高一数学教案:指数函数教案
- 格式:docx
- 大小:12.23 KB
- 文档页数:2
高一数学《指数函数》优秀教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!高一数学《指数函数》优秀教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
高中数学试讲15分钟篇一:高一数学试讲教案指数函数及其性质教案一、教学目标:知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。
领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:教学重点:指数函数的概念、图象和性质。
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
三、教学过程:(一)创设情景问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?学生回答: y与x之间的关系式,可以表示为y=2x。
问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x 表示,剩留量用y表示。
学生回答: y与x之间的关系式,可以表示为y=0.84x 。
引导学生观察,两个函数中,底数是常数,指数是自变量。
1.指数函数的定义一般地,函数y?a?a?0且a?1?叫做指数函数,其中x是自变量,函数的定义域是R. x问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?(1)若a<0会有什么问题?(如a??2,x?x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x?0,a无意义)(3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要.)师:为了避免上述各种情况的发生,所以规定a?0且a?1. 练1:指出下列函数那些是指数函数:1(1)y4x(2)yx4(3)y4x(4)y4(5)yx(6)y x x练2:若函数2.指数函数的图像及性质是指数函数,则a=()?1?在同一平面直角坐标系内画出指数函数y?2x与y 的图象(画图步骤:列表、?2??1?描点、连线)。
高一数学教案:幂函数指数函数和对数函数教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.(指图说明.)师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)生:较大的函数值的函数.师:那么减函数呢?生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.(学生可能回答得不完整,教师应指导他说完整.)师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?(学生思索.)学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?生:不能.因为此时函数值是一个数.师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.师:还有没有其他的关键词语?生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.师:你答的很对.能解释一下为什么吗?(学生不一定能答全,教师应给予必要的提示.)师:“属于”是什么意思?生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.师:如果是闭区间的话,能否取自区间端点?生:可以.师:那么“任意”和“都有”又如何理解?生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).师:能不能构造一个反例来说明“任意”呢?(让学生思考片刻.)生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.师:那么如何来说明“都有”呢?生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的`能力.)三、概念的应用例1图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?(用投影幻灯给出图象.)生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.例2证明函数f(x)=3x+2在(-∞,+∞)上是增函数.师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.(指出用定义证明的必要性.)师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b 就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,所以f(x)是增函数.师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)调函数吗?并用定义证明你的结论.师:你的结论是什么呢?上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.上是减函数.(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:(1)分式问题化简方法一般是通分.(2)要说明三个代数式的符号:k,x1·x2,x2-x1.要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)四、课堂小结师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.五、作业1.课本P53练习第1,2,3,4题.数.=a(x1-x2)(x1+x2)+b(x1-x2)=(x1-x2)[a(x1+x2)+b].(*)+b>0.由此可知(*)式小于0,即f(x1)<f(x2).课堂教学设计说明是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.。
指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
江苏省泰兴中学高一数学教学案(24)必修1_02 指数函数(1)班级 姓名 目标要求理解指数函数的概念,掌握指数函数的图象和性质。
重点难点重点:指数函数的图象和性质。
难点:正确运用指数函数的图象与性质来解题。
教学过程一、复习引入: 分析以下问题:(课本)二、新课讲授:1、指数函数的定义:一般地,形如 的函数叫做指数函数,其定义域是 思考1:在函数解析式为什么要规定:0>a ,1≠a ? 思考2:下列函数xy 32⨯=,xy 13=,23-=x y ,13-=x y 是不是指数函数?为什么?练习1:若xa a a y ⋅+-=)232(2是指数函数,则=a .思考3:函数2x y =与函数xy 2=一样吗?有什么区别?练习2:下列以x 为自变量的函数中,是指数函数的是: . (1)x y )1(+=π (2)x y )3(-= (3)12+=x y(4)3x y = (5)xy 32= (6)xy -=2 练习3:在同一坐标系下画出函数x y 2=,x y 3=,x y )21(=,x y )31(=的图象。
规律:①定义域 _________. ②值域__________.③图象过定点_______________.④函数值的分布:____________________________________________________________⑤单调性:_________________________ _________________________ 2、指数函数图象、性质思考5:① 在画图过程中,你还能发现指数函数的其他性质吗?② 函数2xy =与1()2xy =图象有怎样的关系?你能得到更一般的结论吗?练习:函数)10(≠>=a a a y x 且,当a>1时,x 取何值时,y>1;x 取何值时0<y<1,0<a<1?三、典型例题:例1 比较下列各题中值的大小:(1) 2.5 3.21.5,1.5; (2)1.08.0-,2.08.0-; (3)0.3 1.21.5,0.8变题:比较下列各组数的大小: 1、b a c c ,(a>b,c>0);2、32)21(,32)51(,31)21(;3、121103333223355(),(),(),(),(2),()35263---例2 解不等式x x 283)31(2-->.变题1:2(8)2x x a a --->变题2:22(8)22(2)(2)x x a a a a ---++>++例3 作出下列函数的图象,并指出单调区间 ①221-=-x y ②||3x y -=③ |3|3-=x y ④|21|x y =-学后反思江苏省泰兴中学高一数学作业(24)班级 姓名 得分1、下列函数一定是指数函数的是 .(1)12+=x y (2)3x y = (3)x y -=3 (4)x y 23⋅= (5)x y a =2、当x >0时,函数x a x f )1()(2-=的值总大于1,则实数a 取值范围是 .3、指数函数①xa y =,②xb y =,③xc y =,④xd y =如图,则a 、b 、c 、d 与1的大小关系是 ( ) A 、a <b <1< c <d B 、b <a <1<d <cC 、1<a <b <c <dD 、a <b <1<d <c 4、若01<<-x ,则下列不等式中成立的是_________. (1) x x x5.055<<- (2) x x x -<<55.05(3) x xx5.055<<- (4) x x x 555.0<<-5、函数)2,1(2)1(3≠>+-=-a a a y x 且,无论a 取何值,此函数的图象过定点__________. 6、已知函数b a y x+=的图象不过第二象限,则a 取值范围______,b 的取值范围_____. 7、已知1()4x f x a-=+的图象恒过定点P ,则点P 的坐标是__________.8、方程22xx =-的实数解有__ ____个.9、解下列不等式: (1)239->x x(2)x x 283)31(2-->(3)06243>⋅-⋅xx(4)x x a a 2282)1()1(2--->-10、作出下列函数的图象,并指出单调区间、值域。
《指数函数》(第1课时)教案设计一、教案背景1、面向学生:高一2、学科:数学3、课时:14、学生课前准备:(1)预习本节课本内容;(2)准备一张白纸;(3)准备一根一米长的绳子。
二、教学课题高中数学新课标人教B版《3.1.2指数函数》知识技能目标:使学生理解指数函数的定义,掌握指数函数的图象和性质,初步学会运用指数函数的性质解决问题。
过程方法目标:引入,剖析、定义指数函数的过程,启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。
情感态度,价值观目标:通过本节课的学习,使学生获得研究函数的规律和方法,提高学生的学习能力,养成积极主动,勇于探索,不断创新的学习习惯和品质,激发学生学习数学的兴趣,努力培养学生的创新意识。
二、教材分析本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,打下坚实的基础。
因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。
教学重点: 探究指数函数的图像、性质及其运用。
教学难点:指数函数图像和性质的归纳过程及其运用。
四、教学方法本节知识点对于学生来说比较重要,但在教学生的过程中,要让学生自己动起手来,这样才能有好的理解和掌握,故采用自主学习、合作探究的教学方法,提出问题,让学生自己通过合作探究,完成问题解答,老师只起到辅助的作用,并通过当堂检测和课后延伸巩固本节课知识。
采用观察、分析、归纳、抽象、概括、自主探究、合作交流的学习模式,发挥同学们自主学习,参与课堂活动的主动性和积极性。
高中数学的相关指数教案
教学目标:
1. 了解指数的概念和性质;
2. 掌握指数运算的规则;
3. 能够灵活运用指数知识解决实际问题。
教学重点和难点:
1. 指数的定义和性质;
2. 指数运算的规则;
3. 实际问题的解决方法。
教学准备:
1. 教材《高中数学》;
2. 教学课件PPT;
3. 教学案例及练习题。
教学步骤:
一、导入(5分钟)
教师通过举例引入指数的概念,并提出问题引导学生思考,引起学生兴趣。
二、讲授(25分钟)
1. 指数的定义和性质;
2. 指数运算的规则(同底数幂相乘、幂的幂、幂的乘方、零指数规定);
3. 实例讲解指数运算的步骤。
三、练习(15分钟)
教师设计一些练习题供学生实践操作,巩固所学知识。
四、拓展(10分钟)
学生从日常生活中找到一些实际问题,并运用指数知识进行解决,加深对指数概念的理解。
五、总结(5分钟)
学生总结本堂课的重点内容和难点,教师进行适当梳理和补充。
六、作业布置
布置相应的作业,巩固学生对指数的理解和运用能力。
七、板书
本堂课所学内容的概要和重难点。
教学反思:
本节课采用了导入-讲授-练习-拓展-总结-作业布置的教学方法,使学生在理解指数概念的同时,掌握了指数运算的规则和方法,并能够运用所学知识解决实际问题。
通过本节课的教学,学生对指数的认识和运用能力得到了提升。
学必求其心得,业必贵于专精数学人教B必修1第三章3。
1。
2 指数函数1.理解指数函数的概念和意义,能画出具体指数函数的图象.2.探索并理解指数函数的单调性与特殊点等性质.3.利用计算工具,比较指数函数增长的差异.1.指数函数的定义函数______________叫做指数函数,其中________是自变量.对指数函数定义的理解应注意以下两点:(1)定义域:因为指数的概念已经扩充到有理数和无理数,所以在底数a>0的前提下,x可以是任意实数.(2)规定底数a大于零且不等于1的理由是:如果a=0,错误!如果a<0,比如y=(-4)x,这时对于x=错误!,x=错误!,…y=(-4)x都无意义.如果a=1,对于任何实数x,y=1x=1是一个常量,对它就没有研究的价值和必要了.【做一做1】指数函数y=(a-1)x中,实数a满足的条件是__________.2.指数函数的图象和性质定义域:______值域:______图象过定点______在______上是增函数在______上是减函数指数函数y=a x(a>1)在R上为单调增函数,在闭区间[s,t]上存在最大、最小值,当x=s时,函数有最小值a s;当x=t时,函数有最大值a t.指数函数y=a x(0<a<1)在R上为单调减函数,在闭区间[s,t]上存在最大、最小值,当x=s时,函数有最大值a s;当x=t 时,函数有最小值a t。
【做一做2-1】函数y=2-x的图象是( )【做一做2-2】函数y=a x-1+2 011(a>0且a≠1)中,无论a取何值恒经过一个定点,则这个定点的坐标为________.【做一做2-3】(1)已知3x≥9,求实数x的取值范围;(2)已知0。
2x+1<5,求实数x的取值范围.一、指数函数y=a x(a>0,且a≠1)的函数值的变化规律剖析:先从具体函数入手:列表:从上表中很容易发现:①当x<0时,总有2x>3x;②当x>0时,总有2x<3x;③当x从1增加到3,y=2x的函数值从2增加到8,y=3x的函数值从3增加到27,说明当x>0时,函数y=3x的函数值比y=2x的函数值增长得要快.又对于指数函数y=a x(a>0,且a≠1),当将底数a由2变为3,发现它们的图象发生了显著变化,在第一象限内,底数a越小,函数的图象越接近x轴.再类似地列表分析函数y=错误!x和y=错误!x的函数值的变化.由上面的探究过程可以得出底数a对函数值的影响:指数幂a x和1的比较:当x<0,a<1或x>0,a>1时,a x>1,即指数x和0比较,底数a和1比较,当不等号的方向相同时,a x大于1,简称为“同大".当x<0,a>1或x>0,a<1时,a x<1,即指数x和0比较,底数a和1比较,当不等号的方向相反(异)时,a x小于1,简称为“异小”.因此简称为“同大异小”.二、指数函数的图象分布规律剖析:先从特例入手:在同一个坐标系中画出下列各函数的图象:①y=2x;②y=5x;③y=错误!x;④y=错误!x。
教学课题:4.2.1 指数函数的概念课型:新授课课时:1课时课标要求:通过具体实例,了解指数函数的实际意义,理解指数函数的概念。
学习目标:1、通过具体实例,了解指数函数的实际意义,2、理解指数函数的概念,会辨析指数函数和幂函数,3、发展学生数学抽象,数学运算等核心素养。
重点:掌握指数幂的运算性质。
难点:了解指数幂的拓展过程。
教学方法:启发式、自主探究式相结合教学准备教师:多媒体课件学生:教学过程一、复习旧知,引入课题引入1:幂函数=叫做幂函数(power function),其中x是自变量,α为常数。
一般地,函数y xα引入2:研究一类函数的过程与方法通过背景抽象出概念,再通过作图研究函数的性质,最后再应用。
设计意图:学生对幂函数的概念应该可能存在遗忘的情况,教师应该引导学生进行复习,为后面与指数函数的概念区分作铺垫。
教师引导学生回顾研究函数的过程与方法,让学生理解学习新函数要从概念开始,进一步引入课题。
二、创设情境、提出问题情境1:随着中国经济告高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式。
由于旅游人数不断增加,A,B两地景区自2001年起采取了不同的应付措施,A地提高了门票景区价格,而B地则取消了景区门票。
表4.2-1给出了A,B两地景区2001年至2015年的游客人次以及逐年增加量。
(提示:年增加量=今年的量-去年的量,年增加率=今年的量去年的量去年的量,增加量和增加率是刻画事物变化规律两个重要的量。
)问题1:比较两地区游客人次的年增加量,你发现了什么变化规律?A地年增加量近似于10,B地年增加量越来越大,没有明显规律问题2:为了研究游客人次的变化趋势,可以采用什么方法?可以作图,为了便于观察,可以先根据表格中的数据描点,然后用光滑的曲线把散点连起来。
问题3:观察两个图象,A,B两地区旅游人次与时间的关系可以用什么函数模型来刻画A地旅游人次与时间t的关系可以用一次函数模型来刻画,B地的暂时不清楚。
高一数学教案:指数函数教案
教学目的:
⑴知识目的:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
⑵能力目的:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和剖析问习题、解决问习题的能力。
⑶情感目的:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
教学重点、难点:
⑴ 重点:指数函数的图像和性质
⑵ 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体
动感显示,通过颜色的区别,加深其感性认识。
教学方法:引导——发现教学法、比较法、讨论法
教学过程:
一、事例引入
T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。
什么是函数?
S: --------
T:主要是体现两个变量的关系。
我们来考虑一个与医学有关的例子:大家对“非典”应该其实不生疏,它与其它的传染病一样,有一定的埋伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。
我们来看一种球菌的分裂过程:
C:动画演示(XXXX种球菌分裂时,由1分裂成2个,2个分裂成4个,------。
一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是:y = 2 x )
S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),
从函数特征剖析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点习题。
二、指数函数的定义
C:定义:函数 y = a x (a>0且a≠1)叫做指数函数,x∈R.。
问习题 1:为何要办法 a > 0 且 a ≠1?
S:(讨论)
C: (1)当 a 就没有意义;
(2)当 a=0时,a x 有时会没有意义,如x= - 2时,
(3)当 a = 1 时,函数值 y 恒等于1,没有研究的须要。
稳固练习1:
下列函数哪一项是指数函数( )
A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x。