圆心角与圆周角的专题测验
- 格式:doc
- 大小:251.50 KB
- 文档页数:8
圆周角和圆心角的练习题、选择题1.圆周角是24°,则它所对的弧是 ___________ A .12°; B. 24°; C. 36°; D. 482•在O O中,/ AOB84°,则弦AB所对的圆周角是___________A. 42°;B. 138°;C. 84°;D. 42。
或138 ° .3.如图,圆内接四边形ABCD勺对角线AC, BD把四边形的四个角分成八个角,这八个角中相等的角的对数至少有___________________ .()A. 1 对;B. 2 对;C. 3 对;D. 4 对.4.如图,AC是O O的直径,AB CD是O O的两条弦,且AB// CD.如果/ BAC32°,贝U[]A . 16°; B. 32°; C. 48°; D. 64、计算题6.如图,AD>^ ABC外接圆的直径,AD=6cm,Z DA(=Z AB C求AC的长.7.已知:△ DBC和等边△ ABC都内接于O O BC=a,Z BCD75°(如图).求BD的长.10 .已知:如图, AD 平分/ BAC DE AC 且AB=a .求DE 的长.11.如图,在O O 中,F , G 是直径AB 上的两点,C, D,E 是半圆上的三点,如果弧 AC 的度数为60°,弧BE 的度数为20 °,/ CF/=Z DFB / DGAZ EG3.求/ FDG 勺大小.12•如图,OO 的内接正方形 ABCD 边长为1, P 为圆周上与 A, B, C, D 不重合的任意点.求 PA + PB + PC + PD 的值.13.如图,在梯形 ABCDh A D / BC , / BAD 135° ,以A 为圆心,AB 为半径作O A 交ADBC 于 E , F 两::,-1 ■- -1^ - . 泊亠X14.如图,O O 的半径为R ,弦AB=a ,弦BC/ OA 求AC 的长.15.如图,在△ ABC 中,/ BAC / ABC / BCA 的平分线交厶 ABC 的外接圆于 D, E 和F ,1 16. 如图,在O O 中,BC DF 为直径,A, E 为O O 上的点,AB=AC EF =- DF.求/ ABD 2/ CBE 的值.17. 如图,等腰三角形 ABC 的顶角为50°, ABAC 以9•如图,圆内接厶 ABC 的外角/ MAB 勺平分线交圆于 E , EC=8cm 求 BE 的长.如果 DE ,p 。
圆心角圆周角练习题圆心角和圆周角是圆内角的一种特殊形式,它们在几何学中具有重要的地位。
本文将介绍关于圆心角和圆周角的一些练习题,帮助读者加深对这一概念的理解。
一、选择题1. 在同一个圆中,圆心角和对应的圆周角的关系是:A. 圆心角大于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角小于对应的圆周角2. 已知在同一个圆中,圆心角的度数为56°,则对应的圆周角的度数为:A. 56°B. 112°C. 224°3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数为:A. 30°B. 60°C. 120°4. 若∠ACD是圆O中的圆心角,且其度数为72°,则弧AB所对应的圆周角的度数为:A. 72°B. 144°C. 288°5. 在同一个圆中,圆心角和对应的弧所对应的圆周角之间的关系是:A. 圆心角小于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角大于对应的圆周角二、填空题1. 在同一圆中,一条弧的度数等于其所对应的圆周角的度数,则这条弧所对应的圆心角的度数为________。
2. 在圆O中,已知∠ACB是圆心角,则它所对应的圆周角的度数为________。
3. 在同一个圆中,圆心角的度数等于所对应的弧所对应的圆周角的度数,则该弧所对应的圆周角的度数为________。
三、解答题1. 在同一个圆中,圆心角和对应的圆周角的关系是什么?为什么?2. 已知在同一个圆中,圆心角的度数为60°,则对应的圆周角的度数是多少?并通过计算或推理进行解答。
3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数是多少?并通过计算或推理进行解答。
4. 若∠ACD是圆O中的圆心角,且其度数为90°,则弧AB所对应的圆周角的度数是多少?并通过计算或推理进行解答。
总结:本文通过选择题、填空题和解答题的形式,对圆心角和圆周角的概念进行了练习和探讨。
九年级数学圆心角圆周角专项练习题一、单选题1.如图,⊙O中,半径OC⊙弦AB于点D,点E在⊙O上,⊙E=22.5°⊙AB=4,则半径OB等于()AB.2C.D.32.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25°B.50°C.65°D.75°3.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.在半径为1的弦所对的弧的度数为()A.90B.145C.90或270D.270或145 5.如图,ABC是O的内接三角形,,30AB BC BAC=∠=︒,AD是直径,8AD=,则AC的长为()A.4B.CD.6.下列说法正确的有()①不在同一条直线上的三点确定一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等;④圆内接平行四边形是矩形.A.1个B.2个C.3个D.4个二、填空题7.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____8.如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若AD 的度数为35°,则BE的度数是_____.9.如图,AB是⊙O的直径,CD是弦,若∠ABC=63°,则∠D的度数是__.10.如图,在⊙O中,AB=2CD,那么AB________2CD(填“>,<或=”)三、解答题11.如图,已知A⊙B⊙C⊙D是⊙O上的四点,延长DC⊙AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.12.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若AB=24,CD=8,求⊙O的半径长.13.如图,在ABC中,AC BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作//DF BC,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)AF EF15.如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,拱高CD=9米,求圆的半。
4、如图,在。
中, AB = AC,ZB=70°,则匕A 等于5、如图,在。
中,若C是BD的中点,则图中与ABAC相等的角有()A.1个B.2个C.3个D.4个夯实基础1.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等;B.这两个圆心角所对的孤相等C.这两个圆心角所对的弦的弦心距相等;D.以上说法都不对2.下列语句中不正确的有()①相等的圆心角所对的孤相等②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径所在直线都是它的对称轴④长度相等的两条孤是等孤A.3个B.2个C.1个D.以上都不对3.在同圆或等圆中,下列说法错误的是()A.相等弦所对的弧相等B.相等弦所对的圆心角相等C.相等圆心角所对的弧相等D.相等圆心角所对的弦相等6、如图,若AB 是。
0 的直径,AB=10cm, ZCAB=30°,贝ij BC=cm.题型一:利用圆心角圆周角定理求角度1、如图,AB是。
的直径,BC=CD=DE, ZCOD=34°,则匕AEO的度数是()A.51°B. 56°C- 68° D. 78°A2、圆中有两条等弦AB=AE,夹角ZA=88°,延长AE到C,使EC=BE,连接BC,如图.则ZABC的度数是()A. 90°B. 80°C. 69°D. 65°3、如图所示。
O中,己矢nZBAC=ZCDA=20°,则匕ABO的度数为.4、在。
中,弦AB所对的劣孤为圆周的上,圆的半径等于12,则圆心角ZAOB=__________ ;4弦AB的长为.5、如图,在△ ABC中,AB为。
O的直径,ZB=60°, ZBOD=100°,则NC的度数为()A. 50° B. 60° C. 70° D. 80°6、如图,点A、B、C在。
圆---圆心角、圆周角1. 如图,已知AB是⊙O的直径,C.D是上的三等分点,∠AOE=60°,则∠COE是( )A.40°B.60°C.80°D.120°2.如图,已知在⊙O中,点C为的中点,∠A=40°,则∠BOC等于( )A.40°B.50°C.70°D.80°3. 下面四个图中的角,是圆心角的是( )4. 下列说法正确的是( )A.相等的圆心角所对的弦相等B.相等的圆心角所对的弧相等C.等弧所对的弦相等D.度数相等的弧的长度相等5. 如图,在⊙O中,弦AB.CD相交于点E,且AB=CD,连接AD.BC,则下列给出的结论中,正确的有( )①②AD=BC ③∠CBD=∠ADB ④∠A=∠C ⑤AE=CEA.5个B.4个C.3个D.2个6. 如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为( )A.25°B.50°C.60°D.80°7. 如图,已知经过原点的⊙P与x、y轴分别交于A.B两点,点C是劣弧OB上一点,则∠ACB=( )A.80°B.90°C.100°D.无法确定8. 圆内接四边形ABCD中,已知∠A=70°,则∠C=( )A.20°B.30°C.70°D.110°9. 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为( )A.50°B.80°C.100°D.130°10. 顶点在圆心,两边与圆相交的角叫做_________.在同圆或等圆中,相等的圆心角所对的弧_____,所对的弦也______;在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角______,所对的弦_________;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角_____,所对的弦_______-.11. 顶点在_________,两边都和圆_______的角叫圆周角.一条弧所对的圆周角等于它所对的圆心角的_______.在__________(或相等的圆)中,同弧或等弧所对的圆周角_______;反之,相等的圆周角所对的弧_________.12. 半圆(或直径)所对的圆周角是_______;90°的圆周角所对的弦是________.13.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做__________,这个圆叫做___________;圆内接四边形对角_________-.14. 已知圆O的半径为5cm,弦AB的长为5cm,则弦AB所对的圆心角∠AOB=__________.15. 如图,已知AB为⊙O的直径,点D为半圆周上的一点,且所对圆心角的度数是所对圆心角度数的两倍,则圆心角∠BOD的度数为_____.16. 下列四个图中,∠x是圆周角的是________.17. 如图,AB.CD是⊙O的两条互相垂直的弦,圆心角∠AOC=130°,AD.CB的延长线相交于P,则∠P=_______-.18. 如图所示,A.B.C.D是⊙O上顺次四点.若∠AOC=160°,则∠D=_______________ ,∠B=____________.19. 如图,已知A.B.C.D是⊙O上四点,若AC=BD,求证:AB=CD.20. 如图,在△AOB中,AO=AB,以点O为圆心,OB为半径的圆交AB于D,交AO于点E,AD=BO.试说明,并求∠A的度数.21. 如图,A.B.C在圆上,弦AE平分∠BAC交BC于D.求证:BE2=ED·EA.22. 如图所示,AB是⊙O的直径,AB=8cm,∠ADE=60°,DC平分∠ADE,求AC.BC的长.23. 如图,△ABC内接于⊙O,过C作CD∥AB与⊙O相交于D点,E是上一点,且满足AD=DE,连接BD 与AE相交于点F.求证:△ADF∽△ABC.24. 如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.25. 如图,已知△ABC是等边三角形,⊙O经过点A.B.C,点P是BC上任一点.(1)图中与∠PBC相等的角为________;(2)试猜想三条线段PA.PB.PC之间的数量关系,并证明.26. 如图,以△ABC的一边AB为直径的半圆与其它两边AC.BC的交点分别为D.E,且.(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.参考答案:1—9 CBDCA BBDD10. 圆心角相等相等相等相等相等相等11. 圆上相交一半同一圆相等相等12. 90°直径13. 圆的内接多边形多边形的外接圆互补14. 60°15. 60°16. ③17. 40°18. 80° 100°19.20. 解:设∠A =x°.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x°,∴∠ABO =∠ODB =∠AOD +∠A =2x°.∵AO =AB ,∴∠AOB =∠ABO =2x°.从而∠BOD =2x°-x°=x°,即∠BOD =∠AOD ,∴由三角形的内角和为180°,有2x°+2x°+x°=180°,x°=36°,即∠A =36°.21. 证明:∵AE 平分∠BAC ,∴∠EAB =∠EAC ,又∵∠EBC =∠EAC ,∴∠EBC =∠EAB ,又∵∠E 公用,∴△EBD ∽△EAB ,∴EB EA =ED EB,∴EB2=EA·ED. 22. 解:∵∠ADE =60°,DC 平分∠ADE ,∴∠ADC =12∠ADE =30°=∠ABC.又∵AB 为⊙O 的直径,∴∠ACB =90°,∴AC =12AB =4cm.BC =AB2-AC2=82-42=43(cm). 23. 证明:∵AB ∥CD ,∴∠BAC =∠ACD ,∵AD =DE ,∴∠DAE =∠AED ,∴∠DAE =∠AED =∠ACD =∠BAC ,∵∠ADF =∠ACB ,∠DAE =∠BAC ,∴△ADF ∽△ABC.24. (1)解:∵BC =DC ,∴∠CBD =∠CDB =39°,∵∠BAC =∠CDB =39°,∠CAD =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°;(2)证明:∵EC =BC ,∴∠CEB =∠CBE ,而∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD ,∵∠BAE =∠CBD ,∴∠1=∠2.25. 解:(1)∠PAC ;(2)PA =PB +PC.在AP 上截取PD =PC ,连接CD 可证△PCD 是等边三角形,△ACD ≌△BCP.26. 解:(1)△ABC 为等边三角形.理由如下:连接AE ,如图,∵,∴∠DAE =∠BAE ,即AE 平分∠BAC ,∵AB 为直径,∴∠AEB =90°,∴AE ⊥BC ,∴△ABC 为等腰三角形;(2)∵△ABC 为等腰三角形,AE ⊥BC ,∴BE =CE =12BC =12×12=6,在Rt △ABE 中,∵AB =10,BE =6,∴AE =102-62=8,∵AB 为直径,∴∠ADB =90°,∴12AE·BC=12BD·AC,∴BD =8×1210=485,在Rt △ABD 中,∵AB =10,BD =485,∴AD =AB2-BD2=145,∴sin ∠ABD =AD AB =14510=725.。
圆周角和圆心角的关系一、基础概念 (1)圆心角:顶点在圆心的角叫圆心角. 圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.1、下图中是圆心角的有 . 下图中是圆周角的有 .①Image ②Image ③Image④ Image ⑤Image ⑥Image圆周角的性质: ①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角.2、如图,∠A是⊙O的圆周角,且∠A=35°,则∠OBC=_____.3、如图,若∠A=40°,则∠B=_____.4、如图,若∠A=∠B,则弧CD_____弧EF。
5、如图,AB是圆O的直径,∠B=30°,则∠A=_____.6、如图,A,B,C,D四点在圆O上,且∠A=40°,则∠C=_____.ImageImageImageImageImage(2) (3) (4) (5)(6)二、课堂练习7.如图,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°8.如图,等边三角形ABC的三个顶点都在⊙O上,点D是弧AC上任一点(不与A、C重合),则∠ADC的度数是________.ImageImageImage9.已知∠BAD=100°,则∠BOC=_______.10.如图,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度.11.如图,AB是⊙O的直径, 弧BC=弧BD,∠A=25°,则∠BOD的度数为________.12.如图,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.ImageImageImage( 10) (11) (12)三、能力提升13、如图,点、、是上的三点,.(1)求证:平分.(2)过点作于点,交于点. 若,求OA,OE,PE的长.14、(2009年广州市)如图,在⊙O中,∠ACB=∠BDC=60°,AC=,(1)求∠BAC的度数; (2)求⊙O的半径15.如图所示,已知AB为⊙O的直径,CD是弦,且AB CD于点E.连接AC、OC、BC.(1)求证:ACO=BCD.EDBAOC(2)若EB=,CD=,求⊙O的直径.。
垂径定理、圆心角、圆周角1、 P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,求经过P 点的最短弦长和最长弦长2、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为60cm ,水面到管道顶部距离为10cm ,则修理人员应准备_________cm 内径的管道(内径指内部直径).3、如图,圆柱形水管内原有积水的水平面宽CD=20cm ,水深GF=2cm.若水面上升2cm (EG=2cm ),则此时水面宽AB 为多少?4、已知:AB 交⊙O 于CD ,OA=OB ,求证:AC=BD5、已知:AB 是⊙O 直径,AC//OD ,求证:=6、如图,已知AB 和CD 是⊙O 的两条弦,AD BC ,求证:AB=CD.7、⊙O 的弦AB 、CD 相交于E ,∠BEC=740,∠BAC=270,∠DOA=______8、如图,AB 是⊙O 的直径,点C D ,是圆上两点,100AOC ∠= ,则D ∠=_______.9、如图,⊙O 是ABC △的外接圆,已知50ABO ∠= ,则ACB ∠的大小为( )A 、40B 、30C 、45D 、5010、如图,ABC △内接于⊙OAD 是⊙O 的直径,30ABC ∠=,则CAD ∠=______.11、(2009,宁夏)如图,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙于点45E BAC ∠=,°.(1)求EBC ∠的度数;(2)求证:BD CD =.12、⊙O 中,BC//OA ,∠C=170,∠BMA=______13、AD 是⊙O 直径,∠A=240,∠CBD=250,求∠E14、AD 是⊙O 直径,AD=6,∠ABC=∠DAC ,求AC15、如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.16、如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D ,若AC=8cm ,DE=2cm ,求OD 的长。
九年垂径定理、弦、弧、圆心角、圆周角练习1.已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
6003. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。
你认为图中有哪些相等的线段?为什么?ADBOCE4.如图所示,OA是圆O的半径,弦CD⊥OA于点P,已知OC=5,OP=3,则弦CD=____________________。
5.如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O的半径为____________cm。
CA P O DCE O A D B6. 如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,则CD=_________________。
7. 如图所示,在△ABC 中,∠C =90°,AB =10,AC =8,以AC 为直径作圆与斜边交于点P ,则BP 的长为________________。
8. 如图所示,四边形ABCD 内接于圆O ,∠BCD=120°,则∠BOD=____________度。
9. 如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( ) A. 3≤OM ≤5 B. 4≤OM ≤5 C. 3<OM <5 D. 4<OM <510. 下列说法中,正确的是( )A. 到圆心的距离大于半径的点在圆内B. 圆的半径垂直于圆的切线C. 圆周角等于圆心角的一半D. 等弧所对的圆心角相等11. 若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于( )A. 45°B. 90°C. 135°D. 270°12. 如图所示,A 、B 、C 三点在圆O 上,∠AOC=100°,则∠ABC 等于( ) A. 140° B. 110° C. 120° D. 130°13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________;14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;ABC DO已知:AB cm 24=,CD cm 8=。
24.1.3弧、弦、圆心角01:基础题知识点1:圆心角的概念及其计算 1.下面图形中的角是圆心角的是()A B C D2.已知⊙O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB=. 知识点2:弧、弦、圆心角之间的关系 3.下列说法正确的是()A .相等的圆心角所对的弧相等B .在同圆中,等弧所对的圆心角相等C .弦相等,圆心到弦的距离相等D .圆心到弦的距离相等,则弦相等4.(XX 中考)如图,在⊙O 中,点C 是AB ︵的中点,∠A=50°,则∠BOC =()A .40° B.45° C.50° D.60°5.(教材P85练习T2变式)(贵港中考)如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD=34°,则∠AEO 的度数是(A)A .51° B.56° C.68° D.78°6.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有(D) ①AB ︵=CD ︵;②BD ︵=AC ︵;③AC=BD ;④∠BOD=∠AOC.A .1个B .2个C .3个D .4个7.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为(C)A .100° B.110°C .120° D.135°8.如图,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且AD ︵=CE ︵.BE 与CE 的大小有什么关系?为什么?9.如图,M 为⊙O 上一点,OD⊥AM 于点D ,OE⊥BM 于点E.若OD =OE ,求证:AM ︵=BM ︵. 易错点:对圆中的有关线段的关系运用不当而致错10.如图,A ,B ,C ,D 是⊙O 上的四点,且AD =BC ,则AB 与CD 的大小关系为()A .AB>CDB .AB =CDC .AB<CDD .不能确定 02:中档题11.如图,已知A ,B ,C 在圆O 上,D ,E ,F 是三边的中点.若AB ︵=AC ︵,则四边形AEDF 的形状是(B) A .平行四边形 B .菱形C .正方形 D .矩形12.已知⊙O 中,M 为AB ︵的中点,则下列结论正确的是(C)A .AB >2AMB .AB =2AMC .AB <2AMD .AB 与2AM 的大小不能确定13.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME⊥AB 于点E ,NF⊥AB 于点F.在下列结论中: ①AM ︵=MN ︵=BN ︵;②ME=NF ;③AE=BF ;④ME=2AE. 正确的有.14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD=60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC∥BD.15.(教材P84例3变式)如图,A ,B ,C 为圆O 上的三等分点. (1)求∠BOC 的度数;(2)若AB =3,求圆O 的半径长及S △ABC .24.1.4 圆周角1.小试牛刀:求下列带“?”的角.2. 如图,AB 和CD 都是⊙0的直径,∠AOC=50°,则∠C 的度数是( )A .20°B .25° C.30° D.50°3. 如图,已知CD为⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50°,则∠C 的度数是( )A .25°B .40°C .30°D .50°4. 如图,AB 是O 的直径,点D 在O 上∠AOD=130°,BC∥OD 交O 于C,则∠A=.5. 如图,AB 是⊙O 的直径,弦DC 与AB 相交于点E ,若∠ACD=60°,∠ADC=50°,则∠ABD=,∠CEB=.6. 如图,△ABC 内接于⊙O,AC 是⊙O 的直径,∠ACB=500,点D 是BAC 上一点,则∠D=______. 7.如图1所示,A ,C ,B 是半圆上三点,若∠AOC=40°,则∠ABC 的度数为_______.COB A ?40°DC O BA ?65°DCOBA ?55°EOCBD AADC OBE ADCOB8.如图2所示,AB是⊙O直径,C,D,E都是⊙O上的点,则∠1+∠2=______.9.如图3所示,D是的中点,与∠ABD相等的角是____________________图1 图2 图310.如图,△ABC的3个顶点都在⊙O上,直径AD=4,∠ABC=∠DAC,求AC的长。
圆心角与圆周角练习题一、选择题(每题3分,共30分)1. 在同圆或等圆中,如果圆心角相等,那么对应的圆周角:A. 相等B. 不相等C. 无法确定D. 可能相等2. 已知圆的半径为5,圆心角为30°,求圆周角的度数:A. 15°B. 30°C. 45°D. 60°3. 在圆中,圆心角的度数是圆周角度数的:A. 2倍B. 1/2倍C. 1/4倍D. 4倍4. 如果一个圆周角的度数是60°,那么它所对的圆心角是:A. 120°B. 60°C. 30°D. 180°5. 在同圆或等圆中,圆心角和圆周角的关系是:A. 相等B. 互补C. 互余D. 没有固定关系6. 已知圆的半径为10,圆心角为45°,求圆周角的度数:A. 22.5°B. 45°C. 90°D. 无法确定7. 圆心角和圆周角的关系可以用以下哪个公式表示:A. 圆心角= 2 × 圆周角B. 圆周角= 2 × 圆心角C. 圆心角 = 圆周角D. 圆周角 = 圆心角 / 28. 如果一个圆周角的度数是90°,那么它所对的圆心角是:A. 45°B. 90°C. 180°D. 270°9. 在圆中,圆心角和圆周角的度数之和:A. 总是等于180°B. 总是等于360°C. 总是小于360°D. 总是大于360°10. 已知圆的半径为8,圆心角为60°,求圆周角的度数:A. 30°B. 60°C. 90°D. 120°二、填空题(每题2分,共20分)11. 在同圆或等圆中,如果圆心角是圆周角度数的2倍,那么圆周角的度数是圆心角的________倍。
12. 圆心角的度数是圆周角度数的________倍。
圆周角圆心角练习题一、选择题1. 圆周角定理指出,圆周角的度数是同弧所对圆心角的度数的______。
A. 1/2B. 2倍C. 3倍D. 4倍2. 若圆心角为40°,则同弧所对的圆周角为______。
A. 20°B. 40°C. 80°D. 120°3. 在圆中,若一条弦所对的圆心角为60°,则这条弦所对的圆周角是______。
A. 30°B. 45°C. 60°D. 90°4. 圆内接四边形ABCD中,若∠A=60°,则∠B的度数为______。
A. 60°B. 120°C. 180°D. 240°5. 已知圆的半径为5,圆心角为120°,那么这个圆心角所对的弧长为______。
A. 5πB. 10πC. 15πD. 20π二、填空题6. 若圆周角为45°,则同弧所对的圆心角为______。
7. 在圆中,若弦AB所对的圆心角为100°,则弦AB所对的圆周角为______。
8. 已知圆的半径为10,圆心角为150°,则这个圆心角所对的弧长为______。
9. 圆内接四边形ABCD中,若∠A=90°,则∠B的度数为______。
10. 若圆的半径为8,圆心角为90°,则这个圆心角所对的弧长为______。
三、简答题11. 解释什么是圆周角,并说明它与圆心角的关系。
12. 给出一个圆内接四边形的例子,并说明其对角互补的性质。
13. 解释如何计算一个圆心角所对的弧长。
14. 在圆中,如果知道圆周角的度数,如何计算同弧所对的圆心角的度数?15. 圆内接四边形的对角互补性质在实际问题中有哪些应用?四、解答题16. 已知圆的半径为6,圆心角为60°,求这个圆心角所对的弧长。
17. 在圆中,若弦AB所对的圆心角为120°,求弦AB所对的圆周角的度数。
北师大版九年级下3.4 圆周角与圆心角的关系一.选择题(共10小题)1.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠DCB=40°,则∠ABD=()A.80°B.50°C.40°D.20°2.如图,已知∠AOB是⊙O的圆心角,∠AOB=90°,则sin∠ACB=()A.12B.√22C.√32D.√333. 如图,AB 是半圆O 的直径,点C ,D在半圆O 上.若∠BDC=140°,则∠ABC 的度数为( )A .40°B .50°C .60°D .70°4. 如图,在⊙O 中,弦 AB =3√2 ,点C 是圆上一点且∠ACB=45°,则⊙O 的直径为( )A .3B . 3√2C . 4√2D .65. 如图,AB 是⊙O 的直径,∠BAC=40°,则∠D=( )A .80°B .50°C .40°D .20°6. 如图,在⊙O 中,AB 是直径,AC 是弦,D 是AC ^ 的中点,AC 与BD 交于点E .若∠DBA=40°,则∠BAC 的度数是( )A .40°B .30°C .15°D .10°7.如图,AB为⊙O的直径,∠BED=20°,则∠ACD的度数为()A.80°B.75°C.70°D.65°8.如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂,则CH的长为()足为H,已知AB=16cm, sin∠OBA=35cm A.6cm B.10cm C.4cm D.4039.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD等于()A.20°B.25°C.30°D.32.5°10.如图,AD是⊙O的直径,弦BC与AD交于点E,连接AB,AC,CD.若AD平分∠BAC,∠B=65°,则∠BAC的度数是()A.45°B.55°C.40°D.50°二.填空题(共4小题)11.如图,AB为⊙O的弦,C为⊙O上一点,OC⊥AB于点D.若OA=√10,AB=6,则sin∠OAD= ______ .12.如图,点A,B,C,D在⊙O上,∠AOC=130°,则∠ABC= ______ °.13.如图,在△ABC中,AB=AC,∠A=45°,κ长为半径作AC的中点为O,以O为圆心,12⊙O,交AB交于点D,连接CD,若AD=1,则tan∠BCD的值为 ______ .14.如图,四边形ABCD内接于⊙O,延长AD至点E,已知∠AOC=140°那么∠CDE= ______ °.三.解答题(共5小题)15.如图,AB为⊙O的直径,CD为⊙O的弦,AB⊥CD于点E、点F是⊙O上一点、连接BF,CF,DF,∠BFD=60°.(1)求证:DF平分∠BFC;(2)设AB交DF于点G、且DE=GE,求∠DCF的度数.16.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠DBA=30°,∠COD=60°.(1)求证:BC∥OD;(2)若AB=10,求AC的长.17.如图,已知:AB是⊙O的直径,点C在圆上,AB=10,AC=6,点C、E分别在AB两侧,且E为半圆AB的中点.(1)求△ABC的面积;(2)求CE的长.18.如图,四边形ABCD内接于⊙O,延长BC到点E,使得CE=AB,∠1=∠2,连接ED.(1)求证:BD=ED;(2)若AB=3,BC=5,∠ABC=60°.求tan∠DCB的值.19.如图,已知AB,CD是⊙O的两条直径,直径CD平分∠ACE,∠ACE的一边CE与⊙O和直径AB分别交于点E,F,连接BE,且AC=AF.(1)证明:BE∥CD;(2)若CF=2,求BF的长.。
练习题:1.在⊙O 中,同弧所对的圆周角( )A .相等B .互补C .相等或互补D .都不对2.如图,在⊙O 中,弦AD=弦DC ,则图中相等的圆周角的对数是( ) A .5对 B .6对 C .7对 D .8对 3.下列说法错误的是( )A .等弧所对圆周角相等B .同弧所对圆周角相等C .同圆中,相等的圆周角所对弧也相等.D .同圆中,等弦所对的圆周角相等 4、如图,△ABC 内接于⊙O,∠OBC=25°,则∠A 的度数为5.如图4,AB 是⊙O 的直径,∠AOD 是圆心角,∠BCD 是圆周角.若∠BCD=25°,则∠AOD= .6.如图5,⊙O 直径MN ⊥AB 于P ,∠BMN=30°, 则∠AON=.7.如图6,AB 是⊙O 的直径,⌒BC =⌒BD , ∠A=25°,则∠BOD=.8.如图7,A 、B 、C 是⊙O 上三点,∠BAC 的平分线AM 交BC 于点D ,交⊙O 于点M .若∠BAC=60°,∠ABC=50°,则∠CBM=,∠AMB=.9.⊙O 中,若弦AB 长22cm ,弦心距为2cm ,则此弦所对的圆周角等于 .10.(2010年广州市中考六模)、如图10:AB 是⊙O 的直径,弦CD ⊥AB , 垂足为E ,如果AB =10cm , CD =8cm ,那么AE 的长为 cm .11、已知⊙O 中的弦AB 长等于半径,求弦AB 所对的圆周角和圆心角的度数.12.如图8,⊙O 中,两条弦AB ⊥BC ,AB=6,BC=8,求⊙O 的半径.11.如图9,AB 是⊙O 的直径,FB 交⊙O 于点G ,FD ⊥AB ,垂足为D ,FD 交AG 于E,BG=BD .求证:FG=AD .12. 如图所示,已知AB 为⊙O 的直径,AC 为弦,OD ∥BC ,交AC 于D ,BC=4cm .(1)求证:AC ⊥OD ; (2)求OD 的长; (3)若∠B=60°,求⊙O 的直径.CA B E DO . (第10题)思考题:1.如图,BD 是⊙O 的直径,∠CBD=30,则∠A 的度数为( ).A.30B.45C.60D.752.(2010年济宁师专附中一模)如图,A B C D ,,,为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )3. 如图,已知⊙O 中,AB 为直径,AB=10cm ,弦AC=6cm ,∠ACB 的平分线交⊙O 于D ,求BC 、AD 和BD 的长.4、如图,OA 、OB 、OC 都是圆O 的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC5、如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB 的度数?6、已知AB 为⊙O 的直径,AC 和AD 为弦,AB=2,AC=2,AD=1,求∠CAD 的度数.7、如图1,已知△ABC 是等边三角形,以BC 为直径的⊙O 交AB 、AC 于D 、E .(1)求证:△DOE 是等边三角形;(2)如图2,若∠A=60°,AB ≠AC ,则①中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由?1题图第2题图 AB C DOP B .ty 045 90 D . ty 045 90 A .ty45 90 C .ty 045 90。
初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.3.如图,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°【答案】A【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵∠BOC=100°∴∠BAC=50°故选A.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC="140°," ∠CBD的度数是( )A.40°B.50°C.70°D.110°【答案】C【解析】先求得弧ABC所对的圆周角的度数,再根据圆内接四边形的对角互补可得∠ABC的度数,即可求得结果.∵∠AOC=140°∴弧ABC所对的圆周角的度数为70°∴∠ABC=110°∴∠CBD=70°故选C.【考点】圆周角定理,圆内接四边形的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.9.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.【答案】(1)相等;(2)∠CP′D+∠COB=180°【解析】(1)连接OD,根据垂径定理可得∠COB=∠DOB,再结合圆周角定理即可得到结果;(2)连接P′P,则可得∠P′CD=∠P′PD,∠P′PC=∠P′DC.即可得∠P′CD+∠P′DC=∠CPD,从而可以得到结果.从而∠CP′D+∠COB=180°.(1)连接OD,∵AB⊥CD,AB是直径,∴,∴∠COB= ∠DOB.∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠C P′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.【考点】垂径定理,圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.。
垂径定理圆心角圆周角练习1.如图.⊙O中OA⊥BC,∠CDA=25o,则∠AOB的度数为_______.2.如图.AB为⊙O的直径,点C、D在⊙O上,∠BAC=50o.则∠ADC=_______.第1题第2题第3题3.如图,点A、B、C都在⊙O上,连结AB、BC、AC、OA、OB,且∠BAO=25°,则∠ACB的大小为___________.第4题第5题4.已知:如图,四边形ABCD是⊙O的内接四边形,∠BOD=140°,则∠DCE=.5、如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=.6、⊙O中,若弦AB长22cm,弦心距为2cm,则此弦所对的圆周角等于.7、已知AB是⊙O的直径,AC,AD是弦,且AB=2,AC=2,AD=1,则圆周角∠CAD的度数是()A.45°或60°B.60°C.105°D.15°或105°8、如图,AB是⊙的直径,弦CD垂直平分OB,则∠BDC=()A.20°B.30°C.40°D.50°9、如图,点A、B、C为圆O上的三个点,∠AOB=的度数.13∠BOC,∠BAC=45°,求∠ACB 10、如图,AD是∆ABC的高,AE是∆ABC的外接圆的直径.试说明狐B E CF。
DF11、如图,AB,AC是⊙O的两条弦,且AB=AC.延长CA到点D.使AD=AC,连结DB并延长,交⊙O于点E.求证:CE是⊙O的直径.12、已知:如图,AB为⊙O的直径,AB=AC,B C交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.△13.如图所示,ABC为圆内接三角形,A B>AC,∠A的平分线AD交圆于D,作D E⊥AB于E,D F⊥AC于F,求证:BE=CFAEB CFD△14.如图所示,在ABC中,∠BAC与∠ABC的平分线AE、BE相交于点E,延长AE交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°(1)求证△BDE是等边三角形;(2)若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想。
圆周角和圆心角的练习题一、选择题1.圆周角是24°,则它所对的弧是________ A.12°;B.24°;C.36°;D.48°.2.在⊙O中,∠AOB=84°,则弦AB所对的圆周角是________A.42°;B.138°;C.84°;D.42°或138°.3.如图,圆内接四边形ABCD的对角线AC,BD把四边形的四个角分成八个角,这八个角中相等的角的对数至少有___________.()A.1对;B.2对;C.3对;D.4对.4.如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥C D.如果∠BAC=32°,则∠AOD=___[ ] A.16°;B.32°;C.48°;D.64°.二、计算题6.如图,AD是△ABC外接圆的直径,AD=6cm,∠DAC=∠AB C.求AC的长.7.已知:△DBC和等边△ABC都内接于⊙O,BC=a,∠BCD=75°(如图).求BD的长.8.如图,半圆的直径AB=13cm,C是半圆上一点,CD⊥AB于D,并且CD=6cm.求AD的长.、9.如图,圆内接△ABC的外角∠MAB的平分线交圆于E,EC=8cm.求BE的长.10.已知:如图,AD平分∠BAC,DE∥AC,且AB=a.求DE的长.11.如图,在⊙O中,F,G是直径AB上的两点,C,D,E是半圆上的三点,如果弧AC的度数为60°,弧BE的度数为20°,∠CFA=∠DFB,∠DGA=∠EG B.求∠FDG的大小.12.如图,⊙O的内接正方形ABCD边长为1,P 为圆周上与A,B,C,D不重合的任意点.求PA2+PB2+PC2+PD2的值.13.如图,在梯形ABCD 中,AD ∥BC ,∠BAD =135°,以A 为圆心,AB 为半径作⊙A 交AD ,BC 于E ,F 两14.如图,⊙O 的半径为R ,弦AB =a ,弦BC ∥OA ,求AC 的长.15.如图,在△ABC 中,∠BAC ,∠ABC ,∠BCA 的平分线交△ABC 的外接圆于D ,E 和F ,如果,,分别为m °,n °,p °,求△ABC 的三个内角.16.如图,在⊙O 中,BC ,DF 为直径,A ,E 为⊙O 上的点,AB =AC ,EF =21DF .求∠ABD +∠CBE 的值.17.如图,等腰三角形ABC 的顶角为50°,AB =AC ,以数.第二页18.如图,AB是⊙O的直径,AB=2cm,点C在圆周上,且∠BAC=30°,∠ABD=120°,CD⊥BD于D.求BD的长.19.如图,△ABC中,∠B=60°,AC=3cm,⊙O 为△ABC的外接圆.求⊙O的半径.20.以△ABC的BC边为直径的半圆,交AB于D,交AC于E,EF⊥BC于F,AB=8cm,AE=2cm,BF∶FC=5∶1(如图).求CE的长.21.已知等腰三角形的腰长为13cm,底边长为10cm,求它的外接圆半径.22.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=a,BD=b,BE=c.求AE的长.23.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=6cm,BD=2cm,BE=2.4cm.求DE的长.24.如图,梯形ABCD内接于⊙O,AB∥CD,的度数为60°,∠B=105°,⊙O的半径为6cm.求BC的长.25.已知:如图,AB是⊙O的直径,AB=4cm,E为OB的中点,弦CD⊥AB于E.求CD的长.26.如图,AB为⊙O的直径,E为OB的中点,CD为过E点并垂直AB的弦.求∠ACE的度数.27.已知:如图,在△ABC中,∠C=90°,∠A=38°,以C为圆心,BC为半径作圆,交AB于D,求的度数.第三页28.如图,△ABC内接于圆O,AD为BC边上的高.若AB=4cm,AC=3cm,AD=2.5cm,求⊙O的半径.29.设⊙O的半径为1,直径AB⊥直径CD,E 是OB的中点,弦CF过E点(如图),求EF的长.30.如图,在⊙O中直径AB,CD互相垂直,弦CH交AB于K,且AB=10cm,CH=8cm.求BK∶AK的值.31.如图,⊙O的半径为40cm,CD是弦,A为的中点,弦AB交CD于F.若AF=20cm,BF=40cm,求O点到弦CD的弦心距.32.如图,四边形ABCD内接于以AD为直径的圆O,且AD=4cm,AB=CB=1cm,求CD的长.三、证明题33.如图,已知△ABC内接于半径为R的⊙O,A为锐角.求证:A BCsin =2R34.已知:如图,在△ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交△ABC 的外接圆于E ,连接BE .求证:BE =DE .35.如图,已知D 为等边三角形ABC 外接圆上的上的一点,AD 交BC 边于E .求证:AB 为AD 和AE 的比例中项.36.已知:如图,在△ABC 中,AB =AC ,以AB 为直径的圆交BC 于D .求证:D 为BC 的中点.第四页37.已知:如图,⊙O 是△ABC 的外接圆,AD ⊥BC 于D ,AE 平分∠BAC 交⊙O 于E .求证:AE 平分∠OA D .38.已知:如图,△ABC 的AB 边是⊙O 的直径,另两边BC 和AC 分别交⊙O 于D ,E 两点,DF ⊥AB,交AB于F,交BE于G,交AC的延长线于H.求证:DF2=HF·GF.39.已知:如图,圆内接四边形ABCD中,BC=C D.求证:AB·AD+BC2=AC2.40.已知:如图,AB是半圆的直径,AC是一条弦,D是中点,DE⊥AB于E,交AC于F,DB交AC于G.求证:AF=FG.41.如图,AB是⊙O的弦,P是AB所对优弧上一点,直径CD⊥AB,PB交CD于E,延长AP交CD 的延长线于F.求证:△EPF∽△EO A.42.已知:如图,AB是⊙O的直径,弦CD⊥AB 于E,M为上一点,AM的延长线交DC于F.求证:∠AMD=∠FM C.43.已知:如图,AB,AC分别为⊙O的直径与弦,CD⊥AB于D,E为⊙O外一点,且AE=AC,BE 交⊙O于F,连结ED,CF.求证:∠ACF=∠AE D.44.如图,⊙O的半径OD,OE分别垂直于弦AB和AC,连结DE交AB,AC于F,G.求证:AF2=AG2=DF·GE.45.如图,△ABC内接于圆,D是AB上一点,AD=AC,E是AC延长线上一点,AE=AB,连接DE交圆于F,延长ED交圆于G.求证:AF=AG.第五页46.已知:如图,⊙O的两条直径AB⊥CD,E 是OD的中点,连结AE,并延长交⊙O于M,连结CM,交AB于F.求证:OB=3OF.47.已知:如图,△ABC是等边三角形,以AC 为直径作圆交BC于D,作DE⊥AC交圆于E.(1)求证:△ADE是等边三角形;(2)求S△ABC∶S△ADE.48.已知:如图,半径都是5cm的两等圆⊙O1和⊙O2相交于点A,B,过A作⊙O1的直径AC与⊙O2交于点D,且AD∶DC=3∶2,E为DC的中点.(1)求证:AC⊥BE;(2)求AB的长.一、填空题:1.如图1,等边三角形ABC的三个顶点都在⊙O上,D是AC上任一点(不与A、C重合),则∠ADC的度数是________.(1) (2) (3)2.如图2,四边形ABCD的四个顶点都在⊙O上,且AD∥BC,对角线AC与BC相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.3.已知,如图3,∠BAC的对角∠BAD=100°,则∠BOC=_______度.4.如图4,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度.(4) (5)(6)5.如图5,AB是⊙O的直径, BC BD,∠A=25°,则∠BOD的度数为________.第六页6.如图6,AB是半圆O的直径,AC=AD,OC=2,∠CAB=30 °, 则点O 到CD 的距离OE=______.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°(7) (8) (9) (10)8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D是AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个10.如图10,∠AOB=100°,则∠A+∠B等于( )A.100°B.80°C.50°D.40°11.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°12.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°, ∠CBD 的度数是( )A.40°B.50°C.70°D.110°三、解答题:13.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.14.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC的长.15.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值.16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.第七页17.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素) 18.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大的圆钢?。
O DC B A 弧、弦、圆心角与圆周角测试九年级( )班 姓名: 评价:1、圆心角定义:顶点在的角叫做圆心角。
2. 在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等圆心角所对的弧(都是优弧或都是劣弧)相等圆心角所对的弦相等。
3、一个角是圆周角必须满足两个条件:(1)角的顶点在 ;(2)角的两边都是与圆有除顶点外的交点。
4. 同一条弧所对的圆周角有__________个。
5.圆周角定理:1=2⨯圆周角圆心角 6.圆周角定理推论:(1)同弧或等弧所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。
7. 圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做 ,这个圆叫做 。
性质:圆内接四边形的对角 。
8、如图,在⊙O 中,AB AC =, ∠B =70°,则∠A 等于 .9、如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= cm .10、如图,已知OA ,OB 均为⊙O 上一点,若∠AOB=80°,则∠ACB=( )。
A .80°B .70°C .60°D .40°11、圆内接四边形ABCD ,∠A ,∠B ,∠C 的度数之比为3:4:6,则∠D 的度数为( )。
A .60B .80C .100D .120 12、已知如图,四边形ABCD 内接于⊙O ,若∠A =60°,则∠DCE = .13、如图,AB 是 ⊙O 的直径,BC ⌒ =BD⌒ , ∠A=25°, 则∠BOD= 。
14、如图,AB是⊙O的直径,点C在⊙O上,若∠A=40 º,则∠B的度数为()。
A.80 º B.60 º C.50 º D.40 º15、如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()。
圆周角与圆心角初中数学组卷一•选择题(共30小题)1.如图,圆 0通过五边形 OABCD 的四个顶点.若弧 ABD=150,/A=65°,/ D=60° , 则弧BC 的度数为何?( ) A . 25 B . 40C . 50D . 552.如图,在O O 中,弧 AB=弧AC ,/ AOB=40 ,则/ ADC 的度数是( )A . 40°B . 30°C . 20°D . 15°3.如图,点A 、B 、C 是圆O 上的三点,且四边形 ABCO 是平行四边形,OF 丄OC 交圆O 于点F ,则/ BAF 等于( )A . 12.5 °B . 15°C . 20°D . 22.5 °4.如图,A 、 D 是O O 上的两个点, BC 是直径.若/ D=32°,则/ OAC=()A . 64°B . 58°C . 72°D . 55°5 . 如图, O O 中,弦AB 与CD 交于点M , / A=45° , / AMD=75 ,则/ B 的度数是( ) A . 15°B . 25°C . 30°D . 75°6 . 如图, 线段 AB 是O O 的直径,弦 CD 丄 AB ,/ CAB=40 ,则/ ABD 与/ AOD 分别等 于 ( )A .40° 80° B . 50°, 100° C . 50° 80° D . 40°, 100°7.如图,点A , B , C , P 在O O 上,CD 丄OA , CE 丄OB ,垂足分别为 D , E , / DCE=40 则/ P的度数为( )&如图,四边形 ABCD 内接于O O ,若四边形ABCO 是平行四边形,则/ ADC 的大小为A . 140°B . 70C . 60°D . 40CDECD( )A . 45° B . 50° C . 60° D . 759 .如图,四边形ABCD内接于O O, F是弧CD上一点,且弧DF=弧BC ,连接CF并延长交AD的延长线于点E,连接AC .若/ ABC=105 , / BAC=25 ,则/ E的度数为()A. 45°B. 50°C. 55°D. 60°10 .如图,圆O是Rt△ ABC的外接圆,/ ACB=90 ,/ A=25°,过点C作圆O的切线,交AB的延长线于点D,则/ D的度数是()A. 25° B . 40° C . 50° D . 65°11 .如图,AB是O O的直径,直线PA与O O相切于点A, PO交O O于点C ,连接BC .若/ P=40°,则/ ABC的度数为()A. 20°B. 25°C. 40° D . 50°12 .如图,过O O外一点P引O O的两条切线PA、PB,切点分别是A、B , OP交O O于点C ,点D是优弧ABC上不与点A、点C重合的一个动点,连接AD、CD ,若/ APB=80 , 则/ ADC 的度数是()A . 15°B . 20° C . 25° D . 30°13 .如图,I是厶ABC的内心,AI的延长线和△ ABC的外接圆相交于点D,连接BI、BD、DC .下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B .线段DB绕点D顺时针旋转一定能与线段DI重合C . / CAD绕点A顺时针旋转一定能与/ DAB重合D .线段ID绕点I顺时针旋转一定能与线段IB重合14 .如图,MN 是O O 的直径,若/ E=25°,/ PMQ=35 ,则/ MQP=()A . 30°B . 35°C. 40°D. 50°15 .如图,O O的直径AB与弦CD的延长线交于点E,若DE=OB,/ AOC=84 ,则/ E等于()A . 42° B . 28°C . 21 °D . 20°16 .如图,△ ABC内接于O O,若/ BAC=80,/ C=50°,取AC中点P,连接PO并延长交BC于点M,连接AM,则/ BAM=()A . 45B . 30°C. 50°D. 5517 .如图,O O 中,OA丄BC , AD // OC ,Z AOC=40 ,则/ B 的度数为()18 .如图,在Rt△ ABC中,/ C=90°,/ A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为()A. 26° B . 64°C. 52°D. 128°19 .如图,BD是O O的直径,/ CBD=30 ,则/ A的度数为()A . 30°B . 45°C. 60°D. 75°20 .如图,已知CD是O O的直径,过点D的弦DE平行于半径OA ,若/ D的度数是50° ,则/ C 的度数是()A . 25° B . 30° C . 40° D . 50°21 .如图,O O中,弦AB、CD相交于点P,若/ A=30°, / APD=70 ,则/ B等于()A . 30°B . 35°C . 40°D . 50°22•如图,O O是厶ABC的外接圆,/ OBC=42 , 则/ A的度数是()A . 42°B . 48°C . 52°D . 58°23.如图,四边形ABCD内接于O O,若/ BOD=138,则它的一个外角/DCE等于(A . 69°B . 42°C . 48°D . 38°24•如图,已知AB、AD是O O的弦,/ B=30°,点C在弦AB上,连接CO并延长CO交于O O于点D,Z D=2C°,则/ BAD的度数是()A . 30°B . 40°C . 50°D . 60°25 .在O O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O不重合,/ BAC=25 ,则/ DCA的度数()A . 35°B . 40°C . 45°D . 65°26 .如图所示,点P在圆0上,将圆心角/ AOC绕点0按逆时针旋转到/ BOD,旋转角为a (0°VaV 180°).若/ AOC节(0°< 3< 180°),则/ P的度数为(用a和B表示()A .俟aJ2B . a + /2 C. 3- aD . a + 327 .和半径相等的弦所对的圆周角的度数是()28 .如图,AB 为O O 直径,已知圆周角/ BCD=30 ,则/ ABD 为( ).选择题(共25小题)1 .在圆内接四边形 ABCD 中,若/ A :/ B :/ C=2 :3 : 6,则/ D 等于( )A . 67.5 °B . 135°C . 112.5 °D . 45°2.如图,四边形ABCD 内接于O O ,/ A=110°,则/ BOD 的度数是( )A . 70°B . 110°C . 120°D . 140°3. 如图,四边形 ABCD 内接于O O , F 是弧CD 上一点,且弧 DF=弧BC ,连接CF 并延 长交AD 的延长线于点 E ,连接AC ,若/ ABC=105 , / BAC=25 ,则/ E 的度数为( ) A . 45°B . 50°C . 55°D . 60°4. 如图,四边形 ABCD 内接于O O , E 为BC 延长线上一点,/ A=50°,则/ DCE 的度数为( )A . 40° B . 50° C . 60° D . 130°5. 半径为 2的O O 中,弦AB=”3,弦AB 所对的圆周角的度数为( )A .60°B . 60°或 120°C . 45° 或 135°D . 30° 或 150°A . 30°B . 40°C . 50D . 6029 .如图,已知直线l 与O O 相交于点 则/ BAF 的大小为( ) E 、F ,AB 是O O 的直径,AD 丄l 于点D,若/ DAE=22A . 12°B . 18C . 22°D . 3030 .若圆的一条弦把圆分成度数比为 A . 36°B . 72°1 : 4的两段弧,则弦所对的圆周角等于(C . 36° 或 144°D . 72° 或 1086 .如图,四边形ABCD内接于半圆O,已知/ ADC=140,则/ AOC的大小是() A40° B . 60° C . 70° D . 80°.7 .在O O中,圆心0到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A. 30°B. 45C 60°D. 90°&如图,O 0 ABC的外接圆,/ A=72°,则/ BCO的度数为()A. 15°B. 18°C. 20° D . 28°9.如图,将O 0沿弦AB折叠,圆弧恰好经过圆心0,点P是优弧AMB上一点,则/APB的度数为()A . 45° B . 30° C . 75° D . 60°10 .如图,O 0的半径是2 , AB是O 0的弦,点P是弦AB上的动点,且K 0医2,则弦AB所对的圆周角的度数是()A . 60°B . 120°C . 60° 或120°D . 30°或150°11 .如图,已知AB=AC=AD,/ CBD=2 / BDC,/ BAC=44 ,则/ CAD 的度数为()12.如图,点A, B , C是O 0上的三点,已知/ A0B=100 ,那么/ ACB的度数是()13 .如图所示,MN是O 0的直径,作AB丄MN,垂足为点D,连接AM , AN,点C为弧AN上一点,且弧AC=弧AM,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD ;②/ MAN=90 ;③弧AM=弧BM ;④/ ACM+ / ANM= / M0B :⑤ AE=1/2MF .其中正确结论的个数是()A . 2B . 3C . 4D . 514 .如图,在O 0中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD .如果/ BAC=20,则/ BDC=()A . 80°B . 70°C. 60°D. 50°15 .如图,已知O 0的弦AB、CD相交于点E,弧AC的度数为60° ,弧BD的度数为100° ,则/ AEC 等于()A . 60° B . 100° C . 80° D . 130°16 .已知△ ABC中,AB=AC,/ A=50°,O 0是厶ABC的外接圆,D是优弧BC上任一点(不与A、B、C重合),则/ ADB的度数是()A . 50°B . 65°C . 65° 或50°D . 115° 或65°17 .如图,A、B、C、D四点都在O 0上,若/ C0D=80 ,则/ ABD+ / 0CA等于()A. 45B. 50C. 55D. 6018 .如图,O O 中,AD、BC 是圆O 的弦,OA 丄BC,/ AOB=50 , CE 丄AD,则/ DCE的度数是( )A. 25° B . 65° C . 45° D . 55°19 .如图,点P 在线段AB 上,PA=PB=PC=PD ,当/ BPC=60 时,/ BDC=( )A. 15° B . 30°C. 25°D. 60°20 .如图,点D为AC上一点,点O为边AB上一点,AD=DO .以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F, G,连接EF .若/ BAC=22 ,则/ EFG=( ) A. 55° B . 44°C. 38°D. 33°21 .已知,如图,以△ ABC的一边BC为直径的O O分别交AB、AC于D、E,下面判断中:①当△ ABC为等边三角形时,△ ODE是等边三角形;②当△ ODE是等边三角形,△ ABC 为等边三角形;③当/ A=45时,△ ODE是直角三角形;④当△ ODE是直角三角形时,/ A=45 .正确的结论有()A . 1个B. 2个C . 3个D . 4个22 .如图,已知AB、C、D、E均在O O上,且AC为直径,则/ A+ / B+ / C=()度.A . 30B . 45C . 60D . 9023 .如图,/ C=15°,且弧AB =弧BC =弧CD,则/ E的度数为()A . 30°B . 35°C . 40°D . 45°24 .在半径为2的O O内有长为2v3的弦AB,这条弦所对的圆周角的度数是()A . 120° 或60°B . 120°C . 60°D . 75°25 .如图,点C在弧AB上,点D在半径OA上,则下列结论正确的是()A. / DCB+1/2 / O=180° B . / ACB+1/2 / O=180°C. / ACB+ / O=180°D. / CAO+ / CBO=180。
圆周角和圆心角的练习题一、选择题1.圆周角是24°,则它所对的弧是________ A.12°;B.24°;C.36°;D.48°.2.在⊙O中,∠AOB=84°,则弦AB所对的圆周角是________A.42°;B.138°;C.84°;D.42°或138°.3.如图,圆内接四边形ABCD的对角线AC,BD把四边形的四个角分成八个角,这八个角中相等的角的对数至少有___________.()A.1对;B.2对;C.3对;D.4对.4.如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥C D.如果∠BAC=32°,则∠AOD=___[ ] A.16°;B.32°;C.48°;D.64°.二、计算题6.如图,AD是△ABC外接圆的直径,AD=6cm,∠DAC=∠AB C.求AC的长.7.已知:△DBC和等边△ABC都内接于⊙O,BC=a,∠BCD=75°(如图).求BD 的长.8.如图,半圆的直径AB =13cm ,C 是半圆上一点,CD ⊥AB 于D ,并且CD =6cm .求AD 的长.、9.如图,圆内接△ABC 的外角∠MAB 的平分线交圆于E ,EC =8cm .求BE 的长. 10.已知:如图,AD 平分∠BAC ,DE ∥AC ,且AB =a .求DE 的长.11.如图,在⊙O 中,F ,G 是直径AB 上的两点,C ,D,E 是半圆上的三点,如果弧AC 的度数为60°,弧BE 的度数为20°,∠CFA =∠DFB ,∠DGA =∠EG B .求∠FDG 的大小. 12.如图,⊙O 的内接正方形ABCD 边长为1,P 为圆周上与A ,B ,C ,D 不重合的任意点.求PA 2+PB 2+PC 2+PD 2的值.13.如图,在梯形ABCD 中,AD ∥BC ,∠BAD =135°,以A 为圆心,AB 为半径作⊙A 交AD ,BC 于E ,F 两14.如图,⊙O 的半径为R ,弦AB =a ,弦BC ∥OA ,求AC 的长.15.如图,在△ABC 中,∠BAC ,∠ABC ,∠BCA 的平分线交△ABC 的外接圆于D ,E 和F ,如果,,分别为m °,n °,p °,求△ABC 的三个内角.16.如图,在⊙O 中,BC ,DF 为直径,A ,E 为⊙O 上的点,AB =AC ,EF =21DF .求∠ABD +∠CBE 的值.17.如图,等腰三角形ABC 的顶角为50°,AB =AC ,以数.第二页18.如图,AB是⊙O的直径,AB=2cm,点C在圆周上,且∠BAC=30°,∠ABD=120°,CD⊥BD于D.求BD的长.19.如图,△ABC中,∠B=60°,AC=3cm,⊙O为△ABC的外接圆.求⊙O的半径.20.以△ABC的BC边为直径的半圆,交AB于D,交AC于E,EF⊥BC于F,AB=8cm,AE=2cm,BF∶FC=5∶1(如图).求CE的长.21.已知等腰三角形的腰长为13cm,底边长为10cm,求它的外接圆半径.22.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=a,BD=b,BE=c.求AE的长.23.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=6cm,BD=2cm,BE=2.4cm.求DE的长.24.如图,梯形ABCD内接于⊙O,AB∥CD,的度数为60°,∠B=105°,⊙O的半径为6cm.求BC的长.25.已知:如图,AB是⊙O的直径,AB=4cm,E为OB的中点,弦CD⊥AB于E.求CD的长.26.如图,AB为⊙O的直径,E为OB的中点,CD为过E点并垂直AB的弦.求∠ACE 的度数.27.已知:如图,在△ABC 中,∠C =90°,∠A =38°,以C 为圆心,BC 为半径作圆,交AB 于D ,求的度数.第三页28.如图,△ABC 内接于圆O ,AD 为BC 边上的高.若AB =4cm ,AC =3cm ,AD =2.5cm ,求⊙O 的半径.29.设⊙O 的半径为1,直径AB ⊥直径CD ,E 是OB 的中点,弦CF 过E 点(如图),求EF 的长.30.如图,在⊙O 中直径AB ,CD 互相垂直,弦CH 交AB 于K ,且AB =10cm ,CH =8cm .求BK ∶AK 的值.31.如图,⊙O 的半径为40cm ,CD 是弦,A 为的中点,弦AB 交CD 于F .若AF =20cm ,BF =40cm ,求O 点到弦CD 的弦心距.32.如图,四边形ABCD 内接于以AD 为直径的圆O ,且AD =4cm ,AB =CB =1cm ,求CD 的长. 三、证明题33.如图,已知△ABC 内接于半径为R 的⊙O ,A 为锐角. 求证:ABCsin =2R34.已知:如图,在△ABC中,AD,BD分别平分∠BAC和∠ABC,延长AD交△ABC 的外接圆于E,连接BE.求证:BE=DE.35.如图,已知D为等边三角形ABC外接圆上的上的一点,AD交BC边于E.求证:AB为AD和AE的比例中项.36.已知:如图,在△ABC中,AB=AC,以AB为直径的圆交BC于D.求证:D为BC 的中点.第四页37.已知:如图,⊙O是△ABC的外接圆,AD⊥BC于D,AE平分∠BAC交⊙O于E.求证:AE平分∠OA D.38.已知:如图,△ABC的AB边是⊙O的直径,另两边BC和AC分别交⊙O于D,E 两点,DF⊥AB,交AB于F,交BE于G,交AC的延长线于H.求证:DF2=HF·GF.39.已知:如图,圆内接四边形ABCD中,BC=C D.求证:AB·AD+BC2=AC2.40.已知:如图,AB是半圆的直径,AC是一条弦,D是中点,DE⊥AB于E,交AC于F,DB交AC于G.求证:AF=FG.41.如图,AB是⊙O的弦,P是AB所对优弧上一点,直径CD⊥AB,PB交CD于E,延长AP交CD的延长线于F.求证:△EPF∽△EO A.42.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,M为上一点,AM的延长线交DC于F.求证:∠AMD=∠FM C.43.已知:如图,AB,AC分别为⊙O的直径与弦,CD⊥AB于D,E为⊙O外一点,且AE=AC,BE交⊙O于F,连结ED,CF.求证:∠ACF=∠AE D.44.如图,⊙O的半径OD,OE分别垂直于弦AB和AC,连结DE交AB,AC于F,G.求证:AF2=AG2=DF·GE.45.如图,△ABC内接于圆,D是AB上一点,AD=AC,E是AC延长线上一点,AE=AB,连接DE交圆于F,延长ED交圆于G.求证:AF=AG.第五页46.已知:如图,⊙O的两条直径AB⊥CD,E是OD的中点,连结AE,并延长交⊙O 于M,连结CM,交AB于F.求证:OB=3OF.47.已知:如图,△ABC是等边三角形,以AC为直径作圆交BC于D,作DE⊥AC交圆于E.(1)求证:△ADE是等边三角形;(2)求S△ABC∶S△ADE.48.已知:如图,半径都是5cm的两等圆⊙O1和⊙O2相交于点A,B,过A作⊙O1的直径AC与⊙O2交于点D,且AD∶DC=3∶2,E为DC的中点.(1)求证:AC⊥BE;(2)求AB的长.一、填空题:1.如图1,等边三角形ABC的三个顶点都在⊙O上,D是AC上任一点(不与A、C重合),则∠ADC的度数是________.DCBAO(1) (2) (3)2.如图2,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BC 相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.3.已知,如图3,∠BAC 的对角∠BAD=100°,则∠BOC=_______度.4.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_______度.BA(4) (5) (6)5.如图5,AB 是⊙O 的直径, BC BD ,∠A=25°,则∠BOD 的度数为________.第六页6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______. 二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°DCBA(7) (8) (9) (10)8.如图8,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D 是AC 的中点,则图中与∠ABD 相等的角的个数是( )A.4个B.3个C.2个D.1个 10.如图10,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°12.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( )A.40°B.50°C.70°D.110°三、解答题:13.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.A14.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC的长.15.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值.16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.第七页17.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素) 18.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大的圆钢?。