椭圆的几何性质
- 格式:ppt
- 大小:1.39 MB
- 文档页数:7
椭圆的简单几何性质优秀教案引言本教案旨在介绍椭圆的简单几何性质,以帮助学生理解椭圆的特点和特性。
通过研究本教案,学生将能够掌握椭圆的定义、主要性质和相关计算方法。
椭圆的定义椭圆是平面上一条固定点F(称焦点)和一条固定线段L(称为准线段)之间的点的轨迹,使得从F到点P的距离与准线段L上的点P到L的距离之和为常数2a。
如下所示:椭圆的性质1. 椭圆的长轴是焦点F之间的线段,短轴是准线段L的垂直平分线段。
长轴和短轴的长度之比为a:b。
2. 椭圆的离心率e的计算公式为e = c/a,其中c是焦点F到椭圆中心的距离。
3. 椭圆的离心率范围为0 < e < 1。
当e=0时,椭圆退化成一个圆;当e=1时,椭圆退化成一条直线段。
4. 椭圆的准线段L和长轴之间的夹角称为偏心角,偏心角的大小取决于离心率e的大小。
5. 椭圆的焦距为2ae,其中e是离心率。
相关计算方法1. 椭圆的周长计算公式为C = 4aE(e),其中E(e)是第二椭圆积分,需要使用数值积分方法计算。
2. 椭圆的面积计算公式为A = πab,其中a和b分别是长轴和短轴的长度。
教学活动1. 使用白板或黑板绘制椭圆的定义和性质的图示,并解释相关概念。
2. 分组让学生自己计算给定的椭圆的周长和面积,并与同组同学讨论和比较结果。
3. 设计一些练题,让学生运用所学概念计算椭圆的相关信息。
4. 使用多媒体展示椭圆的实际应用场景,如行星轨道、卫星轨道等,以加深学生对椭圆的理解和感受。
总结本教案通过简洁明了的语言和图示介绍了椭圆的几何性质和相关计算方法。
通过对椭圆的定义、性质和计算的学习,学生能够更好地理解椭圆的特点和特性,并能够应用所学知识解决实际问题。
教师可以根据学生的实际水平和兴趣选择适当的教学方法和活动,提高学生的学习效果和兴趣。
椭圆的几何性质教案一、椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
F1和F2称为椭圆的焦点,2a称为椭圆的长轴,2b称为椭圆的短轴,c称为椭圆的焦距,c2=a2−b2。
二、椭圆的几何性质1. 椭圆的对称性椭圆具有中心对称性,即椭圆的中心是对称中心。
2. 椭圆的离心率,0<e<1。
当e=0时,椭圆退化为圆;当e=1时,椭圆的离心率e=ca椭圆退化为抛物线。
3. 椭圆的焦点性质椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴2a,即PF1+PF2= 2a。
4. 椭圆的切线性质椭圆上任意一点P处的切线与椭圆的两个焦点F1和F2的连线的夹角相等。
5. 椭圆的法线性质椭圆上任意一点P处的法线与椭圆的两个焦点F1和F2的连线的夹角相等。
6. 椭圆的直径性质椭圆的长轴2a是椭圆的最长直径,短轴2b是椭圆的最短直径。
7. 椭圆的面积和周长椭圆的面积S=πab,周长C=4aE(e),其中E(e)是第二类完全椭圆积分。
三、椭圆的应用1. 椭圆的轨道椭圆的轨道在天文学中有广泛的应用,如行星绕太阳的轨道、卫星绕地球的轨道等。
2. 椭圆的几何光学椭圆镜是一种常见的光学元件,它可以将入射光线聚焦成一个点或将一个点的光线反射成一束平行光线。
3. 椭圆的机械应用椭圆齿轮是一种常见的机械元件,它可以将旋转运动转化为直线运动或将直线运动转化为旋转运动。
四、教学设计1. 教学目标1.理解椭圆的定义和基本性质;2.掌握椭圆的离心率、焦点性质、切线性质、法线性质、直径性质、面积和周长公式;3.了解椭圆的应用领域。
2. 教学内容1.椭圆的定义和基本性质;2.椭圆的离心率、焦点性质、切线性质、法线性质、直径性质、面积和周长公式;3.椭圆的应用领域。
3. 教学方法1.讲授法:通过讲解椭圆的定义和基本性质,引导学生理解椭圆的几何特征;2.演示法:通过演示椭圆的焦点性质、切线性质、法线性质等,帮助学生掌握椭圆的基本性质;3.实验法:通过实验椭圆的面积和周长,让学生深入了解椭圆的几何性质;4.讨论法:通过讨论椭圆的应用领域,激发学生的兴趣和创造力。
第8讲:椭圆的简单几何性质基本知识点1 椭圆的范围 以椭圆22221(0)x y a b a b+=>>为例.由标准方程可知,椭圆上点的坐标(,)x y 都适合不等式22221,1x y a b≤≤,即2222,x a y b ≤≤,所以||,||.x a y b ≤≤ 这说明椭圆位于直线x a =±和y b =±所围成的矩形框内(如图2.2-8).2 椭圆的对称性以椭圆与22221(0)x y a b a b+=>>为例. (1).椭圆的对称轴:坐标轴.(2).椭圆的对称中心:原点O (0,0).椭圆的对称中心叫做椭圆的中心.通过观察椭圆的形状,可以发现椭圆既是轴对称图形,又是中心对称图形.3 椭圆的顶点与长轴、短轴以椭圆22221(0)x y a b a b+=>>为例. (1).椭圆的顶点令0x =,得y b =±;令0y =,得x a =±.这说明12(,0),(,0)A a A a -是椭圆与x 轴的两个交点,12(0,),(0,)B b B b -是椭圆与y 轴的两个交点.因为x 轴、y 轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点,这四个交点叫做椭圆的顶点.(2).椭圆的长轴、短轴线段A 1A 2叫做椭圆的长轴,它的长为2a ,a 叫做椭圆的长半轴长.线段B 1B 2叫做椭圆的短轴,它的长为2b ,b 叫做椭圆的短半轴长.4 椭圆的离心率(1).定义:椭圆的焦距与长轴长的比称为椭圆的离心率,记作2.2c c e a a == (2).范围:因为0a c >>.所以01,c a<<即(0,1)e ∈. 5 直线与椭圆的位置关系(1).直线与椭圆的三种位置关系:(1)相交;(2)相切;(3)相离.(2).直线与椭圆的位置关系的判断:直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式△来判定:△0>⇔直线与椭圆相交;△0=⇔直线与椭圆相切;△0<⇔直线与椭圆相离.(3).弦长公式一条直线被椭圆所截得的线段叫做椭圆的弦.若直线y kx b =+与椭圆相交于不同的两点1122(,),(,),A x y B x y 则直线被椭圆所截得的弦长公式为212||1||AB k x x =+-或 1221||1||AB y y k =+-.性质的应用应用点一 由方程求椭圆的几何性质例1. 求椭圆 22925225x y +=的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.应用点二 由椭圆的几何性质求方程例2(1)已知椭圆C 以坐标轴为对称轴,长轴长是短轴长的5倍。
椭圆的简单几何性质教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、讲话致辞、合同模板、教案大全、作文大全、心得体会、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting plans, work plans, speeches, contract templates, lesson plans, essays, experiences, and other materials. If you want to learn about different data formats and writing methods, please pay attention!椭圆的简单几何性质教案椭圆的简单几何性质教案主要包括以下内容:一、教学目标:1.熟悉椭圆的几何性质,如对称性、范围、顶点、离心率等。
椭圆是平面上的一个几何图形,具有一些特殊的性质。
以下是一些椭圆的几何性质:
1.定义性质:椭圆是一个点到两个焦点距离之和等于常数的点
集合。
这个常数称为椭圆的长轴长度,长轴的中点称为椭圆
的中心。
2.对称性质:椭圆具有两个对称轴,即横轴和纵轴。
横轴和纵
轴互相垂直,并交于椭圆的中心。
3.焦点性质:椭圆的焦点是椭圆的两个特殊点,对于椭圆上的
每一个点,它到两个焦点的距离之和是恒定的,等于椭圆的
长轴长度。
4.直径性质:椭圆的任意一条直径的长度等于椭圆的长轴长度。
5.切线性质:椭圆上的每一条切线与椭圆的两个焦点之间的线
段的长度是相等的。
6.圆锥截面性质:椭圆是一个旋转椭圆曲线,可以通过将一个
圆沿一个不在圆心处的直线截成椭圆来得到。
这些性质为椭圆的研究和应用提供了基础,例如在数学、物理、工程等领域中,椭圆的性质被广泛应用于解决实际问题。