有关竞赛中的计算问题
- 格式:pptx
- 大小:181.29 KB
- 文档页数:38
中学生数学建模竞赛题目
题目:中学生数学建模竞赛题目
背景:小明是一名中学生,对数学建模很感兴趣。
最近,他参加了一场中学生数学建模竞赛。
竞赛有三个题目,分别是:
题目一:平均数的计算
小明班级共有30名同学,升学率是80%。
假设这30名同学的期末考试总成绩平均分为85分,小明想知道升学同学的平均成绩是多少?
题目二:几何图形的面积计算
小明看到一个园林设计图,其中有一个不规则图形,小明想计算其面积。
可是,这个图形没有标明具体的尺寸。
请问小明该如何计算这个图形的面积?
题目三:概率的计算
小明是一名篮球爱好者,他参加了10次的投篮练习,每次投篮成功的概率为60%。
小明想知道他至少投中5次的概率是多少?
要求:
对于题目一,小明需要通过给出数据和计算方法,得出升学同学的平均成绩的具体数值。
对于题目二,小明需要通过解释几何图形的特点和常用的几何公式,得出计算该图形面积的方法。
对于题目三,小明需要用概率的计算公式和相关知识,得出至
少投中5次的概率的数值,并给出计算过程。
注意:
题目的目的是考察中学生的数学建模能力和解决实际问题的能力,因此要求考生能够认真分析题目,并运用合适的数学知识进行建模和计算。
人教版二年级下册体育计算能力竞赛题
一、单选题
1. 小红跑步比小李快4秒,小李的成绩是12秒,那么小红的成绩是多少秒?
A. 4秒
B. 8秒
C. 16秒
D. 20秒
2. 张伟第一次跑50米用了8秒,第二次跑50米用了7秒,那么张伟第二次比第一次快了多少秒?
A. 1秒
B. 2秒
C. 3秒
D. 4秒
3. 今天小明在校运会上跑了200米,他的成绩是27秒,小红的成绩是23秒,那么小红比小明快了多少秒?
A. 2秒
B. 3秒
C. 4秒
D. 5秒
4. 下图是小白在运动会上的跳远成绩,他的成绩是多少米?
A. 1.5米
B. 2.5米
C. 3.5米
D. 4.5米

5. 小刚跑步跑了10秒,小红则跑了6秒,他们俩写出来的时间顺序是什么?
A. 小刚 > 小红
B. 小刚 = 小红
C. 小刚 < 小红
D. 无法确定
二、填空题
1. 今天小华40米,共用了\_2\_\_秒。
2. 小明第一次跳绳20次,第二次跳绳比第一次多跳了\_10\_\_次。
3. 下图是小林公园跑步轨迹图,她跑了\_3\_\_圈。

三、简答题
1. 怎么判断两个时间的长短?
答:比较大小。
2. 体育运动中的成绩单位有哪些?
答:米、秒、分钟等。
以上是本次人教版二年级下册体育计算能力竞赛的全部内容,祝大家好运!。
小学数学计算竞赛题一、选择题1.1=(1)21+3=(2)21+3+5=(3)2,那么1+3+5+7=().A.B.C.2.下列各式不成立的是()。
A.1²=1×2=2 B.2×2=2²C.a×b×4=4ab3.已知a※b=a×6+b×2,那么6※5=( )。
A.46 B.42 C.304.某肉铺商贩用的秤短斤少两,称出来的是500克,实际上只有400克.李阿姨要买500克猪肉,商贩为了称够实际上的500克,在该秤上称得500克的基础上又多称100克,即在这把秤上称了600克,这时称出的重量()500克.A.小于B.等于C.大于5.把一升水分别倒在3种杯中,1号杯倒正好3杯,2号杯倒不满3杯,3号杯倒满3杯还多一点,()号杯容量最大.A.1号B.2号C.3号6.下面算式的商是循环小数的是()。
A.67.7÷0.25 B.1.33÷0.16C.2.06÷1.2 D.5.29÷0.87.下面的循环小数保留两位小数不正确的是()。
A...0.884≈0.88 B...0.60≈0.61C..7.9≈8.00D...0.84≈0.848.将下面的循环小数保留三位小数,正确的是()。
A.2.13030………≈2.13B.3.4059≈3.405C.0.0172172……≈0.017 9.下面哪一行和其他三行不一样?()A.3,5,6,7B.3,4,6,7C.0,2,4,6D.7,5,3,410.11a0.5b c25%d35+=+=+=+,a、b、c、d中最大的是( )11.如果a★b=a×(b+1),那么5★6=()。
A.40 B.30 C.36 D.3512.小马虎做一道减法题,把减数75看成了57,结果算出的差比正确的差().A.多18 B.少18 C.无法比较13.6.3838是()小数.A.循环B.无限C.有限14.3÷7商的小数部分第100位数字是()A.2 B.8 C.5 D.715.一个循环小数的近似数是3.45,这个循环小数不可能是()A.3.4B.3.44C.3.4416.100个连续的自然数,从小到大排成一列,最后一个数是2003.在这列数中,最后面的20个数的和比最前面的20个数的和大()A.2004 B.2000 C.1800 D.1600 E.1400 17.小明在做连续自然数1、2、3、4、5、…求和时,把其中一个数多加了一次,结果和为149,那么多加的这个数是()A.13 B.14 C.15 D.1618.计算:124+129+106+141+237-500+113=()A.350 B.360 C.370 D.38019.计算:的结果中含有()数字0.A.2017 B.2016 C.2015 D.201420.小明练习珠算,用123+++⋅⋅⋅,当加到某个数时,和是1300,验算时发现重复加了一个数,则重复加的数是()。
简单有趣的数学竞赛题目1. 求等差数列之和在一场足球比赛中,观众们排成了一列。
他们的座位按等差数列排列,第一个座位编号为1,等差为3。
如果一共有100个座位,那么观众们的座位编号之和是多少?2. 解方程小明在参加一个数学竞赛时遇到了这个方程:3x + 8 = 23 - x。
他需要求解x的值。
请问小明应该得出什么结果?3. 组合排列小红有3条短裤和4个T恤,她想选择一条短裤和一件T恤组成搭配。
请问小红一共有多少种不同的搭配方式?4. 平均数问题某次小明和他的朋友们一起玩一个数学游戏,他们每个人写下了自己家里的电视数量。
小明看到有些数比较大,有些数比较小,于是他决定计算所有朋友的电视数量的平均数。
请问小明应该怎么做?5. 图形面积计算小华正在参加一个数学竞赛,他需要计算一个梯形的面积。
已知这个梯形的上底长度为10,下底长度为18,高度为8。
请问小华计算得到的梯形的面积是多少?6. 解方程组小明和小红一起参加了一个数学竞赛,他们需要解这个方程组:2x + y = 8x + 3y = 10请问小明和小红应该得出什么结果?7. 排列组合问题有5个人参加一场比赛,其中第一名将获得一等奖,第二名将获得二等奖,第三名将获得三等奖。
请问参赛者按照不同的名次获奖有多少种可能性?8. 图形几何问题小华正在参加一个数学竞赛,他需要计算一个正方形的对角线长度。
已知这个正方形的边长是12。
请问小华计算得到的对角线长度是多少?9. 计算百分比在一场数学竞赛中,有100名选手参加。
其中60%的选手是男性,剩下的是女性。
请问这场竞赛有多少名女性参加?10. 统计数据问题小明正在参加一个数学竞赛,他需要统计一组数据中的众数。
已知这组数据为5,3,8,2,7,6,5。
请问小明应该得出什么结果?以上就是我准备的十个简单有趣的数学竞赛题目,每个题目都涵盖了数学中的不同领域,希望能够帮助你提供一些有趣的数学竞赛题目。
初中奥数竞赛数列问题解析数列是数学中一个非常重要的概念和工具,常常在奥数竞赛中出现。
初中生们在学习数列的过程中,不可避免地会遇到一些数列问题。
本文将对一些常见的初中奥数竞赛数列问题进行详细解析。
1. 等差数列问题:等差数列是指数列中相邻两项之差恒定的数列。
解答等差数列问题的关键是找到公差,即相邻两项之差。
通常,我们可以通过观察数列中相邻项之间的关系来找到这个公差。
如果数列中的公差已知,则可以通过公式 an = a1 + (n-1)d 来计算第n 项的值,其中 an 表示第n项,a1 表示首项,d 表示公差。
如果只给出数列的前几项,我们可以使用多种方法来计算后面的项数。
2. 等比数列问题:等比数列是指数列中相邻两项之比恒定的数列。
解答等比数列问题的关键是找到公比,即相邻两项之比。
与等差数列类似,我们可以观察数列中相邻项之间的关系来找到这个公比。
如果数列中的公比已知,则可以通过公式 an = a1 * r^(n-1) 来计算第n项的值,其中 an 表示第n项,a1 表示首项,r 表示公比。
3. 斐波那契数列问题:斐波那契数列是指数列中每一项都是前两项之和的数列。
解答斐波那契数列问题的关键是找到数列的递推关系。
通常,我们可以通过观察数列的前几项来发现其递推规律。
例如,前两项分别为1和1,后面的项数等于前两项之和。
我们可以使用递归或循环的方式来计算斐波那契数列的任意项。
4. 等差数列与等比数列的混合问题:有时候,在题目中会涉及到等差数列和等比数列的混合问题。
解答这种问题的关键是要分别找到等差数列和等比数列的递推关系,然后将两者的结果相加或相乘得到最终的结果。
在解答这类问题时,我们需要注意区分等差数列的公差和等比数列的公比。
5. 数列的和问题:数列的和是指数列中前n项之和。
对于等差数列而言,我们可以使用求和公式Sn = (n/2)(a1+an) 来计算前n项的和,其中 Sn 表示前n项的和,a1 表示首项,an 表示第n项。
信息学竞赛中的计算几何问题与算法计算几何是信息学竞赛中的一个重要篇章,它将几何学和计算机科学相结合,利用算法和数据结构解决实际问题。
在本文中,我们将探讨信息学竞赛中的计算几何问题以及相应的算法。
一、点和线的处理信息学竞赛中,点和线的处理是最基础的问题之一。
常见的问题有求两点之间的距离、点是否在线段上、点是否在多边形内、线段是否相交等。
对于求两点之间的距离,我们可以利用勾股定理进行计算。
假设有两点A(x1, y1)和B(x2, y2),则距离d可以通过以下公式计算:d = sqrt((x2-x1)^2 + (y2-y1)^2)。
判断点是否在线段上可以利用叉积的性质。
设点A(x1, y1)、B(x2, y2)、C(x3, y3),则若AB和AC的叉积等于0,即(x2-x1)*(y3-y1) - (x3-x1)*(y2-y1) = 0,点C在线段AB上。
判断点是否在多边形内可以利用射线法。
假设有一条射线从当前点发出,若与多边形的边交点数为奇数,则点在多边形内;若为偶数,则点在多边形外。
判断线段是否相交可以利用线段相交的充要条件。
对于两条线段AB和CD,若AC和AD的叉积和BC和BD的叉积异号,并且CA和CB的叉积和DA和DB的叉积异号,则线段AB和CD相交。
二、面积和重心的计算另一个重要的计算几何问题是求解多边形的面积和重心。
多边形的面积可以通过求解多边形顶点的坐标和来计算,其中x[i]和y[i]分别表示第i个顶点的横坐标和纵坐标。
根据公式:Area = 0.5 * (x[0]*y[1] +x[1]*y[2] + ... + x[n-1]*y[0] - x[1]*y[0] - x[2]*y[1] - ... - x[0]*y[n-1]),即可求得多边形的面积。
多边形的重心是指多边形所有顶点的平均位置,计算重心的坐标可以通过求解多边形每个顶点和重心的横纵坐标之和的平均值来得到。
重心的横坐标的计算公式为:x = (x[0] + x[1] + ... + x[n-1]) / n,纵坐标的计算公式为:y = (y[0] + y[1] + ... + y[n-1]) / n。
高中数学竞赛试题及解题答案在高中数学竞赛中,试题是考察学生数学思维和解决问题的能力的重要手段。
下面将为大家提供一部分高中数学竞赛试题及解题答案,希望能够帮助大家更好地理解和应用数学知识。
一、整数与多项式试题1:已知多项式P(x)满足P(x)=x^3-5x^2+ax+b,其中a、b均为整数。
若多项式P(x)除以(x-1)得到余数4,则多项式P(x)除以(x+2)的余数为多少?解题思路:我们知道,多项式f(x)除以x-a的余数等于把a带入f(x)中所得到的值。
那么,题目中给出了P(x)除以(x-1)的余数为4,即P(1)=4,我们可以将1代入P(x)中,得到一个方程。
同理,题目要求求解P(x)除以(x+2)的余数,即P(-2)=?根据题意,我们有以下方程:P(1) = 4,即1^3 - 5(1^2) + a(1) + b = 4P(-2) = ?,即(-2)^3 - 5((-2)^2) + a(-2) + b = ?解题步骤:1. 代入P(1)的方程求解:1 - 5 + a + b = 4化简得 a + b = 82. 代入P(-2)的方程求解:-8 - 20 - 2a + b = ?化简得 -2a + b = ?将两个方程合并求解可得:-2a + b = a + b - 16当两边消去b时,可得:-2a = a - 16a = -8将a代入第一个方程a + b = 8,可得:-8 + b = 8b = 16因此,通过计算可得多项式P(x)除以(x+2)的余数为-16。
试题2:已知整数序列a1, a2, a3, ...,其中a1 = 1,a2 = 2,an = an-1 + an-2(n ≥ 3)。
求证:对于任意正整数n,任务子序列a1, a2, ..., an中必定存在一个数可以被11整除。
解题思路:根据题意,我们需要证明对于任意正整数n,序列a1, a2, ..., an中必定存在一个数可以被11整除。
数学竞赛组合试题及答案试题一:排列组合问题题目:某班级有30名学生,需要选出5名代表参加校际数学竞赛。
如果不考虑性别和成绩,仅考虑组合方式,问有多少种不同的选法?答案:这是一个组合问题,可以用组合公式C(n, k) = n! / (k! *(n-k)!)来计算,其中n为总人数,k为选出的人数。
将数值代入公式,得到C(30, 5) = 30! / (5! * 25!) = 142506。
试题二:概率问题题目:一个袋子里有10个红球和20个蓝球,随机抽取3个球,求至少有1个红球的概率。
答案:首先计算没有红球的概率,即抽到3个蓝球的概率。
用组合公式计算,P(3蓝) = C(20, 3) / (C(30, 3)) = (20! / (3! * 17!)) / (30! / (3! * 27!))。
然后,用1减去这个概率得到至少有1个红球的概率,P(至少1红) = 1 - P(3蓝)。
试题三:几何问题题目:在一个半径为10的圆内,随机选择两个点,连接这两点形成弦。
求这条弦的长度小于8的概率。
答案:首先,弦的长度小于8意味着弦所对的圆心角小于某个特定角度。
通过几何关系和圆的性质,可以计算出这个特定角度。
然后,利用面积比来计算概率。
圆的面积为πr²,而弦所对的扇形面积可以通过角度来计算。
最后,将扇形面积除以圆的面积得到概率。
试题四:数列问题题目:给定一个等差数列,其首项为3,公差为2,求前10项的和。
答案:等差数列的前n项和公式为S_n = n/2 * (2a + (n-1)d),其中a为首项,d为公差,n为项数。
将数值代入公式,得到S_10 = 10/2* (2*3 + (10-1)*2) = 10 * 13 = 130。
试题五:逻辑推理问题题目:有5个盒子,每个盒子里都有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人随机选择一个盒子,每个人只能拿一个盒子。
问至少有一个人拿到的盒子里球的数量与他选择的顺序号相同的概率。
小学四年级数学奥林匹克竞赛题及分析统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
wmo世界奥林匹克数学竞赛试题六年级WMO世界奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。
以下是一些适合六年级学生的WMO数学竞赛试题:1. 数字填空题:- 题目:在数列 2, 4, 6, 8, __ 中,下一个数字是什么?- 解答:这是一个简单的等差数列,公差为2。
下一个数字是 8 +2 = 10。
2. 图形推理题:- 题目:观察下列图形序列,找出规律并填写缺失的图形。
图形序列:△, □, ○, △, □, __- 解答:这是一个交替出现的图形序列,缺失的图形是圆形(○)。
3. 逻辑推理题:- 题目:如果所有的猫都怕水,而小明的宠物是一只猫,那么小明的宠物怕水吗?- 解答:根据题目中的条件,小明的宠物是一只猫,而所有的猫都怕水,所以小明的宠物也怕水。
4. 数学应用题:- 题目:小明有3个苹果,他给了小华2个苹果,然后又买了4个苹果,现在小明有多少个苹果?- 解答:小明原本有3个苹果,给了小华2个,剩下3 - 2 = 1个。
然后他又买了4个,所以现在他有 1 + 4 = 5个苹果。
5. 几何题:- 题目:一个正方形的边长是5厘米,它的周长是多少?- 解答:正方形的周长是边长的四倍,所以周长是 5 × 4 = 20厘米。
6. 概率题:- 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,是红球的概率是多少?- 解答:总共有8个球,其中5个是红球。
所以取出红球的概率是5/8。
7. 计算题:- 题目:计算下列表达式的值:(12 + 8) × (15 - 9)- 解答:首先计算括号内的值,12 + 8 = 20,15 - 9 = 6。
然后计算乘积,20 × 6 = 120。
8. 组合问题:- 题目:一个班级有20名学生,如果老师需要从这20名学生中选出5名代表,有多少种不同的选择方式?- 解答:这是一个组合问题,计算公式为C(n, k) = n! / [k! × (n - k)!],其中 n = 20,k = 5。