己的期望支付达到最大化,也就是说,没有人有积极性选择其他策略反应函数,在无限策略的古诺博弈模型中,博弈方的策略有无限多种,因此各个博弈方的最佳对策也有无限种,它们之间往往构成一种连续函数的关系,把这个连续函数称为反应函数。
4、解释下列概念:博弈、静态博弈和动态博弈、完全信息博弈和不完全信息博弈、完美信息动态博弈和不完美信息动态博弈博弈是指在一定的游戏规则约束下,基于直接相互作用的环境条件,各参与人依靠所掌握的信息,选择各自策略(行动),以实现利益最大化和风险成本最小化的过程。
经济学博弈论
经济学中的博弈论是一个重要的分支领域,它研究的是在多个参与者之间互动决策的情境下,他们可能采取的不同策略以及相应的结果。
博弈论在经济学中有广泛的应用。
下面是一些博弈论的基本概念和常见的博弈类型:
1. 策略(Strategies):参与者在博弈中可选择的行动或决策。
2. 支配策略(Dominant Strategies):一种策略在所有情况下都会产生更好的结果,无论其他参与者选择什么策略。
3. 纳什均衡(Nash Equilibrium):在博弈中,当每个参与者都选择了对自己最有利的策略,并且没有动机单独改变策略时,达到的状态就是纳什均衡。
4. 合作与背叛(Cooperation and Betrayal):博弈中参与者可以选择合作或背叛其他参与者,涉及到合作博弈和非合作博弈的概念。
5. 零和博弈(Zero-sum Game):参与者的利益总和为零,一个人的收益增加意味着其他人的收益减少。
6. 非零和博弈(Non-zero-sum Game):参与者的利益总和不一定为零,可以存在合作使得所有参与者都获益的可能性。
7. 重复博弈(Repeated Games):博弈过程会重复进行多次,参与者的策略可能受到之前行动的影响。
这些只是博弈论的基本概念,实际应用中还有更多复杂的情况和模型。
博弈论在经济学中可以用来分析市场竞争、企业战略、拍卖、资源分配等众多领域。
它对于理解和预测人类行为决策的影响具有重要意义。