广东省东莞市厚街中学2017-2018学年高一下学期数学第
- 格式:doc
- 大小:2.07 MB
- 文档页数:4
2017-2018学年第二学期期中考试高一数学试题卷第Ⅰ卷(选择题 共40分)一、选择题:每小题4分,共40分.1.在等差数列{}n a 中,若136,2a a ==,则5a =( ) A .6 B .4 C .0 D .-22.如图,已知向量,,a b c ,那么下列结论正确的是( )A .a b c +=B .a b c +=-C .a b c -=-D .b c a += 3.用数学归纳法证明11112321nn +++<-(*,1n N n ∈>)时,第一步应验证不等式为( )A .1122+< B .111323++< C .11113234+++< D .111223++<4.已知平面向量a 和b 的夹角等于3π,2a =,1b =,则2a b -=( )A .2B C.D5.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若030B =,c =2b =,则C =( ) A .3π B .3π或23π C. 4π D .4π或54π6.已知等比数列{}n a 中,12340a a a ++=,45620a a a ++=,则前9项之和等于( ) A .50 B .70 C. 80 D .907.已知向量,a b 满足1a =,2b =,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( )AB .3C. D .58.已知数列{}n a 满足121a a ==,2111n n n na a a a +++-=,则65a a -的值为( ) A .0 B .18 C. 96 D .6009.已知数列{}n a 是各项均不为0的正项数列,n S 为前n项和,且满足1n a =+,*n N ∈128(1)n n a +≤+-对任意的*n N ∈恒成立,求实数λ的最大值为( )A .-21B .-15 C.-9 D .-210.在ABC ∆中,AB AC =,点M 在BC 上,4BM BC =,N 是AM 的中点,1sin 3BAM ∠=,2AC =,则AM CN ∙=( )A .1B .2 C. 3 D .4第Ⅱ卷(非选择题 共110分)二、填空题(本大题共7小题,第11-14题每小题6分,第15-17题每小题4分,共36分)11.已知向量(2,5)a =,(,2)b x =-,且a b ⊥,则x =_________,a b -= . 12.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c,若01,30a b C ===,则c =____________,ABC ∆的面积S = .13.已知等差数列{}n a 中,1013a =,927S =,则公差d =________,100a = . 14.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若1tan 2A =,1tan 3B =,2b =,则tanC =_________,c = .15.已知向量3OA =1OB =,0OA OB ∙=,点C 在AOB ∠内,且060AOC ∠=,设OC OA OB λμ=+(,R λμ∈),则λμ= .16.已知数列{}n a 的前n 项和n S 满足21n n S a =-,则1210181818a a a -+-+-= .17. O 是ABC ∆所在平面上的一点,内角,,A B C 所对的边分别是3、4、5,且3450OA OB OC ++=,若点P 在ABC ∆的边上,则OA OP ∙的取值范围为 .三、解答题 (本大题共5小题,共74分)18. 已知向量,,a b c 是同一平面内的三个向量,其中(1,1)a =-. (1)若32c =,且//c a ,求向量c 的坐标; (2)若1b =,且(2)a a b ⊥-,求a 与b 的夹角θ.19. 在ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知cos (2)cos 0c B b a C ∙+-=. (1)求角C 的大小;(2)若2c =,a b ab +=,求ABC ∆的面积.20. 等比数列{}n a 的各项均为正数,且12231a a +=,23269a a a =,数列{}n b 满足31323log log log n n b a a a =+++.(1)求数列{}n a ,{}n b 的通项公式; (2)求设1n n nc a b =+(*n N ∈),求数列{}n c 的前n 项和n S . 21. 在锐角ABC ∆中,角,,A B C 所对的边分别是,,a b c ,且sin cos 20A a C b c -+-=.(1)求角A 的大小; (2)求cos cos B C +的范围. 22.已知数列{}n a 满足11a =,2114n n a a p +=+. (1)若数列{}n a 就常数列,求p 的值; (2)当1p >时,求证:1n n a a +<;(3)求最大的正数p ,使得2n a <对一切整数n 恒成立,并证明你的结论.2017-2018学年第二学期其中考试高一数学试题卷试卷答案一、选择题1-5:DBDAB 6-10:BACDA 11、12:二、填空题11. 5, 12. 1 ,13. 2 , 193 14. -1 , 15.1316. 961 17. [5,10]- 三、解答题18.解:(1)设(,)c x y =,由=32c ,且//c a 可得2218y x x y +=⎧⎨+=⎩ 所以33x y =-⎧⎨=⎩或33x y =⎧⎨=-⎩故(3,3)c =-,或(3,3)c =-(2)因为=1b ,且()2a a b ⊥-,所以()2=0a a b ⋅- 即220a a b -⋅=,所以220a b -⋅=,=1a b ⋅ 故2cos a b a bθ⋅==⋅,4πθ=19.(1)∵()cos 2cos 0c B b a C ⋅+-=,cos cos 2cos 0c B b C a C +-=,2cos 0a a C -=,∴1cos 2C =,=3C π(2)∵2c =,所以2222cos c a b ab C =+-,()()22423a b ab ab a b ab =+--=+-∴4ab =,1sin 2S ab C ==20.解:(1)因为等比数列{}n a 中23269a a a =,故22349a a =,0n a >,故1=3q 又因为122+31a a =,所以11=3a ,1=3nn a ⎛⎫⎪⎝⎭()313231log log log 122n n n n b a a a n +=+++=----=-(2)因为数列1+n n n c a b =,令数列{}n a 前n 项和n T ,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n Q 则1113311==112313nn n T ⎛⎫- ⎪⎛⎫⎝⎭- ⎪⎝⎭-()1211=2n n+11n b n n ⎛⎫=- ⎪+⎝⎭111111=212122311n Q n n n ⎛⎫⎛⎫-+-+-=- ⎪ ⎪++⎝⎭⎝⎭1113211=1212312123n nn S n n⎛⎫⎛⎫⎛⎫---=-+- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 21.解:(1cos 20A a C b c -+-=, sin sin cos sin2sin 0C A A C B C -+-= 因为()sin =sin sin cos cos sin B A CA C A C +=+, sin cos sin 2sin 0C A A C C +-=sin 0C ≠cos 2A A +=sin()16A π+=,因为ABC ∆是锐角三角形,所以,62A ππ+=,3A π=(2)因为3A π=,所以23B C π+=,2cos cos cos cos =sin 36B C C C C ππ⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭ 因为ABC ∆是锐角三角形,所以62C ππ<<,cos cos B C +的范围⎫⎪⎪⎝⎭22.解:(1)若数列{}n a 是常数列,则2111=+144a a p p =+=,34p =;显然,当34p =时,有=1n a (2)由条件得2211113=p 044a a a p a -=+-->得21a a >,又因为2221111,44n n n n a a p a a p +++=+=+,两式相减得()()()222221111111114444n n n n n n n n n n a a a a a a a a a a ++++++-=-=-=-+ 显然有0n a >,所以21n n a a ++-与1n n a a +-同号,而210a a ->,所以10n n a a +->; 从而有1n n a a +<. (3)因为()2211121144k k k k k a a a a p a p p +-=-+=-+-≥-, 所以()()()()1211111n n n a a a a a a n p -=+-+->+--,这说明,当1p >时,n a 越来越大,不满足2n a <,所以要使得2n a <对一切整数n 恒成立,只可能1p ≤,下面证明当1p =时,2n a <恒成立;用数学归纳法证明: 当1n =时,11a =显然成立;假设当n k =时成立,即2k a <,则当1n k =+时,22111121244k k a a +=+<⨯+=成立,由上可知对一切正整数n 恒成立,因此,正数p 的最大值是1。
2017—2018学年度第二学期教学质量检查 高一数学参考答案及评分标准二、填空题(每小题5分,满分20分)13.52 14.7; 15.0.95; 16.5三、解答题 17.(本小题满分10分)解:(1) 与2+a b 垂直,得2+0a a b ⋅=() 即22+=0a a b ……………………2分即10120k -+= ……………………3分解得92k =-. ……………………4分 (2)依题意,10102521||||cos =⨯+-==b a b a θ, ……………………6分因为[0,]θπ∈ s i n 10θ∴==……………………7分 sin tan 3cos θθθ∴== ……………………8分 54110121cos 22cos 2-=-⨯=-=∴θθ ……………………10分18.(本小题满分l2分)解: (1)由题意:第2组的人数:7050.07n =⨯⨯,得到:=200n , 故该组织有200人.……………………3分(2)第3组的人数为0.3200=60⨯, 第4组的人数为0.2200=40⨯,第5组的人数为0.1200=20⨯. ∵第3,4,5组共有120名志愿者,∴利用分层抽样的方法在120名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:606=3120⨯;第4组:406=2120⨯;第5组:206=1120⨯. ……………………5分 记第3组的3名志愿者为1A ,2A ,3A ,第4组的2名志愿者为1B ,2B , 第5组的1名志愿者为C .则从6名志愿者中抽取2名志愿者有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C ,,()12B B ,,()1B C ,,()2B C ,, 共有15种.……………………8分其中第3组的3名志愿者为1A ,2A ,3A ,至少有一名志愿者被抽中的有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C , 共有12种.……………………10分则第3组的为至少有一名志愿者被抽中的概率为541512==P . ……………………12分 [用间接法求解亦可以给满分] 19. (本小题满分l2分) 解:(1)66880838490+++++=q y ,又80y =,75=∴q . ……………………3分(2)4567891362x +++++==, ……………………4分2133050680241327162b ∧-⨯⨯∴==-⎛⎫- ⎪⎝⎭……………………6分 ()138041062a ∧∴=--⨯= ……………………7分 4106y x ∧∴=-+ ……………………8分(3)4106y x ∧=-+1111410690,909001y x y y ∧∧∴=-+=-=-=<,所以()()11,4,90x y =是“理想数据”;2222410686,=868421y x y y ∧∧=-+=--=>,所以()()22,5,84x y =不是“理想数据”;3333410682,838211y x y y ∧∧=-+=-=-==,所以()()33,6,83x y =是“理想数据”.所以所求的“理想数据”为)90,4( ,)83,6(. ……………………12分20. (本小题满分l2分)解: (1)()2ππ2sin 1cos 242f x x x x x ⎛⎫⎛⎫=+-=-+⎪ ⎪⎝⎭⎝⎭π1sin22sin 213x x x ⎛⎫=+=-+ ⎪⎝⎭, ……………………4分∴函数()f x 最小正周期为22T ππ== ……………………5分 (2)ππ,42x ⎡⎤∈⎢⎥⎣⎦∴ππ2π2,363x ⎡⎤-∈⎢⎥⎣⎦, ……………………7分∴π1sin 2[,1]32x ⎛⎫-∈ ⎪⎝⎭ ∴π2sin 2[1,2]3x ⎛⎫-∈ ⎪⎝⎭ ……………………10分 ∴()[2,3]f x ∈……………………11分 ∴函数()f x 的值域是[2,3]……………………12分21. (本小题满分l2分)(1)解:设点(),Q x y 、()00,P x y .点P 在圆C 上,∴2200(3)(5)4x y -+-=. ① ……………………1分又PA 中点为点Q∴002121x x y y =+⎧⎨=+⎩ ………………… 3分 可得021x x =-,021y y =-代入①得22(2)(3)1x y -+-=∴点Q 的轨迹方程为22(2)(3)1x y -+-= …………………… 4分 (2)假设存在直线l ,使得6=∙OM ,设()11,M x y ,()22,N x y ,由222(2)(3)1y kx x y =+⎧⎨-+-=⎩ 得22(1)(24)40k x k x +-++= …………………… 6分因为直线与Q 的轨迹交于两点所以22=(24)16(1)0k k ∆+-+> 得403k <<② …………………… 7分 且121222244,11k x x x x k k++==++ …………………… 8分又212121212(1)2()4OM ON x x y y k x x k x x +=+∙++=+222424(1)24=1011k k k k k +=+⨯+⨯+++ …………………… 9分∴2410k k +-=解得2k =-± …………………… 10分因为2k =--②, …………………… 11分 所以存在直线l:(22y x =-++,使得=10OM ON ∙ ……………………12分22. (本小题满分l2分)解:(1)当1=a 时,1cos sin cos sin )(-++-=x x x x x f ,令x x t cos sin +=,则]2,2[-∈t ,21cos sin 2-=t x x ,22)1(21121)(--=-+--=t t t t g , 当1=t 时,0)(max =t g ,当2-=t 时,223)(min --=t g , 所以)(x f 的值域为]0,223[--……………………4分 (2)1)cos (sin cos sin )(-++-=x x a x x x f ,令sin cos t x x =+,则当3[0,]4x π∈时,t ∈,21sin cos 2t x x -=, 2221111()1()2222t h t at t a a -=-+-=--++, …………………… 5分 )(x f 在3[0,]4π内有且只有一个零点等价于()h t 在[0,1){2}内有且只有一个零点,)2,1[无零点.因为1≥a , ……………………6分 ∴()h t 在[0,1)内为增函数,①若()h t 在[0,1)内有且只有一个零点,)2,1[无零点,故只需10(1)01(0)0020302a h h h ⎧⎪->⎧>⎪⎪-⎪≤⇒≤⎨⎨⎪⎪>⎩->得423>a ;……………………10分②若2为()h t 的零点,)2,1[内无零点,则0232=-a ,得423=a , 经检验,423=a 不符合题意. 综上,423>a . ……………………12分。
2017-2018学年广东省东莞市高一下学期期末考试数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.sin135°的值为()
A .﹣
B .
C .﹣
D .
2.已知向量=(x,1),=(4,x),若•=5,则x的值为()A.1B.2C.±1D.5
3.若圆x2+y2+2x﹣4y=0关于直线2x﹣y+a=0对称,则a的值为()A.﹣3B.﹣1C.0D.4
4.为了调查某班级的作业完成情况,将该班级的52名同学随机编号01~52,用系统抽样的方法抽取一个容量为4的样本,已知05、18、44号同学在样本中,那么样本中还有一位同学的编号应该是()
A.23B.27C.31D.33
5.已知α是第四象限角,且tanα=﹣2,则sin2α=()
A .﹣
B .
C .﹣
D .
6.要得到曲线y=3sin(2x ﹣),只需把函数y=3sin2x的图象()
A .向左平移个单位
B .向右平移个单位
C .向左平移个单位
D .向右平移个单位
7.运行如图所示的程序框图,则输出的结果S为()
第1 页共23 页。
东莞市重点名校2017-2018学年高一下学期期末联考数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。
在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( )A .15B .1115C .35D .13【答案】B【解析】【分析】找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可.【详解】不超过15的素数为2,3,5,7,11,13,共6个,任取2个分别为2,3(),2,5(),2,7(),2,11(),2,13(),3,5(),3,7(),3,11(),3,13(),5,7(),5,11(),5,13(),7,11(),7,13(),11,13(),共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知1115P=. 【点睛】本题主要考查了古典概型,基本事件,属于中档题.2.在ABC ∆中,角,B C 所对的边分边为,b c ,已知40,20,60b c C ===︒,则此三角形的解的情况是( ) A .有一解B .有两解C .无解D .有解但解的个数不确定 【答案】C【解析】由三角形正弦定理sin sin b c B C =可知4020sin sin sin 60B B B =∴=无解,所以三角形无解,选C. 3.若样本数据1x ,2x ,…,10x 的方差为2,则数据121x -,221x -,…,1021x -的方差为( ) A .4B .8C .16D .32【答案】B【解析】【分析】根据Y aX b =+,则2()()D Y a D X =即可求解.【详解】因为样本数据1x ,2x ,…,10x 的方差为2,21(1,2,10)i i y x i =-=所以1y ,2y ,…,10y 的方差为()(21)4()8D y D x D x =-==,故选B.【点睛】本题主要考查了方差的概念及求法,属于容易题.4.如果角θ的终边经过点,221⎛⎫- ⎪ ⎪⎝⎭,那么tan θ的值是( )A .12 B. CD.3- 【答案】D【解析】【分析】根据任意角的三角函数定义直接求解.【详解】因为角θ的终边经过点,221⎛⎫- ⎪ ⎪⎝⎭,所以1tan 32θ==-, 故选:D.【点睛】本题考查任意角的三角函数求值,属于基础题.5.设等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件:99199100100111001a a a a a -⋅-<->,>,;给出下列论:①01q <<;②9910110a a ⋅->;③100T 值是T 中最大值;④使1n T >成立的最大自然数n 等于198.其中正确的结论是( )A .①③B .①④C .②③D .②④【答案】B【解析】【分析】利用等比数列的性质及等比数列的通项公式判断①正确;利用等比数列的性质及不等式的性质判断②错误;利用等比数列的性质判断③错误;利用等比数列的性质判断④正确,,从而得出结论.【详解】解:由9910010,a a -⋅>可得9910010,a a ⋅>>又110a >>,即n a >0,由99100101a a -<-,即99100(1)(1)0a a --<,结合11a >,所以9910a ->,10010a -<, 即991a >,10001a <<,即1009901a q a <=<,即①正确; 又991012100a a a ⋅=,所以9910110a a ⋅<<,即9910110a a ⋅-<,即②错误;因为1299100...1...0n a a a a a >>>>>>>>,即99T 值是T 中最大值,即③错误;由991001a a ⋅>,即219819899100()1a T a =⋅>,即1981T >,又219919910010a T =<<,即19901T <<,即④正确,综上可得正确的结论是①④,故选:B.【点睛】本题考查了等比数列的性质及不等式的性质,重点考查了运算能力,属中档题.6.高一数学兴趣小组共有5人,编号为1,2,3,4,5.若从中任选3人参加数学竞赛,则选出的参赛选手的编号相连的概率为( )A .310B .58C .710D .25【答案】A【解析】【分析】先考虑从5个人中选取3个人参加数学竞赛的基本事件总数,再分析选出的参赛选手的编号相连的事件数,根据古典概型的概率计算得到结果.【详解】因为从5个人中选取3个人参加数学竞赛的基本事件有:()()()()()()()()()()1,2,3,1,2,4,1,2,5,1,3,4,1,3,5,1,4,5,2,3,4,2,3,5,2,4,5,3,4,5,共10种, 又因为选出的参赛选手的编号相连的事件有:()()()1,2,3,2,3,4,3,4,5,共3种, 所以目标事件的概率为310P =. 故选:A.【点睛】本题考查古典概型的简单应用,难度较易.求解古典概型问题的常规思路:先计算出基本事件的总数,然后计算出目标事件的个数,目标事件的个数比上基本事件的总数即可计算出对应的概率.7.sin50sin 20sin 40cos20︒︒+︒︒=( )A B . C .12- D .12【答案】A【解析】【分析】将sin50根据诱导公式化为cos 40后,利用两角和的正弦公式可得.【详解】sin50sin20sin40cos20︒︒+︒︒cos40sin 20sin 40cos20=︒︒+︒︒sin 602=︒=. 故选:A【点睛】本题考查了诱导公式,考查了两角和的正弦公式,属于基础题.8.两个正实数a b ,满足31a b +=,则满足213m m a b+≥-,恒成立的m 取值范围( ) A .[]43-,B .[]34-,C .[]26-,D .[]62-,【答案】B【解析】【分析】 由基本不等式和“1”的代换,可得13a b +的最小值,再由不等式恒成立思想可得2m m -小于等于13a b +的最小值,解不等式即得m 的范围。
机密★启用前广东省惠州市2017—2018学年第二学期期末考试高一数学试题和参考答案全卷满分150分,时间120分钟;本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生注意:1. 答题前,考生务必将自己的姓名、县区、学校、班级、试室、座位号填写在答题卡上. 2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.第Ⅰ卷一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}{11M x x =-<<,{}22=<N x x ,则( )(A)MN=N (B)N M ⊆ (C){}0MN = (D)MN N =2.若,0<<b a 下列不等式成立的是( )(A) 22b a < (B) ab a <2(C)1<a b (D) ba 11< 3.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//,////m n m n αα⇒ ②//,//,m n m n αβαβ⊥⇒⊥ ③//,m n m n αα⊥⇒⊥ ④,//m m αβαβ⊥⇒⊥ 其中正确命题的序号是( )(A) ①③ (B) ②④ (C) ①④ (D) ②③ 4.一个几何体的三视图如图所示, 则该几何体的体积是( ) (A) 12(B) 2(C) 4 (D) 65.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,15,10,60===︒a b A ,则cos B 等于 ( )(A) 3-(B) 3(C) (D)6.正方体1111ABCD A B C D -中,异面直线1B C 与1DC 所成角的大小为( )(A) 30︒ (B) 45︒ (C) 60︒ (D)90︒7.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A)172 (B) 192(C) 10 (D) 12 8.直线10--+=kx y k 与圆422=+y x 的位置关系是( )(A) 相交 (B) 相切 (C) 相离 (D) 不确定 9.已知点(sin ,cos )θθ到直线:cos sin 10x y ++=θθ的距离为d , 则d 的取值范围是 ( )(A )[1,1]- (B )[0,2] (C )(2,2]- (D )1[0,]210.已知0>a ,0>b ,2=+b a ,则ba y 41+=的最小值是 ( ) (A) 29 (B) 5 (C) 27(D) 411.已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=, 则球O 的表面积为 ( ) (A) 169π (B) 163π (C) 649π (D) 643π 12.已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M 、N 分别是圆1C 、2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( ) (A) 425- (B) 117- (C) 226- (D) 17第Ⅱ卷注意事项:第II 卷须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.二.填空题:本大题共4小题,每小题5分。
2017—2018学年度第二学期期中高 一 数 学 试 题(答卷时间:120分钟.试卷分值:150分、共4页 )选择题:(每题5分,满分60分)1..已知角θ的终边过点(4,-3),则cos(π-θ)=( ) A. 45 B .-45 C. 35 D .-352.如果 ,42ππ<θ<那么下列各式中正确的是( )A. co s tan sin θ<θ<θB. sin co s tan θ<θ<θC. tan sin co s θ<θ<θD. co s sin tan θ<θ<θ3. 600sin 的值为( )A . 21B . 21-C . 23D . 23-4.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( ) A. 22 B. 12 C .0 D .-15.已知523cos sin =+x x ,则sin 2x =( )A .1825B .725C .725- D .1625-6.要得到函数c o s 23y x π=+()的图像,只需将函数c o s 2y x =的图像() A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动6π个单位长度D .向右平行移动6π个单位长度7.下列向量的运算中,正确的是 ( )A .AB BC A C -= B .A B B C C A +=C .A B A C C B -= D .A B A D D C B C --=8.下列函数中,周期为π,且在[π4,π2]上为减函数的是 ( ) A .y =sin(2x +π2) B .y =cos(2x +π2) C .y =sin(x +π2) D .y =cos(x +π2)9.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( ) A .6556 B .-6556 C .5665 D .-566510、函数f(x)=2sin(ωx +φ) 0,22ππωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值A .2,-3π 2,-6π C .4,-6π D .4,3π11.平面向量a 与b 的夹角为60°,|a|=2,b =13,22⎛⎫ ⎪ ⎪⎝⎭,则|a +2b|=( ) A.3 B .23 C .4 D .1212.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,且AD ·AB =AD ·AC ,则AD ·AB 的值等于 ( )A .4B .0C .-4D .8二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)13.在平行四边形A B C D 中,若B C B A B CA B +=+,则四边形A B C D 是________.14.设扇形的周长为8cm ,面积为4cm2,则扇形的圆心角的弧度数的绝对值是 .15.cos 43°cos 77°+sin 43°cos 167°的值是 .16、.给出下列命题①存在实数α,使sinαcosα=1;②存在实数α,使sinα+cosα=23;③y=sin(x 225-π)是偶函数;④x=8π是函数y=sin(2x+45π)的一条对称轴方程;其中正确命题的序号是_________.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤)17(10分)化简:s in +c o s 22c o s (+)ππααπα⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭+()s in c o s 2s in (+)ππααπα⎛⎫-+ ⎪⎝⎭.18.(12分)已知锐角αβ、满足5310s in ,c o s 510αβ==,求αβ+的值19.(本小题满分12分)已知向量3(sin ,)2ax =,(c o s ,1)bx =-.当a ∥b 时,求22co s sin 2x x -的值;20.(本小题满分12分)已知向量a = e1-e2,b= 4 e1+3 e2,其中e1=(1,0),e2=(0,1).(1)试计算a·b 及|a + b|的值;(2)求向量a 与b 的夹角的大小.21、(12分)已知函数f(x)=cos22x -sin 2x cos 2x -12.(1)求函数f(x)的最小正周期和值域 (2)求函数单调递减区间(3)若f(α)=3210,求sin 2α的值.22.(本小题满分12分)已知(c o s ,s in )a αα=,(c o s ,s in )b ββ=,其中0αβπ<<<.(1)求证:a b + 与a b -互相垂直;[(2)若k a →+→b 与a k →-→b 的长度相等,求βα-的值(k 为非零的常数).。
2017-2018学年广东省东莞市高一(下)期末数学试卷一、选择题(本大题共12小题,共60.0分)1. 的值为A. B. C. D.【答案】B【解析】解:.故选:B.利用诱导公式和特殊角的三角函数值即可得出.本题考查了诱导公式和特殊角的三角函数值,属于基础题.2. 已知向量,,若,则x的值为A. 1B. 2C.D. 5【答案】A【解析】解:向量,,若,可得,解得.故选:A.直接利用向量的数量积的运算法则化简求解即可.本题考查向量的数量积的也是,是基本知识的考查.3. 若圆关于直线对称,则a的值为A. B. C. 0 D. 4【答案】D【解析】解:圆关于直线对称,圆心C在直线上,求得C的坐标,可得,解之得,故选:D.根据题意,圆的圆心C在直线上,求出C的坐标并代入直线,再解关于a的方程,即可得到实数a的值.本题给圆C关于已知直线对称,求参数a的值着重考查了圆的标准方程、圆的性质和直线与圆的位置关系等知识,属于基础题.4. 为了调查某班级的作业完成情况,将该班级的52名同学随机编号~,用系统抽样的方法抽取一个容量为4的样本,已知05、18、44号同学在样本中,那么样本中还有一位同学的编号应该是A. 23B. 27C. 31D. 33【答案】C【解析】解:用系统抽样的方法抽取一个容量为4的样本,则样本间隔为,则样本中还有一位同学的编号应该是,故选:C.根据系统抽样的定义计算出样本间隔进行求解即可.本题主要考查系统抽样的应用,求出样本间隔是解决本题的关键比较基础.5. 已知是第四象限角,且,则A. B. C. D. 【答案】C【解析】解:是第四象限角,且,则,故选:C.利用同角三角函数的基本关系,二倍角公式,求得的值.本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.6. 要得到曲线,只需把函数的图象A. 向左平移个单位B. 向右平移个单位C. 向左平移个单位D. 向右平移个单位【答案】D【解析】解:把函数的图象向右平移个单位,可得曲线的图象,故选:D.由题意利用函数的图象变换规律,得出结论.本题主要考查函数的图象变换规律,属于基础题.7. 运行如图所示的程序框图,则输出的结果S为A. B. 0 C. D.【答案】A【解析】解:模拟运行如图所示的程序框图知,该程序运行后计算并输出.故选:A.模拟运行程序框图,即可得出程序运行后输出的算式,再根据余弦函数的周期性求得S的值.本题考查了利用程序运算求三角函数和的应用问题,是基础题.8. 从集合3,4,中随机抽取一个数a,从集合6,中随机抽取一个数b,则向量与向量平行的概率为A. B. C. D.【答案】B【解析】解:从集合3,4,中随机抽取一个数a,从集合6,中随机抽取一个数b,基本事件总数,当向量与向量平行时,,解得,满足向量与向量平行的基本事件有:,,,共3个,则向量与向量平行的概率为.故选:B.先求出基本事件总数,当向量与向量平行时,,利用列举法求出满足向量与向量平行的基本事件有3个,由此能求出向量与向量平行的概率.本题考查概率的求法,考查列举法、向量平行的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9. 过原点的直线l与圆相交所得的弦长为,则直线l的斜率为A. 2B. 1C.D.【答案】C【解析】解:如图,当直线l的斜率不存在时,直线方程为,此时弦长为;当直线l的斜率存在时,设直线方程为,则圆心到直线的距离,由,解得.直线l的斜率为.故选:C.由已知画出图形,可知斜率不存在是满足题意,当直线l的斜率存在时,设直线方程为,利用点到直线的距离公式求出圆心到直线的距离,再由垂径定理列式求直线的斜率.本题考查直线与圆位置关系的应用,考查数学转化思想方法,是基础题.10. 如图圆C内切于扇形AOB,,若在扇形AOB内任取一点,则该点在圆C内的概率为A.B.C.D.【答案】C【解析】解:由题意知本题是一个等可能事件的概率,设圆C的半径为r,试验发生包含的事件对应的是扇形AOB,满足条件的事件是圆,其面积为的面积,连接OC,延长交扇形于P.由于,,,,则扇形;的面积与扇形OAB的面积比是.概率,故选:C.本题是一个等可能事件的概率,试验发生包含的事件对应的包含的事件对应的是扇形AOB,满足条件的事件是圆,根据题意,构造直角三角形求得扇形的半径与圆的半径的关系,进而根据面积的求法求得扇形OAB的面积与的面积比.本题是一个等可能事件的概率,对于这样的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果连接圆心和切点是常用的辅助线做法,本题的关键是求得扇形半径与圆半径之间的关系.11. 已知,函数在上单调递减,则的取值范围是A. B. C. D.【答案】D【解析】解:函数在上单调递减,,.解得:.当时,可得.故选:D.利用正弦函数的单调性的性质求解即可.本题考查了正弦函数的图象及性质的应用属于基础题.12. 设,,,,且,则向量在上的投影的取值范围A. B. C. D.【答案】B【解析】解:由于:,则:,由于:,,则:.当时,,由于,且,则:P、A、B三点共线.故:当P与A重合时,投影为2.故:向量在上的投影的取值范围为故选:B.首先判定,进一步利用向量的共线的充要条件求出向量的投影的范围.本题考查的知识要点:三点共线的应用,向量数量积的应用,主要考查学生的运算能力和转化能力,属于基础题型.二、填空题(本大题共4小题,共20.0分)13. 在空间直角坐标系中,点3,到y轴的距离为______.【答案】【解析】解:在空间直角坐标系中,点y,到y轴的距离.点3,到y轴的距离.故答案为:.在空间直角坐标系中点y,到y轴的距离.本题考查空间中点到y轴的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.14. 已知,为单位向量,且,所成角为,则为______.【答案】【解析】解:,为单位向量,且,所成角为,,,.故答案为:.根据平面向量的数量积求模长即可.本题考查了平面向量的数量积求模长的应用问题,是基础题.15. 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示根据条形图可得这50名学生这一天平均的课外阅读时间为______小时.【答案】【解析】解:由题意,,故答案为:根据样本的条形图可知,将所有人的学习时间进行求和,再除以总人数即可.本小题主要考查样本的条形图的知识和分析问题以及解决问题的能力,属于基础题.16. 已知,且,则当y取得最大值时______.【答案】【解析】解:函数,其中.当y取得最大值时,可得,则,那么,即,,.故答案为:.利用辅助角公式化简,结合三角函数的性质可得最大值,可得的值,从而可得.本题考查三角函数的化简,考查转化思想以及计算能力属于中档题.三、解答题(本大题共6小题,共70.0分)17. 已知平面向量,.当k为何值时,向量与垂直;当时,设向量与的夹角为,求及的值.【答案】解:平面向量,.,向量与垂直,,解得.当时,,向量与的夹角为,,,,.【解析】先求出,再由向量与垂直,能求出k.当时,,,由此能求出结果.本题考查实数值的求法,考查向量的数量积公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18. 近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织现把该组织的成员按年龄分成5组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,已知第2组有70人.求该组织的人数.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,然后在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.【答案】解:由题意:第2组的人数:,得到:,故该组织有200人分第3组的人数为,第4组的人数为,第5组的人数为.第3,4,5组共有60名志愿者,利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:;第4组:;第5组:.应从第3,4,5组中分别抽取3人,2人,1人分记第3组的3名志愿者为,,,第4组的2名志愿者为,第5组的1名志愿者为.则从6名志愿者中抽取2名志愿者有:,,,,,,,,,,,,,,,共有15种.其中第3组的3名志愿者,,,至少有一名志愿者被抽中的有:,,,,,,,,,,,,共有12种,则第3组至少有一名志愿者被抽中的概率为分【解析】根据频数频率样本容量,频率对应矩形面积,构造关于n的方程,解方程可得该组织的人数;先计算出第3,4,5组中每组的人数,选求出这6名志愿者中随机抽取2名志愿者的基本事件总数和第3组至少有一名志愿者被抽中的基本事件个数,代入古典概型概率计算公式,可得答案.本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.19. 某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据已知求表格中q的值;已知变量x,y具有线性相关性,试利用最小二乘法原理,求产品销量y关于试销单价x的线性回归方程参考数据;用中的回归方程得到的与对应的产品销量的估计值记为2,,当时,则称为一个“理想数据”试确定销售单价分别为4,5,6时有哪些是“理想数据”.【答案】解:根据题意,计算,解得;计算,,,关于x的回归方程是;回归方程为,,,是“理想数据”,,,不是“理想数据”,,,是“理想数据”.“理想数据”为,.【解析】根据题意计算,列方程求出q的值;计算平均数和回归系数,写出y关于x的回归方程;根据回归方程计算预测值,与实际值比较,判断是否为“理想数据”.本题考查了线性回归方程的求法与应用问题,是中档题.20. 函数.请把函数的表达式化成的形式,并求的最小正周期;求函数在时的值域.【答案】解:函数的最小正周期.由可知,则故得函数在时的值域为.【解析】利用二倍角和辅助角公式化简即可,根据周期公式求解最小正周期;求解内层函数范围,结合三角函数的性质可得在时的值域.本题考查的知识点是二倍角和辅助角公式化简能力以及三角函数的性质,求解执着于问题,难度不大,属于基础题.21. 在平面内,已知点,圆C:,点P是圆C上的一个动点,记线段PA的中点为Q.求点Q的轨迹方程;若直线l:与Q的轨迹交于M,N两点,是否存在直线l,使得为坐标原点,若存在,求出k的值;若不存在,请说明理由.【答案】解:设,点P的坐标为,点,且Q是线段PA的中点,,,在圆C:上运动,,即;点Q的轨迹方程为;设,,将代入方程圆的方程,即,.由,得,,,,,即,解得舍,或.存在直线l,使得,此时.【解析】设出点Q,根据Q是PA中点的坐标,利用中点坐标公式求出P的坐标,根据P在圆上,得到Q轨迹方程;设,,将代入圆的方程,可得,由,得k的取值范围,利用根与系数的关系可得的k值.本题考查了直线与圆相交关系、一元二次方程的根与系数的关系、向量数量积运算性质、中垂线的应用,考查了推理能力与计算能力,属于中档题.22. 已知,.求当时,的值域;若函数在内有且只有一个零点,求a的取值范围.【答案】解:由题意:设,,则,那么,,当时,转化为,当时,取得最大值为0;当时,取得最小值为故得的值域为;由题意:设,在内,则则,那么转化为,,函数在内有且只有一个零点,即在上只有一个零点.令,即当时,可得,显然a无解;当时,,可得.验证:,可得,,即在上有两个零点.当时,要使在上只有一个零点.则即,可得:.故得a的取值范围是【解析】利用转化思想,设,,则,利用二次函数的性质可得值域.根据函数在内有且只有一个零点,即可得t范围,转化为二次函数的性质求a的取值范围.本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力.。
广东实验中学2018—2018学年(下)高一级模块考试数 学本试卷共4页.满分为150分,考试用时120分钟.考试不允许使用计算器. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷上,并用2B 铅笔填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,若集合}2,1,0{π=M ,},cos {M x x y y N∈==,则M 与N 的关系用韦恩(Venn )图可以表示为 ( )2.若干个人站成一排,其中为互斥事件的是( )A .“甲站排头”与“乙站排头”B .“甲站排头”与“乙不站排尾”C .“甲站排头”与“乙站排尾”D .“甲不站排头”与“乙不站排尾”3.在长为3m 的线段AB 上任取一点P , 则点P 与线段两端点A 、B 的距离都大于1m 的概率是( )A .14 B .13 C .12 D .234.已知数列}{n a 是等差数列,且1713a a a π++=-,则7sin a =( )A .12-B .12C .23-D .325.如果关于x 的方程021=-+a x 有实数根,则a 的取值范围是( )A .[)+∞,2B .(]2,1-C .(]1,2-D .),0(+∞CB A6.若满足21=a ,)2(11≥+=-n n na a n n ,则4a =( ) A .34 B .1C .54 D .32 7.已知函数⎪⎩⎪⎨⎧>≤=)1(log )1(3)(31x x x x f x ,则)1(+=x f y 的大致图象是( )8.已知函数()2cos(2)6f x x π=+,下面四个结论中正确的是 ( )A .函数()f x 的最小正周期为2πB .函数()f x 的图象关于直线6x π=对称C .函数()f x 的图象是由2cos2y x =的图象向左平移6π个单位得到 D .函数6f x π⎛⎫+ ⎪⎝⎭是奇函数9.某程序框图如图所示, 该程序运行后输出的k 的值是( )A .4B .5C .6D .710.在数列}{n a 中,11=a ,22=a ,)()1(1*2N n a a n n n ∈-+=-+,则=100S ( )A .150B .5050C .2600D .48251+11.如图已知圆的半径为10,其内接三角形ABC 的内角A 、B 分 别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角 形ABC 内的概率为( )开始 k = 0 S = 1000=iS > 0 ?k =k +1S = S -2k 是 输出k 结束否(第9题)A.316π+ B.34π+ CD12.已知函数()f x 是奇函数且是R 上的增函数,若x ,y 满足不等式22(2)(2)f x x f y y -≤--,则22x y +的最大值是( )AB. C .8 D .12 二、填空题:本大题共4小题,每小题5分,共20分.13.已知回归直线ˆˆˆybx a =+中ˆb 的估计值为1.23,样本点的中心为(4,5),则回归直线方程为____________.14.某服装加工厂某月生产A 、B 、C 三种产品共4000件,为了保证产品质量,进行抽样检验,根据分层抽样的结果,企业统计员制作了如下的统计表格: 产品类别AB C 产品数量(件) 2300 样本容量(件) 230由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C产品的样本容量多10,根据以上信息,可得C 的产品数量是 件。