高三数列专题6.18
- 格式:docx
- 大小:275.04 KB
- 文档页数:7
2018年高考数学 数列 综合题专项练习一、选择题:1.在等差数列{a n }中,S n 为其前n 项和,若34825a a a ++=,则9S =( ) A.60 B.75 C.90 D.1052.已知数列{a n }为等差数列,其前n 项和为S n ,7825a a -=,则11S 为( ) A.110 B.55 C.50 D.不能确定3.若数列{a n },{b n }的通项公式分别为a a n n ∙-=+2016)1(,nb n n 2017)1(2+-+=,且n n b a <,对任意*∈N n 恒成立,则实数a 的取值范围是( )A.)21,1[- B.[-1,1) C.[-2,1) D.)23,2[- 二、填空题:4.已知等差数列{a n }的公差d ≠0,若a 21+a 2=1,a 22+a 3=1,则a 1=________.5.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 . 三、解答题:6.已知等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+32. (1)求数列{a n }的通项公式及其前n 项和; (2)设b n =nS n,求证:数列{b n }中任意不同的三项都不可能成等比数列.7.已知数列{a n }的前n 项和1n n S a λ=+,其中λ错误!未找到引用源。
0. (1)证明{a n }是等比数列,并求其通项公式. (2)若53132S =,求λ.8.已知数列{a n }的前n 项和为S n ,a 1=1,且3S n =a n+1﹣1. (1)求数列{a n }的通项公式;(2)设等差数列{b n }的前n 项和为T n ,a 2=b 2,T 4=1+S 3,求的值.9.已知各项都为正数的数列{a n }满足a 1=1,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.10.已知数列{a n }中,a 1=4,a n =a n ﹣1+2n ﹣1+3(n ≥2,n ∈N *).(1)证明数列{a n ﹣2n}是等差数列,并求{a n }的通项公式;(2)设b n =,求b n 的前n 和S n .11.已知{a n }是各项均为正数的等比数列,且a 1+ a 2 =6, a 1a 2= a 3 (1)求数列{a n }通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n 。
数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d(d≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列,∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k∈N *,使得等式1-2T k =1b k 成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =a nb n ,求数列{c n }的前n 项和T n .(1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)解 由d>1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n, 故T n =6-2n +32n -1.【类题通法】用错位相减法解决数列求和的模板 第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q. 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【对点训练】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S 2n .(1)证明 由条件,对任意n∈N *,有a n +2=3S n -S n +1+3, 因而对任意n∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2, 所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n∈N *,a n +2=3a n . (2)解 由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1. 于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=32(3n -1).热点三 数列的综合应用 热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x的图象上(n∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2. 所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n. (2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.热点3.2 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-2】 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n. (2)∵S n =3(1+2+3+…+n)=32n(n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
.2018 届高三第二轮复习——数列第 1 讲等差、等比考点【高考感悟】从近三年高考看,高考命题热点考向可能为:考什么怎么考题型与难度主要考查等差、等比数列的基题型:三种题型均可出现1.等差 (比 )数列的基本运算本量的求解难度:基础题主要考查等差、等比数列的定题型:三种题型均可出现2.等差 (比 )数列的判定与证明义证明难度:基础题或中档题主要考查等差、等比数列的性题型:选择题或填空题3.等差 (比 )数列的性质质难度:基础题或中档题1.必记公式(1)等差数列通项公式: an= a1 + (n- 1) d.n( a1+ an)n(n- 1 )d(2) 等差数列前 n 项和公式:S == na1+.n22(3)等比数列通项公式: ana1q n-1 .(4)等比数列前 n 项和公式:na1 ( q= 1)S n=n n .a1( 1 -q )a1- aq ( q≠1)=1 - q1- q(5)等差中项公式: 2an= an- 1+an+1 (n≥ 2) .(6)等比中项公式: a2n= an- 1 ·an+1(n≥ 2) .S1 ( n= 1)(7) 数列 {an}的前 n 项和与通项 an 之间的关系: an= . Sn- Sn- 1( n≥ 2)2.重要性质(1) 通项公式的推广:等差数列中,an=am+ (n-m )d;等比数列中,an= amq n-m...(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列.②等比数列中,若a1>0 且 q> 1 或 a1< 0 且 0 < q< 1,则数列为递增数列;若a1> 0 且 0 < q< 1 或a1< 0 且 q> 1,则数列为递减数列.3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件.(2) 漏掉等比中项:正数a, b 的等比中项是±ab,容易漏掉-ab .【真题体验】1. (2015 ·新课标Ⅰ高考)已知 {an}是公差为 1 的等差数列, Sn 为 {an}的前 n 项和.若 S8= 4S4,则 a10= ( )17 19A. B. C. 10D. 122 212. (2015 ·新课标Ⅱ高考)已知等比数列 {an}满足 a1=, a3a5 = 4( a4-1) ,则 a2 = ()41 1A. 2 B.1 C.D.2 83. (2015 ·浙江高考)已知 {n}是等差数列,公差d不为零.若a2,a3,7 成等比数列,且2a1+a2 =1,则a aa1= __________,d= ________.4. (2016 ·全国卷1)已知 a n是公差为 3 的等差数列,数列b n满足 b1=1, b2 =1, a n b n 1b n1 nb n,.3(I )求a n 的通项公式;( II )求b n的前 n 项和 ...【考点突破】考点一、等差(比)的基本运算1.(2015 ·湖南高考)设 Sn 为等比数列 {an}的前 n 项和,若 a1 = 1,且 3 S1,2S2 ,S3 成等差数列,则an= ________.92. (2015 ·重庆高考)已知等差数列{an}满足 a3=2,前 3 项和 S3=.2(1)求 {an}的通项公式;(2)设等比数列 {bn}满足 b1= a1 ,b4 = a15,求 {bn}的前 n 项和 Tn.考点二、等差(比)的证明与判断【典例 1 】( 2017 ·全国1 )记 Sn 为等比数列 a n的前 n 项和,已知 S2=2 , S3 =-6.( 1)求 a n 的通项公式;( 2)求 Sn,并判断 Sn+1, Sn,Sn+2 是否成等差数列。
数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N *,总有-712≤S n -1S n ≤56.所以数列{T n }最大项的值为56,最小项的值为-712.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d(d≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k∈N *,使得等式1-2T k =1b k 成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =a nb n ,求数列{c n }的前n 项和T n .(1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)解 由d>1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1.【类题通法】用错位相减法解决数列求和的模板 第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q. 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【对点训练】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S 2n .(1)证明 由条件,对任意n∈N *,有a n +2=3S n -S n +1+3, 因而对任意n∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2, 所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n∈N *,a n +2=3a n .(2)解 由(1)知,a n ≠0,所以a n +2a n =3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=32(3n -1).热点三 数列的综合应用 热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图象上(n∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n.(2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2. 由题意知,a 2-1ln 2=2-1ln 2, 解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.热点3.2 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-2】 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n. (2)∵S n =3(1+2+3+…+n)=32n(n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
专题六 数列 第十八讲 数列的综合应用一、选择题1.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >2.(2015湖北)设12,,,n a a a ∈R L ,3n ≥.若p :12,,,n a a a L 成等比数列;q :222121()n a a a -+++⨯L 22222312231()()n n n a a a a a a a a a -+++=+++L L ,则A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件3.(2014新课标2)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n项和n S =A .()1n n +B .()1n n -C .()12n n + D .()12n n -4.(2014浙江)设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=, 99,,2,1,0,99Λ==i ia i ,记10|()()|k k k I f a f a =-+21|()()|k k f a f a -+⋅⋅⋅+ 9998|()()|k k f a f a -,.3,2,1=k 则A .321I I I <<B . 312I I I <<C . 231I I I <<D . 123I I I << 二、填空题5.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .6.(2015浙江)已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .7.(2013重庆)已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =.8.(2011江苏)设7211a a a ≤≤≤≤Λ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________.三、解答题9.(2018江苏)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示). 10*.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.*根据亲所在地区选用,新课标地区(文科)不考. 11.(2017江苏)对于给定的正整数k ,若数列{}n a 满足11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.12.(2016年四川)已知数列{}n a 的首项为1,n S 为数列{}n a 的前n 项和,11n n S S +=+,其中0q >,*n N ∈(Ⅰ)若2323,,a a a a +成等差数列,求数列{}n a 的通项公式;(Ⅱ)设双曲线2221ny x a +=的离心率为n e ,且22e =,求22212n e e e ++⋅⋅⋅+.13.(2016年浙江)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.(I )求通项公式n a ;(II )求数列{2n a n --}的前n 项和.14.(2015重庆)已知等差数列{}n a 满足32a =,前3项和392S =. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足11b a =,415b a =,求{}n b 前n 项和n T .15.(2015天津)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332b b a +=,5237a b -=.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设n n n c a b =,*n ∈N ,求数列{}n c 的前n 项和.16.(2015四川)设数列{}n a (n =1,2,3…)的前n 项和n S 满足12n n S a a =-,且1a ,2a +1,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列1{}na 的前n 项和为n T ,求n T . 17.(2015湖北)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}nb 的公比为q ,已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n c =nna b ,求数列{}n c 的前n 项和n T . 18.(2014山东)已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T . 19.(2014浙江)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221Λ.若{}na 为等比数列,且.6,2231b b a +== (Ⅰ)求n a 与n b ; (Ⅱ)设()*∈-=N n b a c nn n 11.记数列{}n c 的前n 项和为n S . (ⅰ)求n S ;(ⅱ)求正整数k ,使得对任意*∈N n ,均有n k S S ≥. 20.(2014湖南)已知数列{n a }满足*111,||,.n n n a a a p n N +=-=∈(Ⅰ)若{n a }是递增数列,且12,3,23a a a 成等差数列,求p 的值; (Ⅱ)若12p =,且{21n a -}是递增数列,{2n a }是递减数列,求数列{n a }的通项公式. 21.(2014四川)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(*n N ∈).(Ⅰ)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (Ⅱ)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}nna b 的前n 项和n T . 22.(2014江苏)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (Ⅰ)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(Ⅱ)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(Ⅲ)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.23.(2013安徽)设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅,满足'()02f π=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若122nn n a b a =+(),求数列{}n b 的前n 项和n S . 24.(2013广东)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(Ⅰ)证明:2a =(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<L . 25.(2013湖北)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.26.(2013江苏)设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和. 记2nn nS b n c=+,N n *∈,其中c 为实数.(Ⅰ) 若0c =,且1b ,2b ,4b 成等比数列,证明:()2N nk k S n S k,n *=∈;(Ⅱ) 若{}n b 是等差数列,证明:0c =.27. (2012山东)已知等差数列{}n a 的前5项和为105,且1052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m项和m S .28.(2012湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (Ⅰ)用d 表示12,a a ,并写出1n a +与n a 的关系式;(Ⅱ)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).29.(2012浙江)已知数列{}n a 的前n 项和为n S ,且n S =22n n +,*n ∈N ,数列{}n b 满足24log 3n n a b =+,*n ∈N . (Ⅰ)求,n n a b ;(Ⅱ)求数列{}n n a b ⋅的前n 项和n T .30.(2012山东)在等差数列{}n a 中,84543=++a a a ,973a =(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意的*N m ∈,将数列{}n a 中落入区间()29,9m m 内的项的个数为m b ,求数列{}m b 的前m 项和m S .31.(2012江苏)已知各项均为正数的两个数列{}n a 和{}n b满足:1n a n *+=∈N .(Ⅰ)设11n n nb b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(Ⅱ)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.32.(2011天津)已知数列{}{}n n a b 与满足11(2)1nn n n n b a b a +++=-+,1*13(1),,22n n b n N a -+-=∈=且.(Ⅰ)求23,a a 的值;(Ⅱ)设*2121,n n n c a a n N +-=-∈,证明{}n c 是等比数列;(Ⅲ)设n S 为{}n a 的前n 项和,证明*21212122121().3n n n n S S S S n n N a a a a --++++≤-∈L 33.(2011天津)已知数列{}n a 与{}n b 满足:1123(1)0,2nn n n n n n b a a b a b ++++-++==,*n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列;(Ⅲ)设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6nk k kS n N a =<∈∑. 34.(2010新课标)设数列{}n a 满足21112,32n n n a a a -+=-=g(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令n n b na =,求数列的前n 项和n S .35.(2010湖南)给出下面的数表序列:124 4 8表1 表2 表3 ∙∙∙1 1 3 1 3 5其中表n (n =1,2,3 L )有n 行,第1行的n 个数是1,3,5,L ,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.(Ⅰ)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明);(Ⅱ)每个数列中最后一行都只有一个数,它们构成数列1,4,12,L ,记此数列为{}n b ,求和:32412231n n n bb b b bb b b b ++++L *()n N ∈ .专题六 数列 第十八讲 数列的综合应用答案部分1.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1xe x +≥,1234123ln()a a a a a a a +++=++,所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .2.A 【解析】对命题p :12,,,n a a a L 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列, 所以p 是q 的充分条件,但不是q 的必要条件.3.A 【解析】2a ,4a ,8a 成等比数列,∴2428a a a =⋅,即2111(6)(2)(14)a a a +=++,解得12a =,所以(1)n S n n =+.4.B 【解析】∵21)(x x f =在[0,1]上单调递增,可得1110()()0f a f a ->,1211()()0f a f a ->,…,199198()()0f a f a ->,∴111101211199198|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+-1110121119919819910()()+()()()()=()()f a f a f a f a f a f a f a f a --+⋅⋅⋅+--=299-0=199()∵),(2)(22x x x f -=在490]99[,上单调递增,在50[,1]99单调递减 ∴2120()()0f a f a ->,…,249248()()0f a f a ->,250249()()0f a f a -=,251250()()0f a f a -<,…,299298()()0f a f a -<∴221202221299298|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+- =24920299250()()[()()]f a f a f a f a ---=250202992()()()f a f a f a --=505098004(1)199999801⨯⨯-=< ∵|2sin |31)(3x x f π=在24[0,]99,5074[,]9999上单调递增,在2549[,]9999,75[,1]99上单调递减,可得33253493742492()2()2(=(2sin sin )39999I f a f a f a ππ=-+-)252(2sin sin )(1312123444ππ>-=-=> 因此312I I I <<.5.27【解析】所有的正奇数和2n (*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.6.2,13-【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=.7.64【解析】由11a =且125,,a a a 成等比数列,得2111(4)()a a d a d +=+,解得2d =,故81878642S a d ⨯=+=.8.【解析】设2a t =,则23112t q t q t q ++≤≤≤≤≤≤,由于1t ≥,所以max{q t ≥,故q因此*k N ∈,所以4k =.9.【解析】(1)由条件知:(1)n a n d =-,12n n b -=.因为1||n n a b b -≤对n =1,2,3,4均成立, 即1|(1)2|1n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:1(1)n a b n d =+-,11n n b b q -=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|(1)|n b n d b q b -+--≤(n =2,3,···,m +1),即当2,3,,1n m =+L 时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+L 均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+L 均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+L ). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>. 因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当0x >时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()(0)1f x f <=.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.10.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++ 记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .11.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-,从而,当n 4≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.12.【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?.又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立.所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2323+a a a a ,,成等差数列,可得32232=a a a a ++,所以32=2,a a ,故=2q . 所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率n e =由22e =解得q =.所以,22222(1)12222(1)2(11)(1+)[1]1[1]11(31).2n n n n ne e e q q q n q q n q n --++鬃?=+++鬃?+-=+++鬃?=+-=+-13.【解析】(1)由题意得:1221421a a a a +=⎧⎨=+⎩,则1213a a =⎧⎨=⎩,又当2n ≥时,由11(21)(21)2n n n n n a a S S a +--=+-+=, 得13n n a a +=,所以,数列{}n a 的通项公式为1*3,n n a n N -=∈. (2)设1|32|n n b n -=--,*n N ∈,122,1b b ==. 当3n ≥时,由于132n n ->+,故132,3n n b n n -=--≥. 设数列{}n b 的前n 项和为n T ,则122,3T T ==.当3n ≥时,229(13)(7)(2)351131322n n n n n n n T --+---+=+-=-,所以,2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩. 14.【解析】(Ⅰ)设{}n a 的公差为d ,则由已知条件得1132922,3,22a d a d ´+=+=化简得11322,,2a d a d +=+= 解得11a =,12d =.故通项公式1=1+2n n a -,即+1=2n n a .(Ⅱ)由(Ⅰ)得141515+1=1==82b b a =,.设{}n b 的公比为q ,则3418b q b ==,从而2q =. 故{}n b 的前n 项和 1(1)1(12)21112n n n n b q T q -?===---. 15.【解析】(Ⅰ)设数列{}n a 的公比为q ,数列{}n b 的公差为d ,由题意0q >,由已知,有24232,310,q d q d ⎧-=⎨-=⎩ 消去d ,整数得42280q q --=,又因为q >0,解得2,2q d ==,所以{}n a 的通项公式为12,n n a n -*=∈N ,数列{}n b 的通项公式为21,n b n n *=-∈N .(Ⅱ)解:由(Ⅰ)有()1212n n c n -=- ,设{}n c 的前n 项和为n S ,则()121123252212n n S n -=⨯+⨯+⨯++-⨯o L , ()1232123252212n n S n L =⨯+⨯+⨯++-⨯,两式相减得()()2312222122323nnnn S n n L -=++++--⨯=--⨯-,所以()2323nn S n =-+.16.【解析】(Ⅰ) 由已知12n n S a a =-,有1n n n a S S -=-=122n n a a --(n ≥2),即12n n a a -=(n ≥2),从而212a a =,32124a a a ==.又因为1a ,2a +1,3a 成等差数列,即1a +3a =2(2a +1), 所以1a +41a =2(21a +1),解得1a =2.所以,数列{}n a 是首项为2,公比为2的等比数列,故2nn a =.(Ⅱ)由(Ⅰ)得112n n a =, 所以n T =211[1()]111122 (11222212)n n n-+++==--. 17.【解析】(Ⅰ)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩,解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T L --=++++++, ①2345113579212222222n n n T L -=++++++. ② ①-②可得221111212323222222n n n n n n T L --+=++++-=-, 故n T 12362n n -+=-. 18.【解析】(Ⅰ),64,2,,2141211d a S d a S a S d +=+===4122421,,S S S S S S =∴成等比Θ解得12,11-=∴=n a a n (Ⅱ))121121()1(4)1(111++--=-=-+-n n a a n b n n n n n ,当n 为偶数时11111(1)()()33557n T =+-+++-L L1111()()23212121n n n n ++-+---+ 1221211+=+-=∴n nn T n 11111(1)()()33557n n T =+-+++--L L 当为奇数时,1111()()23212121n n n n +++---+12221211++=++=∴n n n T n ⎪⎪⎩⎪⎪⎨⎧+++=∴为奇数为偶数n n n n n nT n ,1222,122. 19.【解析】(Ⅰ)由题意,()()*∈=N n a a a nb n 221Λ,326b b-=,知3238b b a -==,又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项公式为2()n n a n N *=∈,所以()()1121232n n n n n a a a a ++==L ,故数列{}n b 的通项公式为,()1()n b n n n N *=+∈; (Ⅱ)(i )由(Ⅰ)知,11111()21n n n n c n N a b n n *⎛⎫=-=--∈ ⎪+⎝⎭, 所以11()12n n S n N n *=-∈+; (ii )因为12340,0,0,0c c c c =>>>;当5n ≥时,()()11112n n n n c n n +⎡⎤=-⎢⎥+⎣⎦, 而()()()()()11112120222n n n n n n n n n ++++++--=>, 得()()51551122n n n ++≤<, 所以当5n ≥时,0n c <,综上对任意n N *∈恒有4n S S ≥,故4k =.20.【解析】(I )因为{}n a 是递增数列,所以11nn n n n a a a a p ++-=-=。
编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018高考数学复习第六章数列6.3.2等比数列的性质及应用撬题理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018高考数学复习第六章数列6.3.2等比数列的性质及应用撬题理的全部内容。
应用撬题理编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)2018高考数学复习第六章数列6.3。
2等比数列的性质及应用撬题理这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)2018高考数学复习第六章数列6。
3.2等比数列的性质及应用撬题理〉这篇文档的全部内容。
2018高考数学异构异模复习考案第六章数列 6.3.2 等比数列的性质及应用撬题理1。
等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和等于()A.6 B.5C.4 D.3答案C解析∵a4=2,a5=5,∴a4a5=a1a8=a2a7=a3a6=10,∴lg a1+lg a2+…+lg a8=lg (a1a2…a8)=lg (a1a8)4=lg (a4a5)4=4lg (a4a5)=4lg 10=4,选C.2.设等比数列{a n}的前n项和为S n,若S6S3=3,则S9S6=( )A.2 B.错误!C.错误!D.3答案B解析由等比数列的性质得:S3,S6-S3,S9-S6仍成等比数列,于是,由已知得S6=3S3,∴错误!=错误!,即S9-S6=4S3,∴S9=7S3,∴错误!=错误!,故选B.3.已知等比数列{a n}的前n项积记为Ⅱn,若a3a4a8=8,则Ⅱ9=( )A.512 B.256C.81 D.16答案A解析由题意可知,a3a4a7q=a3a7a4q=a3a7a5=a错误!=8,Ⅱ9=a1a2a3…a9=(a1a9)(a2a8)(a3a7)(a4a6)a5=a错误!,所以Ⅱ9=83=512。
2018高考文科数学数列专项100题(WORD 版含答案)一、选择题(本题共36道小题)1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( ) A .138 B .135 C .95 D .23 2.已知{a n }是等比数列,且,则a 9=( )A .2B .±2C .8D . 3.设a 1=3,则数列{a n }的通项公式是a n =( )A .B .C .D .4.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( ) A .138 B .135 C .95 D .23 5.已知各项不为0的等差数列{a n }满足a 4﹣2a 72+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( ) A .1 B .2 C .4 D .8 6.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且=,则=( )A .B .6C .5D .7.设0a >,0b >3a 与3b 的等比中项,则11a b +的最小值为( ).A .8B .14C .1D .48.等差数列{}n a 的前n 项和为n S ,如果12a =,3522a a +=,那么3S 等于( ).A.8B.24C.15D.309.等差数列{a n}中,a1,a4025是函数的极值点,则log2a2013等于()A.2 B.3 C.4 D.510.在各项都为正数的等差数列{a n}中,若a1+a2+…+a10=30,则a5•a6的最大值等于()A.3 B.6 C.9 D.3611.设等差数列{a n}的前n项和为S n,若S m﹣2=﹣4,S m=0,S m+2=12.则公差d=()A.B.1 C.2 D.812.设S n是等差数列{a n}的前n项和S n,已知a3=4,a8=14,则S10等于()A.90 B.120 C.150 D.18013.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=()A.1+log35 B.2+log35 C.12 D.1014.设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.615.若数列{a n}的前n项和S n满足S n=2a n﹣n,则()A.S n=2n+1﹣1 B.a n=2n﹣1 C.S n=2n+1﹣2 D.a n=2n+1﹣316.已知等差数列{a n}的前n项和为S n,且S10=12,则a5+a6=()A. B.12 C.6 D.17.在等比数列{a n}中,S n为前n项和,已知a5=2S4+3,a6=2S5+3,则此数列的公比q为()A.2 B.3 C.4 D.518.下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=19.在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5 B.8 C.10 D.1420.设S n为等差数列{a n}的前n项和,a1=﹣2,S3=0,则{a n}的公差为()A.1 B.2 C.3 D.421.如图,矩形A n B n C n D n的一边A n B n在x轴上,另外两个顶点C n,D n在函数f(x)=x+的图象上.若点B n的坐标为(n,0)(n∈N*),记矩形A n B n C n D n的周长为a n,则a1+a2+…+a10()A.208 B.212 C.216 D.22022.成书于公元五世纪的《张邱建算经》是中国古代数学史上的杰作,该书中记载有很多数列问题,如“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.问日益几何.”意思是:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加()(其中1匹=4丈,1丈=10尺,1尺=10寸)A.5寸另寸B.5寸另寸C.5寸另寸D.5寸另寸23.若数列{a n}的前n项和为S n=kn2+n,且a10=39,则a100=()A.200 B.199 C.299 D.39924.等差数列{a n}中,已知a6+a11=0,且公差d>0,则其前n项和取最小值时的n的值为( ) A.6 B.7 C.8 D.925.已知数列{a n}是等差数列,其前n项和S n有最大值,且<﹣1,则使得S n>0的n的最大值为()A.2016 B.2017 C.4031 D.403326.等差数列{a n}的前n项和为S n,且满足a4+a10=20,则S13=()A.6 B.130 C.200 D.26027.已知等比数列{a n}满足a1=4,,则a2=()A.2 B.1 C.D.28.等比数列{a n}的各项均为正数,且a3a8+a5a6=18,则log3a1+log3a2+…+log3a10=()A.12 B.10 C.8 D.2+log3529.等比数列{a n}的前n项和为S n,已知a2a5=2a3,且a4与2a7的等差中项为,则S5=()A.29 B.31 C.33 D.3630.若S n=sin,则在S1,S2,…,S2017中,正数的个数是()A.143 B.286 C.1731 D.200031.已知数列{a n}满足•••…•=(n∈N*),则 a10=()A.e30B.e C.e D.e4032.已知数列{a n}为等差数列,若a1=3,a2+a3=12,则a2=()A.27 B.36 C.5 D.633.已知{a n}是等比数列,且,则a9=()A.2 B.±2 C.8 D.34.对于给定的正整数数列{a n},满足a n+1=a n+b n,其中b n是a n的末位数字,下列关于数列{a n}的说法正确的是()A.如果a1是5的倍数,那么数列{a n}与数列{2n}必有相同的项B.如果a1不是5的倍数,那么数列{a n}与数列{2n}必没有相同的项C.如果a1不是5的倍数,那么数列{a n}与数列{2n}只有有限个相同的项D.如果a1不是5的倍数,那么数列{a n}与数列{2n}有无穷多个相同的项.35.已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.36.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A. B. C.10 D.12二、填空题(本题共28道小题)37.数列{a n }满足a n+1=,a 8=2,则a 1= .38.已知数列{a n }的前n 项和,则数列的前20项和等于 .39.在等比数列{a n }中,a n >0,公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,a 3与a 5的等比中项为2,求数列{a n }的通项公式 . 40.已知{a n }是正项等差数列,数列{}的前n 项和S n =,若b n =(﹣1)n •a n 2,则数列{b n }的前n 项和T 2n = . 41.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是 . 42.在等比数列{}n a 中,若124a =-,489a =-,则公比q =__________,当n =__________时,{}n a 的前n 项积最大.43.等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=__________. 44.已知数列{a n }中,a 1=1,a n =a n ﹣1+21(n≥2),则数列{a n }的前9项和等于 . 45.等比数列{a n }的各项均为正数,且a 4=a 2•a 5,3a 5+2a 4=1,则T n =a 1a 2…a n 的最大值为 . 46.等比数列{a n }的前n 项和为S n ,已知S 1,3S 2,5S 3成等差数列,则{a n }的公比为 . 47.在等差数列{a n }中,a 1=1,a 3+a 5=3,若a 1,a 7,a n 成等比数列,则n= . 48.已知正项等比数列{a n }的前n 项和为S n ,若S 3=3,S 9﹣S 6=12,则S 6= . 49.已知数列{a n}满足a n+1=a n﹣a n﹣1(n≥2),a1=1,a2=3,记S n=a1+a2+…+a n.则a3= ,S2015= .50.已知{a n}为等差数列,S n为其前n项和,若a1=,S2=a3,则a2= ,S n= .51.已知数列{a n}的前n项和为S n,且满足:a1=1,a2=2,S n+1=a n+2﹣a n+1(n∈N*),若不等式λS n>a n恒成立,则实数λ的取值范围是.52.两个正数a,b的等差中项为2,等比中项为,且a>b,则双曲线的离心率e等于.53.若1111,()2242462462nS n Nn+=++++∈+++++++,则2017S=.54.数列{a n}是等比数列,满足a2=2,a2+a4+a6=14,则a6= .55.已知等差数列{a n}的前n项和为S n,且满足,则数列{a n}的公差是.56.现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.57.已知S n是等差数列{a n}的前n项和,若a1=﹣2017, =6,则S2017= .58.如果x=[x]+{x},[x]∈Z,0≤{x}<1,就称[x]表示x的整数部分,{x}表示x的小数部分.已知数列{a n}满足a1=,a n+1=[a n]+,则a2017等于()59.已知数列{a n}满足a1=3,a n﹣1+a n+a n+1=6(n≥2),S n=a1+a2+…+a n,则S10= .60.已知数列{a n}的前n项和,则数列的前20项和等于.61.已知数列{a n }为等差数列,且a 2013+a 2015=π,则a 2014(a 2012+a 2014+a 2016)的值为 . 62.已知数列{a n }中,a 1=1,a n =a n ﹣1+(n ≥2),则数列{a n }的前9项和等于 . 63.在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n= . 64.《九章算术》中有一个“两鼠穿墙”问题:“今有垣(墙,读音)厚五尺,两鼠对穿,大鼠日(第一天)一尺,小鼠也日(第一天)一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天减半).问何日相逢,各穿几何?”在两鼠“相逢”时,大鼠与小鼠“穿墙”的“进度”之比是 : .三、解答题(本题共36道小题,分)65.等比数列中,首项a 1=2,a 4=16. (1)求数列{a n }的通项公式.(2)设数列b n =lga n ,证明数列{b n }是等差数列并求前n 项和T n . 66.已知等差数列{a n }的公差为1,且a 1,a 3,a 9成等比数列 (1)求数列{a n }的通项公式a n 及其前n 项和S n ; (1)若数列{}的前n 项和为T n ,证明T n <2.67.已知数列{}n a 的前n 项和为n S ,且满足111122n n n n a S a a S +++=-=,. (1)求n S 及n a ;(2)若111n n n n n S b S S n -+⎧⎪=⎨⎪⎩为奇数为偶数,,,求{}n b 的前2n 项的和2n T . 68.在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且2212b S +=,22S q b =. (Ⅰ)求n a 与n b . (Ⅱ)设数列{}n c 满足1n n c S =,求{}n c 的前n 项和n T .69.已知{}n a 是等差数列,{}n b 是正项的等比数列,且112a b ==,514a =,33b a =. (I )求{}n a 、{}n b 的通项公式.(II )求数列{}n a 中满足46n b a b <<的各项的和. 70.已知数列{a n }的前n 项和为S n ,若S n =2a n +n ,且b n =.(1)求{a n }的通项公式; (2)求数列{b n }的前n 项和. 71.已知各项均为正数的数列{a n }满足a 1=1,2n a ﹣(2a n+1﹣1)a n ﹣2a n+1=0. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列b n =a n ·log 2a n ,求数列{b n }前n 项和T n . 72.对于无穷数列{a n }与{b n },记A={x|x=a n ,n ∈N *},B={x|x=b n ,n ∈N *},若同时满足条件:①{a n },{b n }均单调递增;②A∩B=∅且A ∪B=N *,则称{a n }与{b n }是无穷互补数列. (1)若a n =2n ﹣1,b n =4n ﹣2,判断{a n }与{b n }是否为无穷互补数列,并说明理由;(2)若a n =2n且{a n }与{b n }是无穷互补数列,求数量{b n }的前16项的和;(3)若{a n }与{b n }是无穷互补数列,{a n }为等差数列且a 16=36,求{a n }与{b n }的通项公式. 73.【考点】由y=Asin (ωx+φ)的部分图象确定其解析式.【分析】(1)由函数f (x )的图象在一个周期内的最高点和最低点坐标,求得T 、ω的值;再求得φ的值,即可写出f (x )的解析式;(Ⅱ)根据x 的取值范围,求出f (x )的取值范围,即得f (x )的最大最小值.【解答】解:(1)由函数f (x )=2sin (ωx+φ)图象在一个周期内的最高点和最低点为,得T=2×(﹣)=π,ω==2;…由点M (,2)在f (x )的图象上得2sin (+φ)=2,即+φ=2kπ+,(k ∈Z );…所以;又φ∈(0,),所以φ=,所以f (x )=2sin (2x+);…(Ⅱ)因为x ∈[0,],所以2x+∈[,];…所以当2x+=或时,即x=0或x=时,f (x )取得最小值为1;…当2x+=,即x=时,f (x )取得最大值为2;…74.设数列{a n }的前n 项和为S n ,已知a 1=2,a n+1=2S n +2(n ∈N *).(1)求数列{a n }的通项公式; (2)设b n = n 1n n a )2a ()2a (+⋅++,数列{n b 1}的前n 项和为T n ,试证明:T n <81.75.已知各项均不相等的等差数列{a n }的前五项和S 5=20,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式;(2)若b n =,求数列{b n }的前n 项和T n .76.某企业2012年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从2013年起每年比上一年纯利润减少20万元,2013年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(2013年为第1年)的利润为500(1+)万元(n 为正整数).(1)设从2013年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n ,B n 的表达式;(2)依上述预测,从2013年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润? 77.已知数列{a n }的前n 项和为S n ,且满足a n +2S n •S n ﹣1=0(n ≥2,n ∈N *),a 1=.(Ⅰ)求证:{}是等差数列;(Ⅱ)求数列{a n }的通项公式;(Ⅲ)若b n =2(1﹣n )a n (n ≥2,n ∈N *),求证:b 22+b 32+…+b n 2<1. 78.设函数f (x )=+,正项数列{a n }满足a 1=1,a n =f (),n ∈N *,且n ≥2.(1)求数列{a n }的通项公式;(2)对n ∈N *,求S n =+++…+.79.已知数列{a n }的前n 项和S n =2a n ﹣2n, (I )求a 3、a 4;(Ⅱ)证明:数列{a n+1﹣2a n }是一个等比数列; (Ⅲ)求{a n }的通项公式. 80.已知等差数列{a n }的前四项和为10,且a 2,a 3,a 7成等比数列. (1)求通项公式a n(2)设,求数列b n 的前n 项和S n .81.在等差数列{a n }中,a 2+a 5=﹣22,a 3+a 6=﹣30. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为2的等比数列,求数列{b n }的前n 项和S n . 82.等比数列{a n }的各项均为正数,且a 1+2a 2=1,a 32=4a 2a 6. (1)求数列{a n }的通项公式;(2)设b n +2=3log 2,求数列{a n b n }的前n 项和. 83.已知数列{a n }的前n 项和为S n ,且满足a 1=2,S n ﹣4S n ﹣1﹣2=0(n ≥2,n ∈Z ).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)令b n =log 2a n ,T n 为{b n }的前n项和,求证<2.84.已知等比数列{a n }的公比为q (q ≠1),等差数列{b n }的公差也为q ,且a 1+2a 2=3a 3. (Ι)求q 的值;(II )若数列{b n }的首项为2,其前n 项和为T n ,当n ≥2时,试比较b n 与T n 的大小. 85.已知等差数列{a n }的前n 项和为S n ,S 5=30,a 2+a 6=16. (1)求等差数列{a n }的通项公式; (2)求…12111S S S n+++. 86.(13分)设数列{a n }满足条件a 1=1,a n+1=a n +3•2n ﹣1.(1)求数列{a n }的通项公式; (2)若nna b =n ,求数列{b n }的前n 项和S n . 87.(13分)在等差数列{a n }中,首项a 1=1,数列{b n }满足na n )21(b ,且b 1b 2b 3=641. (1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n . 88.已知数列{a n }的前n 项和是S n ,且S n+a n =1(n ∈N +). (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 4(1﹣S n+1)(n ∈N +),T n=++…+,求T n .89.已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n+1. (Ⅰ)求数列{b n }的通项公式; (Ⅱ)令c n=,求数列{c n }的前n 项和T n .90.己知数列{a n }中,a 1=2,对任意正整数n ,都有a n+1﹣a n =2n. (I )求数列{a n }的通项公式:(II )设b n =,求数列{b n }的前n 项和T n .91.已知数列{a n }和{b n }满足(n ∈N*).若{a n }是各项为正数的等比数列,且a 1=4,b 3=b 2+6. (Ⅰ)求a n 与b n ;(Ⅱ)设c n =,记数列{c n }的前n 项和为S n .①求S n ;②求正整数k .使得对任意n ∈N*,均有S k ≥S n . 92.已知等差数列{a n }中,a 3=9,a 8=29.(Ⅰ)求数列{a n }的通项公式及前n 项和S n 的表达式;(Ⅱ)记数列{}的前n 项和为T n ,求T 100的值.93.在等比数列{a n }中,a 1=1,且a 2是a 1与a 3﹣1的等差中项. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =,(n ∈N *).求数列{b n }的前n 项和S n .94.已知在数列{a n }中,a 1=1,a n+1=2a n +n ﹣1,n ∈N *. (1)证明:数列{a n +n}是等比数列; (2)求数列{a n }的前n 项和S n . 95.(13分)已知数列{a n }是等差数列,其首项为2,且公差为2,若na n 2b (n ∈N *).(1)求证:数列{b n }是等比数列;(2)设c n =a n +b n ,求数列{c n }的前n 项和A n . 96.等差数列{a n }的前n 项和为S n ,已知a 1=2,a 2为整数,且a 3∈[3,5]. (1)求{a n }的通项公式;(2)设b n=,求数列{b n}的前n项和T n.97.已知数列{a n}的前n项和为S n,a1=1,a n+1=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.98.已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?99.设实数a、b、c成等比数列,非零实数x、y分别为a与b,b与c的等差中项,求证:.100.设正项等比数列{a n}的前n项和为S n,且满足S3=3a3+2a2,a4=8.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列b n=log2a n,求{|b n|}的前n项和T n.试卷答案1.C【考点】等差数列的性质;等差数列的前n项和.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C2.A【考点】等比数列的通项公式.【分析】由已知列式求得a3,进一步求得公比,再由等比数列的通项公式求得a9.【解答】解:在等比数列{a n}中,由,得,又4a3+a7=2,联立解得:.则q=,∴.故选:A.3.A【考点】数列递推式.【分析】a1=3,,变形为:a n﹣2=(a n﹣1﹣2),利用等比数列的通项公式即可得出.【解答】解:∵a1=3,,变形为:a n﹣2=(a n﹣1﹣2),∴数列{a n﹣2}是等比数列,首项为1,公比为.∴a n﹣2=.∴数列{a n}的通项公式是a n=2+=.故选:A.4.C【考点】等差数列的性质;等差数列的前n项和.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C5.D【考点】等比数列的性质.【分析】由已知方程结合等差数列的性质求解a7,再利用等比数列的性质求解答案.【解答】解:∵数列{a n}是各项不为0的等差数列,由a4﹣2+3a8=0,得,,,∴,解得:a7=2.则b7=a7=2.又数列{b n}是等比数列,则b2b8b11=.故选:D.【点评】本题考查了等差数列和等比数列的性质,考查了学生的计算能力,是中档题.6.C【考点】等差数列的性质.【分析】根据等差数列的前n 项和的性质,可得=,=,可得答案.【解答】解:根据等差数列的前n 项和的性质,可得=,=,那么===5.故选C 7.D由题知33a b +=, ∴1a b +=, ∴1111()a b a b a b ⎛⎫+=++ ⎪⎝⎭11b aa b=+++2+≥ 4=.当且仅当b aa b=时等号成立. 故选D . 8.C ∵12a =,351264622a a a d d +=+=+=,∴3d =,∴1(1)31n a a d n n =+-=-,1()2n n nS a a =+,315S =.故选C . 9.A【考点】等差数列的通项公式;利用导数研究函数的极值.【分析】求出原函数的导函数,由导函数为0求得a1+a4025=8,结合等差数列的性质求得a2013,代入log2a2013得答案.【解答】解:由,得f′(x)=x2﹣8x+6.由f′(x)=x2﹣8x+6=0,得x1+x2=8,又a1,a4025是函数的极值点,∴a1+a4025=8,则,∴log2a2013=log24=2.故选:A.10.C【考点】等差数列的性质.【分析】利用a1+a2+…+a10=30,求出a5+a6=6,再利用基本不等式,求出a5•a6的最大值.【解答】解:由题设,a1+a2+a3+…+a10=5(a1+a10)=5(a5+a6)=30所以a5+a6=6,又因为等差数列{a n}各项都为正数,所以a5a6≤=9,当且仅当a5=a6=3时等号成立,所以a5•a6的最大值等于9,故选C.11.C【考点】等差数列的前n项和.【分析】根据等差数列的通项公式和前n项和公式,建立方程,即可得出结论.【解答】解:∵等差数列{a n}的前n项和为S n,S m﹣2=﹣4,S m=0,S m+2=12,∴a m+a m﹣1=S m﹣S m﹣2=0+4=4,a m+2+a m+1=S m+2﹣S m=12﹣0=12,即,解得d=2.12.A【考点】等差数列的前n项和.【分析】由已知结合等差数列的通项公式求得公差,再由等差数列的前n项和求得S10.【解答】解:在等差数列{a n}中,由a3=4,a8=14,得d=,∴a1=a3﹣2d=4﹣4=0,∴.故选:A.13.D【考点】等比数列的通项公式.【分析】由已知得a5a6=a4a7=9,从而log3a1+log3a2+…+log3a10=log3(a5a6)5=,由此能求出结果.【解答】解:∵等比数列{a n}的各项均为正数,且a5a6+a4a7=18,∴a5a6=a4a7=9,∴log3a1+log3a2+…+log3a10=log3(a1×a2×…×a10)=log3(a5a6)5==10.故选:D.【点评】本题考查对数式化简求值,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.14.B【考点】等比数列的通项公式.【分析】3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,由此能求出公比q=4.【解答】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得a4=4a3,∴公比q=4.故选:B.【点评】本题考查公比的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.15.B【考点】数列递推式.【分析】由S n=2a n﹣n,得a1=2a1﹣1,即a1=1;再根据数列的递推公式得到数列{a n+1}是以2为首项,以2为公比的等比数列,问题得以解决.【解答】解:由S n=2a n﹣n,得a1=2a1﹣1,即a1=1;当n≥2时,有S n﹣1=2a n﹣1﹣(n﹣1),则a n=2a n﹣2a n﹣1﹣1,即a n=2a n﹣1+1,则a n+1=2(a n﹣1+1)∵a1+1=2;∴数列{a n+1}是以2为首项,以2为公比的等比数列,∴a n+1=2n,∴a n=2n﹣1,故选:B【点评】本题考查了数列递推式,考查了等比关系的确定,是中档题.16.A【考点】等差数列的性质.【分析】利用等差数列{a n}的前n项和公式及其性质即可得出.【解答】解:∵等差数列{a n}的前10项和为S10=12,∴=12,则a5+a6=.故选:A.【点评】本题考查了等差数列{a n}的前n项和公式及其性质,属于基础题.17.B【考点】等比数列的性质.【分析】根据已知条件得出2S5﹣2S4=a6﹣3﹣(a5﹣3)=a6﹣a5=2a5,得出3a5=a6,然后根据两项的关系得出3a5=a5q,答案可得.【解答】解:∵a5=2S4+3,a6=2S5+3,即2S4=a5﹣3,2S5=a6﹣3∴2S5﹣2S4=a6﹣3﹣(a5﹣3)=a6﹣a5=2a5即3a5=a6∴3a5=a5q解得q=3,故选B【点评】本题主要考查了等比数列的性质.解题的关键是利用S5﹣S4=a5得出a5、a6的关系,属中档题.18.C【考点】数列递推式.【分析】由图中所给的星星个数:1,1+2,1+2+3,…,1+2+3+…+n;得出数列第n项,即通项公式.【解答】解析:从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;∴a n=1+2+3+4+…+n=.答案:C【点评】这是一个简单的自然数求和公式,由观察得出猜想,一般不需要证明.考查学生的观察猜想能力.19.B【考点】等差数列的通项公式.【分析】由题意可得a4=5,进而可得公差d=1,可得a7=a1+6d,代值计算即可.【解答】解:∵在等差数列{a n}中a1=2,a3+a5=10,∴2a4=a3+a5=10,解得a4=5,∴公差d==1,∴a7=a1+6d=2+6=8故选:B【点评】本题考查等差数列的通项公式,属基础题.20.B【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式求解.【解答】解:∵S n为等差数列{a n}的前n项和,a1=﹣2,S3=0,∴,解得d=2,∴{a n}的公差为2.故选:B.21.D【考点】函数的值.【分析】先确定C n的纵坐标,D n的横坐标,进而可得矩形A n B n C n D n的周长,利用等差数列的求和公式,即可求得结论.【解答】解:由题意,∵C n,D n在函数f(x)=x+(x>0)的图象上.若点B n的坐标为(n,0)(n≥2,n∈N+),∴C n的纵坐标为n+,D n的横坐标为,∴矩形A n B n C n D n的一条边长为n+,另一条边长为n﹣,∴矩形A n B n C n D n的周长为a n=2(n++n﹣)=4n∴a1+a2+a3+…+a10=4(1+2+3+…+10)=4×=220.故选:D.22.A【考点】等差数列的前n项和.【分析】设该妇子织布每天增加d尺,由等差数列前n项和公式能求出d,再把尺换算成寸即可.【解答】解:设该妇子织布每天增加d尺,由题意知,解得d=尺.尺=寸=5寸另寸.故选:A.23.D【考点】数列的概念及简单表示法.【分析】由S n=kn2+n,可得n≥2时,a n=S n﹣S n﹣1=2kn﹣k+1,利用a10=39,解得k=2.即可得出.【解答】解:∵S n=kn2+n,∴n≥2时,a n=S n﹣S n﹣1=kn2+n﹣[k(n﹣1)2+(n﹣1)]=2kn﹣k+1,∵a10=39,∴20k﹣k+1=39,解得k=2.∴a n=4n﹣1则a100=400﹣1=399.故选:D【点评】本题考查了数列递推关系,考查了推理能力与计算能力,属于中档题.24.C25.C【考点】85:等差数列的前n项和.【分析】利用等差数列的通项公式求和公式及其性质即可判断出结论.【解答】解:由题意知d<0,a2016>0,a2016+a2017<0,因此S4031>0,S4032<0.故选:C.26.B【考点】85:等差数列的前n项和.【分析】由等差数列前n项和公式及通项公式得S13=(a1+a13)=(a4+a10),由此能求出结果.【解答】解:∵等差数列{a n}的前n项和为S n,且满足a4+a10=20,∴S13=(a1+a13)=(a4+a10)=20=130.故选:B.27.A【考点】88:等比数列的通项公式.【分析】利用等比数列的通项公式即可得出.【解答】解:等比数列{a n}满足a1=4,,∴,解得a4=.∴4q3=,解得q=.则a2==2.故选:A.28.B【考点】等比数列的通项公式;对数的运算性质.【分析】由题意可得a5a6=9,由等比数列的性质和对数的运算可得原式=log3(a5a6)5,化简可得.【解答】解:由题意可得a3a8+a5a6=2a5a6=18,解之可得a5a6=9,故log3a1+log3a2+…+log3a10=log3a1a2…a10=log3(a5a6)5=log395=log3310=10故选B【点评】本题考查等比数列的通项公式和性质,涉及对数的运算性质,属基础题.29.B【考点】等比数列的前n项和.【分析】利用a2•a3=2a1,且a4与2a7的等差中项为,求出数列的首项与公比,再利用等比数列的求和公式,即可得出结论.【解答】解:∵数列{a n}是等比数列,a2•a3=2a1=a1q•=a1•a4,∴a4=2.∵a4与2a7的等差中项为,∴a4 +2a7 =,故有a7 =.∴q3==,∴q=,∴a1==16.∴S5==31.故选:B.30.C【考点】数列的求和.【分析】由于sin>0,>0,…,>0,sin=0,sin=﹣<0,…,sin=﹣<0,sin=0,可得到S1>0,…,S12>0,S13=0,而S14=0,从而可得到周期性的规律,从而得到答案.【解答】解:由于sin>0,>0,…,>0,sin=0,sin=﹣<0,…,sin=﹣<0,sin=0,可得到S1>0,…,S12>0,S13=0,而S14=0,2017=14×144+1,∴S1,S2,…,S2017中,正数的个数是2017﹣144×2+2=1731.故选:C.31.B【考点】数列的概念及简单表示法.【分析】利用作差法求出lna n=,n≥2,进行求解即可【解答】解:∵•••…•=(n∈N*),∴•••…•=(n ∈N *),∴lna n =,n ≥2,∴a n =e ,∴a 10=e ,故选B . 32.C【考点】等差数列的通项公式.【分析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n }的公差为d ,∵a 1=3,a 2+a 3=12,∴2×3+3d=12,解得d=2. 则a 2=3+2=5. 故选:C .【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题. 33.A【考点】等比数列的通项公式.【分析】由已知列式求得a 3,进一步求得公比,再由等比数列的通项公式求得a 9.【解答】解:在等比数列{a n }中,由,得,又4a 3+a 7=2,联立解得:.则q=,∴.故选:A .【点评】本题考查等比数列的通项公式,考查了等比数列的性质,是基础的计算题. 34.D【考点】数列递推式.【分析】分类讨论:当a 1是5的倍数,则数列{a n }的末位数字是5或0,数列{2n}的末位数字只能是2,4,6,8,不存在相同的项,判断A不正确;当a1不是5的倍数时,则这个数的末位数字只能是2,4,6,8,数列{a n}的末位数字可以是2,4,6,8,数列{2n}的末位数字有且只有2,4,6,8,故它们必有相同的项,且有无穷多个相同的项,由此判断B,C不正确,D正确.【解答】解:如果a1是5的倍数,则数列{a n}的末位数字是5或0,数列{2n}的末位数字只能是2,4,6,8,不存在相同的项,因此A不正确;当a1不是5的倍数时,这个数加上它的末位数字,一直加下去,则这个数的末位数字只能是2,4,6,8,数列{a n}的末位数字可以是2,4,6,8,数列{2n}的末位数字有且只有2,4,6,8,故它们必有相同的项,且有无穷多个相同的项,因此B,C不正确,D正确.∴关于数列{a n}的说法正确的是:D.故选:D.【点评】本题考查命题真假判断与应用,考查了数列递推式的运用,求解此类题的关键是要对命题涉及的知识有很好的理解与掌握,是中档题.35.C【考点】等比数列的通项公式.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.36.B【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:∵{a n}是公差为1的等差数列,S8=4S4,∴8a1+×1=4×(4a1+),解得a1=.则a10=+9×1=.故选:B.【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.37.【考点】数列递推式.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.【解答】解:由题意得,a n+1=,a8=2,令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.38.【考点】数列的求和.【分析】利用数列递推关系、“裂项求和”方法即可得出.【解答】解:∵,∴a1=S1=5;n≥2时,a n=S n﹣S n﹣1=6n﹣n2﹣[6(n﹣1)﹣(n﹣1)2]=7﹣2n.n=1时也成立.∴==﹣.∴数列的前20项和=﹣+++…+=﹣故答案为:﹣.39.a n=【考点】等比数列的通项公式.【分析】推导出a3,a5是方程x2﹣5x+4=0的两个根,且a3>a5.从而得到a3=4,a5=1,进而得到,由此能求出结果.【解答】解:∵在等比数列{a n}中,a n>0,公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2,∴,∴a3,a5是方程x2﹣5x+4=0的两个根,且a3>a5.解方程x2﹣5x+4=0,得a3=4,a5=1,∴,由q∈(0,1),解得,∴=()n﹣5.故答案为:a n=.40.2n2+3n【考点】数列的求和.【分析】设正项等差数列{a n}的公差为d>0,由数列{}的前n项和S n=,可得=, +=,解得a1,d.可得a n.可得b2n﹣1+b2n,即可得出.【解答】解:设正项等差数列{a n }的公差为d >0,∵数列{}的前n 项和S n=,∴=,+=,解得a 1=2,d=1.∴a n =2+(n ﹣1)=n+1.∴b n =(﹣1)n•a n 2=(﹣1)n(n+1)2, b 2n ﹣1+b 2n =﹣(2n )2+(2n+1)2=4n+1. 则数列{b n }的前n 项和T 2n==2n 2+3n .故答案为:2n 2+3n .【点评】本题考查了分组求和、等差数列的求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题. 41.15【考点】等差数列的通项公式.【分析】由a 7+a 9=16可得 2a 1+14d=16,再由a 4=1=a 1+3d ,解方程求得a 1和公差d 的值,从而求得a 12的值.【解答】解:设公差等于d ,由a 7+a 9=16可得 2a 1+14d=16,即 a 1+7d=8. 再由a 4=1=a 1+3d ,可得 a 1=﹣,d=.故 a 12 =a 1+11d=﹣+=15,故答案为 15.42.13,4 在等比数列中,134113a q a ⎛⎫== ⎪⎝⎭,11n n a a q -=11(24)3n -⎛⎫=-⨯ ⎪⎝⎭,设{}n a 前n 项积为n T . 12n n T a a a =,01(1)1(24)3n n+++-⎛⎫=-⨯ ⎪⎝⎭2322(8)3n n n -+=-⨯,∵此等比数列各项均为负数,当n 为偶数时,n T 为正,故当n T 取最大值时n 为偶数.设当2n k =时,n T 取得最大值()k ∈Z ,2(2)322222(8)3k k k k T ⨯-+=-⨯223643k k k -+=⨯, ∵2[2(1)]32(1)2(1)222(1)(8)3k k k k T +⨯+-+++=-⨯ 2121643k k k +--+=⨯,∴22(1)k k T T +>,∴2223121643643k k k k k k -++--+⨯>⨯,整理后:41364k ->,又∵433643>>,∴414k -≥, 解出54k ≥, ∵k ∈Z ,∴2k =,故n 取4时,n T 取得最大值.43.42解:等比数列{}n a 中,13a =,241351(1)21a a a a q q ++=++=,∴2417q q ++=,解得:22q =或23q =-(舍去).∴2243571(1)a a a a q q q ++=++327=⨯⨯42=.44.27【考点】数列递推式.【分析】通过a n =a n ﹣1+(n≥2)可得公差,进而由求和公式即得结论.【解答】解:∵a n=a n﹣1+(n≥2),∴a n﹣a n﹣1=(n≥2),∴数列{a n}的公差d=,又a1=1,∴a n=1+(n﹣1)=,∴S9=9a1+•d=9+36×=27,故答案为:27.45.27【考点】等比数列的通项公式.【分析】由a4=a2•a5,得即a4=q,再结合已知条件求出等比数列的通项公式,进一步求出T n=a1a2…a n的最大值即可.【解答】解:由a4=a2•a5,得即a4=q.∴3即a4=q=.∴.则T n=a1a2…a n的最大值为:.故答案为:27.46.【考点】等比数列的前n项和.【分析】根据S1,3S2,5S3成等差数列,可得6S2=5S3+S1,结合等比数列的前n项和公式可得{a n}的公比.【解答】解:由题意,S1,3S2,5S3成等差数列,可得6S2=5S3+S1,∵{a n}是等比数列,∴6(a1+a1q)=5(a1+a1q)+a1.解得:故答案为:.47.19【考点】等差数列的通项公式.【分析】由等差数列通项公式求出公差d=,由此根据a1,a7,a n成等比数列,能求出n 的值.【解答】解:∵在等差数列{a n}中,a1=1,a3+a5=3,∴,解得d=,∴=,∵a1,a7,a n成等比数列,∴,即()2=1×(),解得n=19.故答案为:19.【点评】本题考查数列的项数n的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.48.9【考点】等差数列的前n项和;等差数列的性质.【分析】根据正项等比数列{a n}的前n项和的性质,S n,S2n﹣S n,S3n﹣S2n成等比数列,建立等式关系,解之即可.【解答】解:∵正项等比数列{a n}的前n项和为S n,∴S3,S6﹣S3,S9﹣S6成等比数列即(S6﹣S3)2=S3•(S9﹣S6),∴(S6﹣3)2=3×12解得S6=9或﹣3(正项等比数列可知﹣3舍去),故答案为:9【点评】本题主要考查了等比数列的前n项和,以及等比数列的性质,同时考查运算求解的能力,属于基础题.49.2,2.【考点】数列的求和;数列递推式.【分析】由a n+1=a n﹣a n﹣1(n≥2)可推得该数列的周期为6,易求该数列的前6项,由此可求得答案.【解答】解:由a n+1=a n﹣a n﹣1(n≥2),得a n+6=a n+5﹣a n+4=a n+4﹣a n+3﹣a n+4=﹣a n+3=﹣(a n+2﹣a n+1)=﹣(a n+1﹣a n﹣a n+1)=a n,所以6为数列{a n}的周期,又a3=a2﹣a1=3﹣1=2,a4=a3﹣a2=2﹣3=﹣1,a5=a4﹣a3=﹣1﹣2=﹣3,a6=a5﹣a4=﹣3﹣(﹣1)=﹣2,∴a1+a2+a3+a4+a5+a6=1+3+2﹣1﹣3﹣2=0,∵2015=335×6+5,S2015=335×0+(1+3+2﹣1﹣3)=2,故答案为:2,2.【点评】本题考查求数列的通项及前n项和公式,注意解题方法的积累,找出数列的周期是解决本题的关键,属于中档题.50.1,【考点】等差数列的前n项和;等差数列的通项公式.【分析】根据等差数列的性质可求出公差,从而可求出第二项,以及等差数列的前n项和.【解答】解:根据{a n}为等差数列,S2=a1+a2=a3=+a2;∴d=a3﹣a2=∴a2=+=1S n==故答案为:1,【点评】本题主要考查了等差数列的前n项和,以及等差数列的通项公式,属于容易题.51.λ>1【考点】数列递推式.【分析】由题知,当n ≥2 时,有S n +1=a n+2﹣a n+1,S n ﹣1+1=a n+1﹣a n ,两式相减得a n+2=2a n+1,利用等比数列的通项公式与求和公式可得a n ,S n ,再利用数列的单调性即可得出.【解答】解:由题知,当n ≥2 时,有S n +1=a n+2﹣a n+1,S n ﹣1+1=a n+1﹣a n ,两式相减得a n+2=2a n+1,又a 1=1,a 2=2,a 3=4,故a n+1=2a n 对任意n ∈N * 成立,∴,,∴恒成立只需的最大值,当n=1时,右式取得最大值1,∴λ>1.故答案为:λ>1.52.【考点】双曲线的简单性质.【分析】由题意建立方程,求出a ,b ,可得c ,再根据离心率的定义即可求出.【解答】解:∵两个正数a ,b 的等差中项为2,等比中项为,且a >b ,∴a+b=4,ab=3,a >b >0,∴a=3,b=1,∴c==,∴e===,故答案为:53. 20172018令a n =1n 1n 1n )n 22(2n 26421+-=+=++++ , 故S 2017=1-21+21-31+…+20171-20181=20182017. 54.8【考点】88:等比数列的通项公式.【分析】由等比数列基本量运算可知q2=2,因此a6=8.【解答】解:设公比为q,a2=2,a2+a4+a6=14,则2+2q2+2q4=14,解得q2=2,∴a6=2q4=8,故答案为:8.55.2【考点】8F:等差数列的性质.【分析】在题设条件的两边同时乘以6,然后借助前n项和公式进行求解.【解答】解:∵,∴,∴6a1+6d﹣6a1﹣3d=6,∴d=2.故答案为:2.56.【考点】8G:等比数列的性质;CB:古典概型及其概率计算公式.【分析】先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解【解答】解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:57.﹣2017【考点】等差数列的前n项和.【分析】S n是等差数列{a n}的前n项和,∴数列{}是等差数列,设公差为d, =﹣2017,利用=6,可得6d=6,解得d.即可得出.【解答】解:∵S n是等差数列{a n}的前n项和,∴数列{}是等差数列,设公差为d.=﹣2017,∵=6,∴6d=6,解得d=1,∴=﹣2017+×1=﹣1,解得S2017=﹣2017.故答案为:﹣2017.58.【考点】数列的概念及简单表示法.【分析】由已知求出数列的前四项,从而猜想a n=4(n﹣1)+,由此能求出结果.【解答】解:∵,a n+1=[a n]+,∴a2=2+=4+,=8+,a4=10+=12+,=16+,…∴a n=4(n﹣1)+,∴a2017=4×2016+=8064+.【点评】解决该试题的关键是对于两个数列通项公式的分析和求解,然后能合理的选用求公式来得到结论.59.21【考点】数列的求和.【分析】由已知推导出a1+a2+a3=a4+a5+a6=a7+a8+a9=6,a10=3,由此能求出结果.【解答】解:∵数列{a n}满足a1=3,a n﹣1+a n+a n+1=6(n≥2),S n=a1+a2+…+a n,∴a1+a2+a3=3+a2+a3=6,∴a2+a3=3,又a2+a3+a4=6,∴a4=3,又a4+a5+a6=3+a5+a6=6,∴a5+a6=3,∴a5+a6+a7=3,∴a7=3,∴a7+a8+a9=3+a8+a9=6,∴a8+a9=3,∴a8+a9+a10=6,∴a10=3,S10=(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+a10=6+6+6+3=21.故答案为:21.【点评】本题考查数列的前10项和的求法,是中档题,解题时要认真审题,注意数列的递推公式的合理运用.60.【考点】数列的求和.【分析】利用数列递推关系、“裂项求和”方法即可得出.【解答】解:∵,∴a1=S1=5;n≥2时,a n=S n﹣S n﹣1=6n﹣n2﹣[6(n﹣1)﹣(n﹣1)2]=7﹣2n.n=1时也成立.∴==﹣.∴数列的前20项和=﹣+++…+=﹣故答案为:﹣.【点评】本题考查了数列递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.61.。
§6.1数列的概念考试要求1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的有关概念概念含义数列按照确定的顺序排列的一列数数列的项数列中的每一个数通项公式如果数列{a n }的第n 项a n 与它的序号n 之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式数列{a n }的前n 项和把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =a 1+a 2+…+a n2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n +1>a n 其中n ∈N *递减数列a n +1<a n 常数列a n +1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列与函数的关系数列{a n }是从正整数集N *(或它的有限子集{1,2,…,n })到实数集R 的函数,其自变量是序号n ,对应的函数值是数列的第n 项a n ,记为a n =f (n ).常用结论1.已知数列{a n }的前n 项和S n ,则a n 1,n =1,n -S n -1,n ≥2.2.在数列{a n }中,若a n 最大,n ≥a n -1,n ≥a n +1(n ≥2,n ∈N *);若a n 最小,n ≤a n -1,n ≤a n +1(n ≥2,n ∈N *).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)数列的项与项数是同一个概念.(×)(2)数列1,2,3与3,2,1是两个不同的数列.(√)(3)任何一个数列不是递增数列,就是递减数列.(×)(4)若数列用图象表示,则从图象上看是一群孤立的点.(√)教材改编题1.(多选)已知数列{a n }的通项公式为a n =9+12n ,则在下列各数中,是{a n }的项的是()A .21B .33C .152D .153答案ABD解析由数列的通项公式得,a 1=21,a 2=33,a 12=153.2.已知数列{a n }的前n 项和为S n ,且S n =n 2+n ,则a 2的值是()A .2B .4C .5D .6答案B解析由题意,S 2=22+2=6,S 1=1+1=2,所以a 2=S 2-S 1=6-2=4.3.在数列1,1,2,3,5,8,13,21,x ,55,…中,x =________.答案34解析通过观察数列各项的规律,发现从第三项起,每项都等于它前两项之和,因此x =13+21=34.题型一由a n 与S n 的关系求通项公式例1(1)已知数列{a n }的前n 项和为S n ,a 1=2,S n +1=2S n -1,则a 10等于()A .128B .256C .512D .1024答案B解析∵S n +1=2S n -1,∴当n ≥2时,S n =2S n -1-1,两式相减得a n +1=2a n .当n =1时,a 1+a 2=2a 1-1,又a 1=2,∴a 2=1.∴数列{a n }从第二项开始为等比数列,公比为2.则a 10=a 2×28=1×28=256.(2)已知数列{a n }的前n 项和为S n ,且满足S n =2n +2-3,则a n =________.答案,n =1,n +1,n ≥2解析根据题意,数列{a n }满足S n =2n +2-3,当n ≥2时,有a n =S n -S n -1=(2n +2-3)-(2n +1-3)=2n +1,当n =1时,有a 1=S 1=8-3=5,不符合a n =2n +1,故a n ,n =1,n +1,n ≥2.思维升华S n 与a n 的关系问题的求解思路(1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解.(2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.跟踪训练1(1)已知正项数列{a n }中,a 1+a 2+…+a n =n (n +1)2,则数列{a n }的通项公式为()A .a n =nB .a n =n 2C .a n =n 2D .a n =n 22答案B解析∵a 1+a 2+…+a n =n (n +1)2,∴a 1+a 2+…+a n -1=n (n -1)2(n ≥2),两式相减得a n =n (n +1)2-n (n -1)2=n (n ≥2),∴a n =n 2(n ≥2),①又当n =1时,a 1=1×22=1,a 1=1,适合①式,∴a n =n 2,n ∈N *.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =__________.答案-1n解析因为a n +1=S n +1-S n ,a n +1=S n S n +1,所以由两式联立得S n +1-S n =S n S n +1.因为S n ≠0,所以1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,1,公差为-1的等差数列.所以1S n =-1+(n -1)×(-1)=-n ,所以S n =-1n .题型二由数列的递推关系求通项公式命题点1累加法例2设[x ]表示不超过x 的最大整数,如[-3.14]=-4,[3.14]=3.已知数列{a n }满足:a 1=1,a n +1=a n +n +1(n ∈N *),则1a 1+1a 2+1a 3+…+1a 2023等于()A .1B .2C .3D .4答案A解析由a n +1=a n +n +1,得a n -a n -1=n (n ≥2).又a 1=1,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+(n -2)+…+2+1=n (n +1)2(n ≥2),当n =1时,a 1=1满足上式,则1a n =2n (n +1)=所以1a 1+1a 2+…+1a 2023=2-12+12-13+ (12023)=2=20231012.所以1a 1+1a 2+1a 3+…+1a 2023=20231012=1.命题点2累乘法例3在数列{a n }中,a 1=1,a n =n -1na n -1(n ≥2,n ∈N *),则数列{a n }的通项公式为________.答案a n =1n 解析∵a n =n -1na n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得,a n =a 1·12·23·…·n -1n=a 1n =1n .当n =1时,a 1=1,符合上式,∴a n =1n .思维升华(1)形如a n +1-a n =f (n )的数列,利用累加法.(2)形如a n +1a n =f (n )的数列,利用a n =a 1·a 2a 1·a3a 2·…·a n a n -1(n ≥2)即可求数列{a n }的通项公式.跟踪训练2(1)在数列{a n }中,a 1=2,a n +1=a n +a n 等于()A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n答案A解析因为a n +1-a n =lnn +1n=ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1,a 3-a 2=ln 3-ln 2,a 4-a 3=ln 4-ln 3,…a n -a n -1=ln n -ln(n -1)(n ≥2),把以上各式相加得a n -a 1=ln n -ln 1,则a n =2+ln n (n ≥2),且a 1=2也满足此式,因此a n =2+ln n (n ∈N *).(2)已知数列a 1,a 2a 1,…,a n a n -1,…是首项为1,公比为2的等比数列,则log 2a n =________.答案n (n -1)2解析由题意知,a 1=1,a n a n -1=1×2n -1=2n -1(n ≥2),所以a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1=2n -1×2n -2×…×1=122n n (-)(n ≥2),当n =1时,a 1=1适合此式,所以log 2a n =n (n -1)2.题型三数列的性质命题点1数列的单调性例4设数列{a n }的前n 项和为S n ,且∀n ∈N *,a n +1>a n ,S n ≥S 6.请写出一个满足条件的数列{a n }的通项公式a n =________.答案n -6,n ∈N *(答案不唯一)解析由∀n ∈N *,a n +1>a n 可知数列{a n }是递增数列,又S n ≥S 6,故数列{a n }从第7项开始为正.而a 6≤0,因此不妨设数列是等差数列,公差为1,a 6=0,所以a n =n -6,n ∈N *(答案不唯一).命题点2数列的周期性例5若数列{a n }满足a 1=2,a n +1=1+a n1-a n,则a 2024的值为()A .2B .-3C .-12D.13答案D解析由题意知,a 1=2,a 2=1+21-2=-3,a 3=1-31+3=-12,a 4=1-121+12=13,a 5=1+131-13=2,a 6=1+21-2=-3,…,因此数列{a n }是周期为4的周期数列,所以a 2024=a 505×4+4=a 4=13.命题点3数列的最值例6已知数列{a n }的通项公式为a n =12n -15,其最大项和最小项的值分别为()A .1,-17B .0,-17C.17,-17D .1,-111答案A解析因为n ∈N *,所以当1≤n ≤3时,a n =12n -15<0,且单调递减;当n ≥4时,a n =12n -15>0,且单调递减,所以最小项为a 3=18-15=-17,最大项为a 4=116-15=1.思维升华(1)解决数列的单调性问题的方法用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列.(2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.跟踪训练3(1)观察数列1,ln 2,sin 3,4,ln 5,sin 6,7,ln 8,sin 9,…,则该数列的第11项是()A .1111B .11C .ln 11D .sin 11答案C解析由数列得出规律,按照1,ln 2,sin 3,…,是按正整数的顺序排列,且以3为循环,由11÷3=3余2,所以该数列的第11项为ln 11.(2)已知数列{a n }的通项a n =2n -192n -21,n ∈N *,则数列{a n }前20项中的最大项与最小项分别为________.答案3,-1解析a n =2n -192n -21=2n -21+22n -21=1+22n -21,当n ≥11时,22n -21>0,且单调递减;当1≤n ≤10时,22n -21<0,且单调递减.因此数列{a n }前20项中的最大项与最小项分别为第11项,第10项.a 11=3,a 10=-1.课时精练1.已知a n =n -1n +1,那么数列{a n }是()A .递减数列B .递增数列C .常数列D .摆动数列答案B 解析a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知数列{a n }是递增数列.2.已知数列{a n }的前n 项和S n 满足S n S 1=S n +1(n ∈N *),且a 1=2,那么a 7等于()A .128B .16C .32D .64答案D解析因为数列{a n }的前n 项和S n 满足S n S 1=S n +1(n ∈N *),a 1=2,所以S n +1=2S n ,即S n +1S n=2,所以数列{S n }是以2为公比,以2为首项的等比数列,所以S n =2×2n -1=2n .所以当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1.所以a 7=26=64.3.已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N *),则a n 等于()A.n 2-n 2 B.n 2-n +22C.2n 2-nD.2n 2-n +2答案D解析由题意,得1a n +1-1a n =n ,则当n ≥2时,1a n -1a n -1=n -1,1a n -1-1a n -2=n -2,…,1a 2-1a 1=1,所以1a n -1a 1=1+2+…+(n -1)=n 2-n 2(n ≥2),所以1a n =n 2-n2+1=n 2-n +22,即a n =2n 2-n +2(n ≥2),当n =1时,a 1=1适合此式,所以a n =2n 2-n +2.4.设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为P n ,则P 2024等于()A .-2B .-1C .1D .2答案C解析a 1=2,a n +1=1-1a n ,得a 2=12,a 3=-1,a 4=2,a 5=12,…,所以数列{a n }是周期为3的周期数列.且P 3=-1,2024=3×674+2,所以P 2024=(-1)674×a 1a 2=1.5.大衍数列,来源于我国的《乾坤谱》,是世界数学史上第一道数列题,主要用于解释中国传统文化中的太极衍生原理.其前11项依次是0,2,4,8,12,18,24,32,40,50,60,则大衍数列的第41项为()A .760B .800C .840D .924答案C解析由题意得,大衍数列的奇数项依次为12-12,32-12,52-12,…,易知大衍数列的第41项为412-12=840.6.(多选)已知数列{a n }的通项公式为a n =(n +,则下列说法正确的是()A .数列{a n }的最小项是a 1B .数列{a n }的最大项是a 4C .数列{a n }的最大项是a 5D .当n ≥5时,数列{a n }递减答案BCD解析假设第n 项为{a n }的最大项,n ≥a n -1,n ≥a n +1,n +2)≥(n +1)-1,n +2)≥(n +3)+1,所以≤5,≥4,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574,当n ≥5时,数列{a n }递减.7.S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为________.答案a n ,n =1,n ,n ≥2解析由log 2(S n +1)=n +1,得S n +1=2n +1,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n ,显然当n =1时,不满足上式.所以数列{a n }的通项公式为a n ,n =1,n ,n ≥2.8.若数列{a n }的前n 项和S n =n 2-10n (n ∈N *),则数列{a n }的通项公式a n =________,数列{na n }中数值最小的项是第________项.答案2n -113解析∵S n =n 2-10n ,∴当n ≥2时,a n =S n -S n -1=2n -11;当n =1时,a 1=S 1=-9也适合上式.∴a n =2n -11(n ∈N *).记f (n )=na n =n (2n -11)=2n 2-11n ,此函数图象的对称轴为直线n =114,但n ∈N *,∴当n =3时,f (n )取最小值.∴数列{na n }中数值最小的项是第3项.9.在①na n +1-(n +1)a n =n (n +1);②S n =2n 2-1这两个条件中任选一个补充在下面的横线上,并解答.若数列{a n }的前n 项和为S n ,a 1=1,且数列{a n }满足________.(1)求a 2,a 3;(2)求数列{a n }的通项公式.注:如果选择多个条件分别解答,则按第一个解答计分.解(1)选择①:a 2-2a 1=1×2,则a 2=4.2a 3-3a 2=2×3,则a 3=9.选择②:a 2=S 2-S 1=2×22-1-1=6.a 3=S 3-S 2=2×32-1-2×22+1=10.(2)选择①:由na n +1-(n +1)a n =n (n +1),得a n +1n +1-a nn=1,所以a n n =a n n -a n -1n -1+a n -1n -1-a n -2n -2+…+a22-a 1+a 1=n -1+1=n ,所以a n =n 2.选择②:当n ≥2时,a n =S n -S n -1=2n 2-1-[2(n -1)2-1]=4n -2;当n =1时,a 1=S 1=1,不符合上式,故{a n }的通项公式为a n ,n =1,n -2,n ≥2,n ∈N *.10.(2023·长沙模拟)已知数列{c n }满足c 1=12,c n +1c n +1-1=c 2nc n -1,n ∈N *,S n 为该数列的前n 项和.(1)(2)求证:S n <1.证明(1)因为c 1=12,c n +1c n +1-1=c 2nc n -1,所以c n ≠1,c n ≠0,两边分别取倒数可得1-1c n +1=1c n -1c 2n,整理可得1c n +1-1c n=>0,(2)由c n +1c n +1-1=c 2nc n -1可得c n +1-1+1c n +1-1=c 2n -1+1c n -1,即1c n +1-1=c n +1c n -1,所以c n =1c n +1-1-1c n -1,所以S n =c 1+c 2+…+c n =1c 2-1-1c 1-1+1c 3-1-1c 2-1+…+1c n +1-1-1c n -1=1c n +1-1-1c 1-1=1c n +1-1+2,又1c n ≥1c1=2,所以c n +1所以1c n +1-1<-1,即S n <1.11.在数列{a n }中,a 1=1,a =(n ,a n ),b =(a n +1,n +1),且a ⊥b ,则a 100等于()A.10099B .-10099C .100D .-100答案D解析因为a =(n ,a n ),b =(a n +1,n +1),且a ⊥b ,所以na n +1+(n +1)a n =0,所以a n +1a n =-n +1n,所以a 2a 1=-21,a 3a 2=-32,…,a 100a 99=-10099.以上各式左右分别相乘,得a100a 1=-100,因为a 1=1,所以a 100=-100.12.(2022·全国乙卷)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1α1,b 2=1+1α1+1α2,b 3=1+1α1+1α2+1α3,…,依此类推,其中αk ∈N *(k =1,2,…).则()A .b 1<b 5B .b 3<b 8C .b 6<b 2D .b 4<b 7答案D解析方法一当n 取奇数时,由已知b 1=1+1α1,b 3=1+1α1+1α2+1α3,因为1α1>1α1+1α2+1α3,所以b 1>b 3,同理可得b 3>b 5,b 5>b 7,…,于是可得b 1>b 3>b 5>b 7>…,故A 不正确;当n 取偶数时,由已知b 2=1+1α1+1α2,b 4=1+1α1+1α2+1α3+1α4,因为1α2>1α2+1α3+1α4,所以b 2<b 4,同理可得b 4<b 6,b 6<b 8,…,于是可得b 2<b 4<b 6<b 8<…,故C 不正确;因为1α1>1α1+1α2,所以b 1>b 2,同理可得b 3>b 4,b 5>b 6,b 7>b 8,又b 3>b 7,所以b 3>b 8,故B 不正确;故选D.方法二(特殊值法)不妨取αk =1(k =1,2,…),则b 1=1+11=2,b 2=1+11+11=1+1b 1=1+12=32,b 3=1+11+11+11=1+1b 2=1+23=53,所以b 4=1+1b 3=1+35=85,b 5=1+1b 4=1+58=138,b 6=1+1b 5=1+813=2113,b 7=1+1b 6=1+1321=3421,b 8=1+1b 7=1+2134=5534.逐一判断选项可知选D.13.已知数列{a n }中,前n 项和为S n ,且S n =n +23a n ,则a n a n -1的最大值为________.答案3解析∵S n =n +23a n ,∴当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1,可化为a n a n -1=n +1n -1=1+2n -1,由函数y =2x -1在区间(1,+∞)上单调递减,可得当n =2时,2n -1取得最大值2.∴a n a n -1的最大值为3.14.已知[x ]表示不超过x 的最大整数,例如:[2.3]=2,[-1.7]=-2.在数列{a n }中,a n =[lg n ],记S n 为数列{a n }的前n 项和,则a 2024=________;S 2024=________.答案34965解析∵a n =[lg n ],∴当1≤n ≤9时,a n =[lg n ]=0;当10≤n ≤99时,a n =[lg n ]=1;当100≤n ≤999时,a n =[lg n ]=2;当1000≤n ≤9999时,a n =[lg n ]=3.∴a 2024=[lg 2024]=3,S 2024=9×0+90×1+900×2+1025×3=4965.15.(2023·郑州模拟)已知数列{a n }满足a 2=2,a 2n =a 2n -1+2n (n ∈N *),a 2n +1=a 2n +(-1)n (n ∈N *),则数列{a n }第2024项为()A .21012-2B .21013-3C .21011-2D .21011-3答案B 解析由a 2n +1=a 2n +(-1)n 得a 2n -1=a 2n -2+(-1)n -1(n ∈N *,n ≥2),又由a 2n =a 2n -1+2n 得a 2n =a 2n -2+2n +(-1)n -1(n ∈N *,n ≥2),所以a 4=a 2+22+(-1),a 6=a 4+23+(-1)2,a 8=a 6+24+(-1)3,…,a 2024=a 2022+21012+(-1)1011,将上式相加得a 2024=a 2+(-1)1+(-1)2+…+(-1)1011+22+23+…+21012=2+4×(1-21011)1-2-1=21013-3.16.在数列{a n }中,已知a 1=1,n 2a n -S n =n 2a n -1-S n -1(n ≥2,n ∈N *),记b n =a n n 2,T n 为数列{b n }的前n 项和,则T 2025=________.答案20251013解析由n 2a n -S n =n 2a n -1-S n -1(n ≥2,n ∈N *),得n 2a n -(S n -S n -1)=n 2a n -1,所以(n 2-1)a n =n 2a n -1,所以a n n =a n -1n -1×n n +1.令c n =a n n ,则c n =c n -1×n n +1,所以c n c n -1=n n +1.由累乘法得c n c 1=2n +1,又c 1=a 1=1,所以c n =2n +1,所以a n n =2n +1,所以a n =2n n +1,所以b n =a n n 2=2n (n +1)=2所以T 2025=2-12+12-13+…+12025-2=20251013.。
专题二:数列的题型与方法(文科)一、 考点回顾1.数列的概念,数列的通项公式与递推关系式,等差数列和等比数列的概念、有关公式和性质。
2.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。
(2)通项公式法:①若1(1)()n k a a n d a n k d =+-=+-,则{}n a 为等差数列; ②若,则{}n a 为等比数列;③中项公式法:验证都成立。
3.在等差数列{}n a 中,有关S n 的最值问题——常用邻项变号法求解:(1)当10a >,d<0时,满足的项数m 使得m S 取最大值.(2)当10a <,d>0时,满足的项数m 使得m S 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
4.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法、分组求和法、累加累积法、归纳猜想证明法等。
5.数列的综合应用:⑴函数思想、方程思想、分类讨论等思想在解决数列综合问题时常常用到。
⑵数列与函数、数列与不等式的综合、用数列知识解决实际问题等内容。
6.注意事项:⑴证明数列{}n a 是等差或等比数列常用定义,即通过证明11-+-=-n n n n a a a a 或11-+=n n n n a aa a 而得。
⑵在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便。
⑶对于一般数列的问题常转化为等差、等比数列求解。
⑷注意一些特殊数列的求和方法。
⑸注意n s 与n a 之间关系的转化。
如:n a =,,11--n n s s s 21≥=n n ,n a =∑=--+nk k ka aa 211)(.⑹数列的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.⑺解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.⑻通过解题后的反思,找准自己的问题,总结成功的经验,吸取失败的教训,增强解综合题的信心和勇气,提高分析问题和解决问题的能力.7.知识网络111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪一、选择题:1.已知等差数列}{n a 的前n 项和为n S ,且满足12323=-S S ,则数列}{n a 的公差是( C ) A .21B .1C .2D .3 2.已知等差数列中,则其前3项的积的取值范围是( B )A. B. C. D. 3.设等比数列{}n a 的公比2q =, 前n 项和为n S ,则42S a =( ) A. 2 B. 4C.152 D. 172【答案】C4.已知数列{}n a 是等比数列,且118a =,41a =-,则{}n a 的公比q 为 A.2 B.-12 C.-2 D. 12【答案】C 若a3=1求q ?{}n a 22a =3T (],4-∞(],8-∞[)4,+∞[)8,+∞5.在数列中,,则( A )A 、B 、C 、D 、6.数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是 A,2k >- B,2k ≥- C,3k ≥- D,3k >- D 解析:1由1(21)0n n a a n k +-=++>,n N *∈恒成立,有30k +>,得3k >-。
7.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b = A,23 B,2131n n -- C,2131n n ++ D,2134n n -+ 【答案】B解析:21211212112112121(21)22(21)21223(21)131(21)2n n n n n n n n n n a a n a a a a Sn n b b b b b b T n n n ------+-+--======++-+--。
二、大题:1. 已知数列是等比数列,且(1)求数列的通项公式; (2)求证:; (3)设,求数列的前100项和. 1. 解:(1)设等比数列的公比为.则由等比数列的通项公式得, 又数列的通项公式是.{}n a 1112,l n n n a a a n+==+(1+)n a =2ln n +()21ln n n +-2ln n n +1ln n n ++{}()n a n N *∈130,2,8.n a a a >=={}n a 11111321<++++na a a a 1log 22+=n n ab {}n b {}n a q 11n n a a q -=3131a a q -=284,2q ∴==()0,22n a q >∴=L L 分∴{}n a ()12223n n n a -=⨯=分L L ()123231111211111112221222212nn n a a a a ++++-⨯=++++=-L L ()11,2n =-6分L L数列的前100项和是 2 .已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且11=a .(1) 求证: 数列⎭⎬⎫⎩⎨⎧⨯-n n a 231是等比数列; (2) 求数列{}n b 的前n 项和n S .2 .解:证法1: ∵1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,∴⎩⎨⎧==+++.,211n n n n n n a a b a a由n n n a a 21=++,得⎪⎭⎫⎝⎛⨯--=⨯-++n n n n a a 23123111, 故数列⎭⎬⎫⎩⎨⎧⨯-n n a 231是首项为31321=-a ,公比为1-的等比数列.(2)解: 由(1)得()1131231--⨯=⨯-n n n a , 即()[]nn n a 1231--=. ∴()[]()[]111121291+++--⨯--==n n n n n n n a a b ()[]1229112---=+nn . ∴n n a a a a S ++++= 321 ()()()()[]{}nn 111222231232-++-+--++++=()⎥⎦⎤⎢⎣⎡----=+21122311nn .()11,117,2nn ≥∴-<分Q L L ()123111118.n a a a a ∴++++<分L L L ()()()(){}()2132log 21219,212112,,n n n n n b n b b n n b -=+=+-=+--+=⎡⎤⎣⎦∴由分又常数数列是首项为3,公差为2的等差数列11分L L Q L L ∴{}n b ()100100991003210200122S ⨯=⨯+⨯=分L L3. 已知数列{a n }的前n 项和为S n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1, 点P (b n ,b n+1)在直线x -y +2=0上。
(1)求a 1和a 2的值;(2)求数列{a n },{b n }的通项a n 和b n ;(3)设c n =a n ·b n ,求数列{c n }的前n 项和T n 。
3. 解:(1)∵a n 是S n 与2的等差中项 ∴S n =2a n -2 ∴a 1=S 1=2a 1-2,解得a 1=2 a 1+a 2=S 2=2a 2-2,解得a 2=4 ···3分(2)∵S n =2a n -2,S n -1=2a n -1-2, 又S n —S n -1=a n , ∴a n =2a n -2a n -1, ∵a n ≠0,∴,即数列{a n }是等比树立∵a 1=2,∴a n =2n ∵点P (b n ,b n +1)在直线x-y+2=0上,∴b n -b n +1+2=0, ∴b n +1-b n =2,即数列{b n }是等差数列,又b 1=1,∴b n =2n-1, (8)分(3)∵c n =(2n -1)2n ∴T n =a 1b 1+ a 2b 2+····a n b n =1×2+3×22+5×23+····+(2n -1)2n , ∴2T n =1×22+3×23+····+(2n -3)2n +(2n -1)2n +1 因此:-T n =1×2+(2×22+2×23+···+2×2n )-(2n -1)2n +1, 即:-T n =1×2+(23+24+····+2n +1)-(2n -1)2n +1, ∴T n =(2n -3)2n +1+6 4. 已知数列的前n 项和为且,数列满足且. (1)求的通项公式;(2)求证:数列为等比数列; (3)求前n 项和的最小值.4. 解: (1)由得, ……2分 ∴ ……………………………………4分 *),2(N n n ∈≥*),2(21N n n a a n n∈≥=-{}n a 11,4n S a =1112n n n S S a --=++{}n b 11194b =-13n n b b n --=(2)n n N *≥∈且{}n a {}n n b a -{}n b 112221n n n S S a --=++1221n n a a -=+112n n a a --=111(1)24n a a n d n =+-=-(2)∵,∴, ∴;∴由上面两式得,又 ∴数列是以-30为首项,为公比的等比数列.…………………8分 (3)由(2)得,∴ = ,∴是递增数列 ………11分 当n =1时, <0;当n =2时, <0;当n =3时, <0;当n =4时, >0,所以,从第4项起的各项均大于0,故前3项之和最小. 且…………………………13分 5. 已知函数f (x )=x 2-4,设曲线y =f (x )在点(x n ,f (x n ))处的切线与x 轴的交点为(x n+1, 0)(n ∈N +),(Ⅰ)用x n 表示x n+1; (Ⅱ)若x 1=4,记a n =lg22n n x x +-,证明数列{n a }成等比数列,并求数列{n x }的通项公式;(Ⅲ)若x 1=4,b n =x n -2,T n 是数列{b n }的前n 项和,证明T n <3. 5. 解:(Ⅰ)由题可得'()2f x x =.所以曲线()y f x =在点(,())n n x f x 处的切线方程是:()'()()n n n y f x f x x x -=-.即2(4)2()n n n y x x x x --=-.令0y =,得21(4)2()n n n n x x x x +--=-. 即2142n n n x x x ++=.13n n b b n --=11133n n b b n -=+1111111111113()3324364324n n n n n b a b n n b n b n ----=+-+=-+=-+11111113(1)2424n n n n b a b n b n -----=--+=-+1113n n n n b a b a ---=-1111913044b a -=--=-{}n n b a -131130()3n n n b a --=-⨯11111130()30()3243n n n n b a n --=-⨯=--⨯12111111130()(1)30()243243n n n n b b n n ----=--⨯--++⨯221111130()(1)20()023323n n --+⨯-=+⨯>{}n b 11194b =-23104b =-351043b =-471049b =-31101(135)3010414312S =++---=-显然0n x ≠,∴122n n nx x x +=+. (Ⅱ)由122n n n x x x +=+,知21(2)22222n n n n nx x x x x +++=++=,同理21(2)22n n nx x x +--=. 故21122()22n n n n x x x x ++++=--.从而1122lg 2lg 22n nn n x x x x ++++=--,即12n n a a +=.所以,数列{}n a 成等比数列.故111111222lg 2lg32n n n n x a a x ---+===-.即12l g 2l g 32n n n x x -+=-. 从而12232n n n x x -+=-所以11222(31)31n n n x --+=- (Ⅲ)由(Ⅱ)知11222(31)31n n n x --+=-,∴1242031n n n b x -=-=>-∴111112122223111113313133n n n n n n b b ----+-==<≤=-+当1n =时,显然1123T b ==<.当1n >时,21121111()()333n n n n b b b b ---<<<< ∴12n n T b b b =+++ 111111()33n b b b -<+++ 11[1()]3113n b -=-133()33n =-⋅<. 综上,3n T <(*)n N ∈.。