佳木斯市2012年中考适应性考试数学试题及答案
- 格式:doc
- 大小:375.00 KB
- 文档页数:10
2012年初中毕业生适应性考试数学试卷注意事项:1、本试卷共三道大题25道题30小题,满分120分,考试时间120分钟.2、考生在答题前,先将学校、班级、考号和姓名等信息填写在试卷和答题卡指定的位置.一.选择题(每一道小题都给出代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项最符合题目要求.共10小题,每小题3分,本大题满分30分.)1.)21(--的相反数是:A.2 B.21 C.2- D.21-2.下列运算正确的是:A .()b a b a +=+--B .a a a =-2333C .01=+-a aD . 323211=⎪⎭⎫⎝⎛÷- 3.2012年3月5日,总理温家宝在第十一届全国人民代表大会第五次会议上作政府工作报告中指出:2011年我国国内生产总值47.2万亿元.这里的“47.2万亿”用科学计数法表示为: A .4.72×1012B .4.72×1013C .0.472×1012D .0.472×10134.若分式25x -有意义...,则x 的取值范围是: A . 5x> B .5x ≠- C .5x ≠ D .5x >-5.在平面直角坐标系中,以点(2,1)为圆心,1为半径的圆必:A .与X 轴相交B .与Y 轴相交C .与X 轴相切D .与Y 轴相切 6.如图所示的正方体,用一个平面截去它的一个角,则截面不可能...是: A .锐角三角形 B .等腰三角形C .等腰直角三角形D .等边三角形7.同时掷出两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的面的点数和为7的概率为: A.16B.19C.536D.7368.在平行四边形ABCD 中,点M为CD 的中点,AM 与BD 相交于点N,那么=∆ABCD D MNS S 平行四边形:A.112B.19C.18D.169.函数x y 2=与函数x y 2-=具有某种关系,因此已知函数xy 2=的图像,可以通过图形变换得到xy 2-=的图像,给出下列变换①平移②旋转③轴对称④相似(相似比不为1),则可行的是:A.①③B.②③C.①②③D. ①②③④10.如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,且HE ·HB=4-BD 、AF 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为45°;③;④ 若BE 平分∠DBC ,则正方形ABCD 的面积为4.其中正确的结论个数有: A. 1个 B. 2个 C. 3个 D. 4个二.填空题(将每小题的最后正确答案填在答题卡中对应的横线上.共6小题,每小题3分,满分18分)11.()()1312222π-⎛⎫---++- ⎪⎝⎭=▲▲▲▲. 12.当 – 1< x < 1时,(x – 1)2 + ||x + 1 的值是▲▲▲▲.13.在正方形ABCD 所在的平面内,到正方形三边所在直线距离相等的点有▲▲▲▲个. 14.如图,在ABC ∆中,AB 为⊙O 的直径,50,70ABC C ︒︒∠=∠=,则sin ODB ∠=▲▲▲▲.15.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,第14题图第6题图MH GF ED CBA第10题图则a 的取值范围是▲▲▲▲. 16.已知双曲线)0(>=x xky 经过矩形OABC BC 于点E ,且四边形OEBF 的面积为2,则三.解答题(应写出文字说明、证明过程或推演步骤.困难,那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分)已知A=31-x ,B=932-x ,成(A -B )÷C 或A -B ÷C 简,再求值,其中18.(本小题满分6分) “阳光体育”名同学(每人只能选其中一项)信息解答下列问题:(1)补全频数分布表和条形统计图;(2)根据以上调查,试估计该校1800(3)根据统计图和统计表,谈谈你的想法..................某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一3株时,平均单株盈利3元,以同样的栽培条件,若每盆增加1株,平0.5元,要使每盆的盈利达到10元,每盆应该植多少株?x 株,则每盆花苗有(x+3)株,平均单株盈利为)x 5.03(-元,由题意 10)x 5.0= 化简,整理得:0x 3x 2=+- 解这个方程,得:1x 1=,2x 2=,10元,每盆应该植入4株或5株.__________________________________________________________________ .7分)我们学习数学的过程中,必须要学会见到如图,在△(1)回顾我们所学的数学知识,请就.(2)某学生是个爱研究的人,他通过刻度AB AC 和BD DC具有某种数量关系,请写出并证21.(本小题满分7分)如图,AB 是半圆的直径.(1)用直尺和圆规作半圆弧AB 的四等分点(记为C ,D ,E )(保留作图痕迹,不写作法).(2)若半圆的直径是2cm ,分别求出点C ,D ,E 三点到直线AB 的距离.(3)直接写出tan22.5°的值(2取1.41,结果保留2个有效数字).第21题图第20题图第18题图第22题图22.(本小题满分8分)一段路基的横断面是直角梯形,如下左图所示,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如下右图所示的技术要求.试求出改造后坡面的坡度是多少?23.(本小题满分10分)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如右表:(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为y (元),求y 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来; (3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?24.(本小题满分10分)如图,B 为线段AD 上一点,△ABC 和△BDE 都是等边三角形,连接CE 并延长,交AD 的延长线于F ,△ABC 的外接圆⊙O 交CF 于点M .(1)求证:BE 是⊙O 的切线; (2)求证:CF CM AC ⋅=2;(3)若过点D 作DG//BE 交EF 于G ,过G 作GH//DE 交DF 于H ,则易知△DHG是等边三角形.设△ABC 、△BDE 、△DHG 的面积分别为1S 、2S 、3S ,试探究1S 、2S 、3S 之间的数量关系,并说明理由.25.(本小题满分12分)如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若不存在,请说明理由.第25题图。
初三第一次适应性测试数学试卷总分:150分.答卷时间:120分钟.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填写在题前的括号内. 【】1.2-的绝对值是A .12-B .21C .2-D .2 【 】 2.某外贸企业为参加2012年中国南通港口洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为A .10.5410⨯B .1.05⨯510C .1.05⨯610D .0.105610⨯【 】3.右图是由4个相同的小正方体组成的几何体,其俯视图为A .B .C .D .【 】4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为A .37B .35C .33.8D .32【 】5.关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <2【 】6.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是A .B .C .D .【 】7.下列命题中,假命题的是(第4题)A .经过两点有且只有一条直线B .平行四边形的对角线相等C .两腰相等的梯形叫做等腰梯形D .圆的切线垂直于经过切点的半径【 】8.下列函数的图像在每一个象限内,y 值随x 值的增大而增大的是A .1y x =-+B .21y x =-C .1y x=D .1y x=-【 】9.如图,已知AD ∥BC ,∠B =30º,DB 平分∠ADE ,则∠CED 的度数为A .30ºB .60ºC .90ºD .120º【 】10.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD=BE=1.沿直线DE 将△BDE 翻折,点B 落在点B ′处.则点B ′的坐标为A .(1,2)B .(2,1)C .(2,2)D .(3,1)二、填空题(本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在题后的横线上)11.在二元一次方程2x -y =3中,当x =2时,y =____________. 12有意义,则实数x 的取值范围是____________.13.某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为 .14.如图,已知菱形ABCD 的边长为5,对角线AC ,BD 相交于点O ,BD =6,则菱形ABCD 的面积为 .15.如图,将三角板的直角顶点放在⊙O 的圆心上,两条直角边分别交⊙O 于A 、B 两点,点P 在优弧AB 上,且与点A 、B 不重合,连结PA 、PB .则∠APB 的大小为 °.(第15题) (第16题) (第17题)(第10题)O BDCA(第14题)0 1 2 3 4----16.如图,在△ABC 中,∠B =30°,ED 垂直平分BC ,ED =3.则CE 的长为 .17.如图,一次函数b kx y +=(0k <)的图象经过点A .当3y <时,x 的取值范围是 . 18.活动课上,小华从点O 出发,每前进1米,就向右转体a °(0<a <180),照这样走下去,如果他恰好能回到O 点,且所走过的路程最短,则a 的值等于_ .三、解答题:本大题共10小题,共96分.请在题后空白区域内作答,解答时应写出文字说明、证明过程或演算步骤.(19题10分)19.(1)计算:01121)2sin 30()2--++︒-;(2)化简:3a b a ba b a b-++--.(20题9分,21题8分,22题8分)20.已知三个一元一次不等式:2x >4,2x ≥x -1,x -3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是⎩⎨⎧_______________①_______________②;(2)解:21.如图,A 、B 是⊙O 上的两点,∠AOB =120°,C 是AB 的中点,求证四边形OACB 是菱形.22.如图,平面直角坐标系中,直线1122y x =+与x 轴交于点A ,与双曲线x k y =在第一象限内交于点B ,BC ⊥x 轴于点C ,OC =2AO .求双曲线的解析式.(23题9分,24题8分)23. 2011年7月1日,中国共产党90华诞,某校组织了由八年级700名学生参加的建党90周年知识竞赛.李老师为了了解学生对党史知识的掌握情况,从中随机抽取了部分同学的成绩作为样本,把成绩按优秀、良好、及格、不及格4个级别进行统计,并绘制成了如图的条形统计图和扇形统计图(部分信息未给出) 请根据以上提供的信息,解答下列问题: (1)求被抽取的部分学生的人数;(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数; (3)请估计八年级的700名学生中达到良好和优秀的总人数.24.为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x 个,购买篮球和排球的总费用y 元. (1)求y 与x 之间的函数关系式;(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?(25题8分,26题10分)25.爸爸给双胞胎兄弟小明和小强带回一张篮球比赛门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.小明:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5 的两个小球,且都已各自搅匀,小强蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则小明得到门票;若积为奇数,则小强得到门票.小强:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,小明、小强各蒙上眼睛有.放回..地摸1次,小明摸到偶数就记2分,摸到奇数记0分;小强摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)小明设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小强设计的游戏方案对双方是否公平?不必说理.26.每年的农历三月初一为通州风筝节.这天,小刘同学正在江海明珠广场上放风筝,如图风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和广场边旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 为多少米?(结果可保留根号)(27题12分)27.四边形ABCD 是矩形,点P 是直线AD 与BC 外的任意一点,连接PA 、PB 、PC 、PD .请解答下列问题:(1)如图(1),当点P 在线段BC 的垂直平分线MN 上(对角线AC 与BD 的交点Q 除外)时,证明△PAC ≌△PDB ;(2)如图(2),当点P 在矩形ABCD 内部时,求证:PA 2+PC 2=PB 2+PD 2;(3)若矩形ABCD 在平面直角坐标系xoy 中,点B 的坐标为(1,1),点D 的坐标为(5,3),如图(3)所示,设△PBC 的面积为y ,△PAD 的面积为x ,求y 与x 之间的函数关系式.图(2)A图(1)MN QAB C DP(28题14分)28.如图1,抛物线y =nx 2-11nx +24n (n <0) 与x 轴交于B 、C 两点(点B 在点C 的左侧),抛物线上另有一点A 在第一象限内,且∠BAC =90°.(1)填空:点B 的坐标为(_ ),点C 的坐标为(_ ); (2)连接OA ,若△OAC 为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC 沿x 轴翻折后得△ODC ,点M 为①中所求的抛物线上点A 与点C 两点之间一动点,且点M 的横坐标为m ,过动点M 作垂直于x 轴的直线l 与CD 交于点N ,试探究:当m 为何值时,四边形AMCN 的面积取得最大值,并求出这个最大值.2012年南通市通州区模拟考试参考答案一、选择题(每小题3分,共30分)1. D 2.B 3.B 4.B 5.C 6.A 7.B 8.D 9.B 10.B 二、填空题(每小题3分,共24分) 11.112.3x ≥13.11214.24 15.45 16.6 17.x >2 18.120三、解答题(10小题,共96分) 19.(1)解:原式=2+1+1-2 ………………3分=2 ………………5分 (2)解:原式3a b a ba b -++=- ………………3分22a b a b-=- ………………4分2()2a b a b-==- ………………5分20.说明:求出解集,数轴没表示出给7分解法一:(1)不等式组:⎩⎨⎧2x >4①2x ≥x -1②………………1分(2)解:解不等式组①,得x >2, ………………3分 解不等式组②,得x ≥-1, ………………5分 ∴不等式组的解集为x >2, ………………7分………………9分解法二:(1)不等式组:⎩⎨⎧2x >4①x -3<0②………………1分(2)解:解不等式组①,得x >2, ………………3分 解不等式组②,得x <3, ………………5分 ∴不等式组的解集为2<x <3, ………………7分………………9分解法三:(1)不等式组:⎩⎨⎧2x ≥x -1①x -3<0②………………1分(2)解:解不等式组①,得x ≥-1, ………………3分 解不等式组②,得x <3, ………………5分 ∴不等式组的解集为-1≤x <3, ………………7分………………9分21.解:∵∠AOB =120°,C 是AB 的中点,∴∠AOC =∠BOC =60° ………………3分 ∵AO =BO =OC∴△AOC ,△BOC 都是等边三角形 ………………5分 ∴AO =BO =BC =AC ………………6分∴四边形OACB 是菱形 ………………8分22.解:∵直线1122y x =+与x 轴交于点A , ∴11022x +=.解得1x =-.∴AO =1. ………………2分 第20题0 1 4----第20题0 1 4----第20题0 1 3 4----∵OC =2AO ,∴OC =2. ………………3分 ∵BC ⊥x 轴于点C ,∴点B 的横坐标为2.∵点B 在直线1122y x =+上,∴1132222y =⨯+=.∴点B 的坐标为3(22,). ………………5分∵双曲线xk y =过点B 3(22,),∴322k =.解得3k =.∴双曲线的解析式为3y x=. ………………8分 23.解:(1)100(人); ………………2分(2)如图所示:扇形统计图中表示及格的扇形的圆心角度数是108° ………………6分(3)∵4020700420100+⨯=(人) ………………8分 ∴700名学生中达到良好和优秀的总人数约是420人. ………………9分24.解:(1)y =80x +60(20-x )=1200+20 x ………………3分 (2)x ≥3(20-x ) 解得x ≥15 ………………5分 要使总费用最少,x 必须取最小值15 ………………6分 y =1200+20×15=1500 ……………7分答:购买篮球15个,排球5个,才能使总费用最少 ……………7分 最少费用是1500元. ……………8分25.解:(1)小明的设计游戏方案不公平. ……………1分……………4分∴P (小明得到门票)= P (积为偶数)=46=23, P (小强得到门票)= P (积为奇数)=13, ……………5分∵23≠13,∴小明的设计方案不公平. ……………6分 (2)小强的设计方案不公平. ……………8分26.解:(1)在Rt △BPQ 中,PQ =10米,∠B =30°,则BQ =cot30°×PQ=, ……………2分又在Rt △APQ 中,∠PAB =45°, 则AQ =tan45°×PQ =10,即:AB =(+10)(米) ……………5分 (2)过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B =30°,AB=+10, ∴ AE =sin30°×AB =12(+10), ……………7分 ∵∠CAD =75°,∠B =30° ∴ ∠C =45°, ……………8分 在Rt △CAE 中,sin45°=AEAC, ∴AC()=()(米) ……………10分27.(1)证明:作BC 的中垂线MN ,在MN 上取点P ,连接PA 、PB 、PC 、PD , 如图(1)所示,∵MN 是BC 的中垂线,所以有PA =PD ,PC =PB , 又四边形ABCD 是矩形,∴AC =DB∴△PAC ≌△PDB (SSS ) ……………3分(2)证明:过点P 作KG //BC ,如图(2) ∵四边形ABCD 是矩形,∴AB ⊥BC ,DC ⊥BC ∴AB ⊥KG ,DC ⊥KG , ∴在Rt △PAK 中,PA 2=AK 2+PK 2 同理,PC 2=CG 2+PG 2 ;PB 2= BK 2+ PK 2,PD 2=+DG 2+PG 2 PA 2+PC 2= AK 2+PK 2+ CG 2+PG 2,,PB 2+ PD 2= BK 2+ PK 2 +DG 2+PG 2AB ⊥KG ,DC ⊥KG ,AD ⊥AB ,可证得四边形ADGK 是矩形,∴AK =DG ,同理CG =BK ,∴AK 2=DG 2,CG 2=BK 2∴PA 2+PC 2=PB 2+PD 2 ……………6分(3)∵点B 的坐标为(1,1),点D 的坐标为(5,3) ∴BC =4,AB =2 ∴ABCD S 矩形=4×2=8 作直线HI 垂直BC 于点I ,交AD 于点H ①当点P 在直线AD 与BC 之间时421=⋅=+∆∆HI BC S S PBCPAD 即x +y =4,因而y 与x 的函数关系式为y =4-x ……………8分图8图(3) 图(1)MNQABCDP图(2)②当点P 在直线AD 上方时,421=⋅=-∆∆HI BC S S PAD PBC 即y -x =4,因而y 与x 的函数关系式为y =4+x ……………10分 ③当点P 在直线BC 下方时, 421=⋅=-∆∆HI BC S S PBC PAD 即x - y =4,因而y 与x 的函数关系式为y =x -4 ……………12分28.解:(1)B (3,0),C (8,0) ………………4分(2)①作AE ⊥OC ,垂足为点E∵△OAC 是等腰三角形,∴OE =EC =12×8=4,∴BE =4-3=1 又∵∠BAC =90°,∴△ACE ∽△BAE ,∴AE BE =CE AE∴AE 2=BE ·CE =1×4,∴AE =2 ………………6分 ∴点A 的坐标为 (4,2) ………………7分把点A 的坐标 (4,2)代入抛物线y =nx 2-11nx +24n ,得n =-12∴抛物线的解析式为y =-12x 2+112x -12 ………………9分②∵点M 的横坐标为m ,且点M 在①中的抛物线上∴点M 的坐标为 (m ,-12m 2+112m -12),由①知,点D 的坐标为(4,-2),则C 、D 两点的坐标求直线CD 的解析式为y =12x -4∴点N 的坐标为 (m ,12m -4)∴MN =(-12m 2+112m -12)-(12m -4)=-12m 2+5m -8 …………11分∴S 四边形AMCN =S △AMN +S △CMN =12MN ·CE =12(-12m 2+5m -8)×4=-(m -5)2+9 ……………13分 ∴当m =5时,S 四边形AMCN =9 ……………14分。
OABC112题图2012年中考数学模拟试卷二一、选择题(本题有10小题,每小题3分,共30分)1. 3的倒数是( )A .13B .— 13C .3D .—32.如图所示的物体的主视图是( )3.下列计算正确的是( )A .2a +3b =5abB .x 2·x 3=x 6C .123=-a aD .()632a a=4.浙江在线杭州2012年1月8日讯:预计今年整个春运期间铁路杭州站将发送旅客342.78万人,与2011年春运同比增长4.7%。
用科学记数法表示342.78万正确的是( ) A .3.4278×107 B .3.4278×106 C .3.4278×105 D .3.4278×104 5.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( ) A.相交B.内切C.外切D.内含6.如图,直线l 1//l 2,则α为( )A .150°B .140°C .130°D .120° 7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( )A .79,85B .80,79C .85,80D .85,858.浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 9.抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1) 10.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图像交于点A 和点B.若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( )A .1B .2C .3D .4二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:ma+mb = . 12.如图,O 为直线AB 上一点,∠COB=30°,则∠1= . 13.如图,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠AOD =50°,AD ∥OC ,则∠BOC = 度.14.三张完全相同的卡片上分别写有函数x y 2=、xy 3=、2x y =,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y 随x 的增大而增大的概率是 .15.如图,已知梯形ABCD 中,AD ∥BC ,BD 是对角线.添加下列条件之一:①AB =DC ;②BD 平分∠ABC ;③∠ABC =∠C ;④∠A +∠C =180°,能推得梯形ABCD 是等腰梯形的是 (填编号).16.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .BA图1 图2 图3三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)计算:()0|tan 45|122012π+-+o(2)当2x =-时,求22111x x x x ++++的值.18.(本题6分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:3≈1.732)l 1l 2 50° 70° α 24y x = 12y x= ACD(第15题)19.(本题6分)已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;20.(本题6分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆¼ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.21.(本题8分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(本题10分)产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销类别生产1千克成品茶叶所需鲜茶叶(千克)销售1千克成品茶叶所获利润(元)炒青 4 40毛尖 5 120(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”千克,采鲜茶叶“毛尖”千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?23.(本题10分)定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.①若△DEF的面积为1000,当n为何值时,3<S n<4?(请用计算器进行探索,要求至少写出二次的尝试估算过程)②当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明)BC A图甲24.(本题12分)已知:在矩形A0BC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.E 是边AC 上的一个动点(不与A ,C 重合),过E 点的反比例函数(0)ky k x=>的图象与BC 边交于点F .(1)若△OAE 、△OBF 的面积分别为S 1、S 2且S 1+S 2=2,求k 的值;(2)若OB=4,OA=3,记OEF ECF S S S =-△△问当点E 运动到什么位置时,S 有最大值,其最大值为多少?(3)请探索:是否存在这样的点E ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点E 的坐标;若不存在,请说明理由.2012年中考数学模拟试卷二参考答案题次 12345678 9 10 答案A C DB B DCACA二、填空题(本题有6小题,每小题4分,共24分) 11. m(a+b);12. 150°;13. 65;14.23;15. ①③④;16. 1+2 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)原式=1+23-1=23(2)解:原式=2221(1)111x x x x x x +++==+++ 当2x =-时,原式1211x =+=-+=- (说明:直接代入求得正确结果的给满分) 18.(本题6分)解:∵灯罩BC 长为30cm ,光线最佳时灯罩BC 与水平线所成的角为30°, ∴sin30°=30CM BC CM =,∴CM=15cm .∵sin60°=BA BF ,∴23=40BF,解得BF=203,∴CE =2+15+203≈51.6cm .答:此时灯罩顶端C 到桌面的高度CE 是51.6cm .19.(本题6分)解:(1)y =x 2+2x +m=(x +1)2+m ﹣1,对称轴为x =﹣1,∵与x 轴有且只有一个公共点,∴顶点的纵坐标为0,∴C 1的顶点坐标为(﹣1,0);(2)设C2的函数关系式为y=(x+1)2+k,把A(﹣3,0)代入上式得(﹣3+1)2+k=0,得k=﹣4,∴C2的函数关系式为y=(x+1)2﹣4.∵抛物线的对称轴为x=﹣1,与x轴的一个交点为A(﹣3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);20.(本题6分)(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,∴PB⊥AB.∴∠OPB+∠POB=90°.∵OP⊥BC,∴∠ABC+∠POB=90°.∴∠ABC=∠OPB.又∠AEC=∠ABC,∴∠OPB=∠AEC.(2)解:四边形AOEC是菱形.∵OP⊥弦BC于点D且交⊙O于点E,∴»CE=»BE.∵C为半圆ACB¯的三等分点,∴»AC=»CE=»BE.∴∠ABC=∠ECB.∴AB∥CE.∵AB是⊙O的直径,∴AC⊥BC.又OP⊥弦BC于点D且交⊙O于点E,∴AC∥OE.∴四边形AOEC是平行四边形.又OA=OE,∴四边形AOEC是菱形.21.(本题8分)解:(1)20, 2 ,1;(2)如图(3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率2163==P22.(本题10分)解:(1)设安排x人采“炒青”,20x;5(30-x).(2)设安排x人采“炒青”,y人采“毛尖”则30205(30)10245x yx x+=⎧⎪-⎨+=⎪⎩,解得:1812xy=⎧⎨=⎩,即安排18人采“炒青”,12人采“毛尖”.(3)设安排x人采“炒青”,205(30)11045205(30)10045x xx x-⎧+≤⎪⎪⎨-⎪+≥⎪⎩解得:17.5≤x≤20①18人采“炒青”,12人采“毛尖”.②19采“炒青”,11人采“毛尖”.③20采“炒青”,10人采“毛尖”.所以有3种方案.计算可得第(1)种方案获得最大利润.18×204×40+12×55×120=5040元最大利润是5040元.23.(本题10分)解:(1)正确画出分割线CD(如图,过点C作CD⊥AB,垂足为D,CD即是满足要求的分割线,若画成直线不扣分)理由:∵∠B = ∠B,∠CDB=∠ACB=90°∴△BCD ∽△ACB(2)①△DEF 经N阶分割所得的小三角形的个数为n41∴S =n41000,当n =3时,S3 =31000S≈15.62当n = 4时,S4 =41000S≈3.91 ∴当n= 4时,3 <S4<4②S 2 = S 1-n × S 1+n ,S 1-n = 4 S, S= 4 S 1+n 24.(本题12分)解:(1)∵点E 、F 在函数ky x=(k >0)的图象上, ∴设E (x 1,1k x ),F (x 2,2kx ),x 1>0,x 2>0, ∴111122k K S x x ==,S 2= 22122k K x x = , ∵S 1+S 2=2,∴22K K+=2,∴k =2; (2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴1111432234ECF S EC CF k k ⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭g △, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形 ∴11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△ ∴2112S k k =-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.此时,点E 坐标为(2,3),即点E 运动到AC 中点.(3)解:设存在这样的点E ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=o Q ,∴EMN MFB ∠=∠.又90ENM MBF ∠=∠=oQ ,∴ENM MBF △∽△.∴EN EM MB MF=,∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭, ∴94MB =. 222MB BF MF +=Q ,∴222913444k k ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.∴25438k EM EC ==-=,故AE=78. ∴存在符合条件的点E ,它的坐标为(78,3).。
2012年中考数学适应性试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页,共150分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共30分)注意事项:1.答第一部分前,考生务必将自己的姓名、报名号用0.5毫米的黑色签字笔填写在答题 卡上.并将条形码粘在答题卡的指定位置.2.选择题用2B 铅笔填涂在答题卡对应题目标号的位置上,其它试题用0.5毫米黑色签 字笔书写在答题卡对应框内,不得超越题框区域.在草稿纸、试卷上答题无效.3.考试结束后,监考人员将本试题卷和答题卡分别收回并装袋.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.点(-1,2)关于原点对称的点的坐标是(A )(1,2) (B )(-1,-2) (C )(2,-1) (D )(1,-2) 2. 下列运算正确的是(A )3x 2-2x 2=1 (B )(-2a )2=-2a 2(C )(a +b )2=a 2+b 2(D )-2(a -1)=-2a +23. 如图,∠1与∠2互补,∠3=130°,则∠4的度数是 (A )40° (B )45° (C )50°(D )55°4. 在一个不透明的袋子中装有6个除颜色外完全相同的小球,其中黄球2个,红球 2个,白球2个,“从中任意摸出2个球,它们的颜色相同”,这一事件是 (A )必然事件 (B )不可能事件(C )随机事件 (D )确定事件5. 如图,一只小虫在折扇上沿O →A →B →O 路径匀速爬行,能大致描述小虫距出发点O 的距离y 与时间x 之间的函数图象是(A ) (B ) (C ) (D )dc ba 4321xxxxy y y y OOOOBAO6. 一船向东航行,上午8时到达B 处,看到有一灯塔在它的南偏东60°,距离为72海里的A 处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行 的速度为(A )18海里/小时 (B )318海里/小时 (C )36海里/小时 (D )336海里/小时7. 已知⊙O 的半径OA =10cm ,弦AB =16cm ,P 为弦AB 上的一个动点,则OP 的最 短距离为 (A )5cm(B )6cm (C )8cm(D )10cm8. 有一等腰梯形纸片ABCD (如图),AD ∥BC ,AD =1,BC =3,沿梯形的高DE 剪下, 由△DEC 与四边形ABED 不一定能拼成的图形是 (A )直角三角形(B )矩形(C )平行四边形 (D )正方形9. 如图,在Rt ∆ABC 中,∠C =90°,两直角边AC 、BC 的长恰是方程2x -4x +2=0 的两个不同的根,则Rt ∆ABC 的斜边上的高线CD 的长为(A (B (C (D )10. 如图,有一块△ABC 材料,BC =10,高AD =6,把它加工成一个矩形零件,使矩形的一边GH 在BC 上,其余两个顶点E 、F 分别在AB 、AC 上, 那么矩形EFHG 的周长的取值范围是 (A )020l << (B )610l << (C )1220l << (D )1226l <<H GF E D CBAED CBA D CBA2012年中考数学适应性试卷第二部分(非选择题 共120分)注意事项:1.考生需用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题 可先用铅笔画线,确认后用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共16小题,共120分.二、填空题:本大题共6小题,每小题3分,共18分.11.函数y =x 的取值范围是 .12. 正n 边形的一个外角是30°,则n = .13. 元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?” 请你回答:良马 天可以追上驽马.14. 在5,4,3,-2这四个数中,任选两个数的积作为k 的值,使反比例函数xky =的 图象在第二、四象限的概率是 . 15. 如图,在正方形网格中,点A 、B 、C 、D 都是格点,点E 是线段AC 上任意一点.如果AD =1,那么当 AE = 时,以点A 、D 、E 为顶点 的三角形与△ABC 相似.16. 如图,一系列“黑色梯形”是由x 轴、直线yx和过x 轴上的正奇数1、3、5、7、9、…所对应 的点且与y 轴平行的直线围成的.从左到右,将其 面积依次记为S 1、S 2、S 3、…、S n 、…. 则S 1= ,S n = .三、(本大题共3小题,每小题9分,共27分)17.计算:011cos30()2012---. 18. 解不等式组3(3)5134x x x x ++⎧⎪+⎨⎪⎩>≤,并写出不等式组的所有整数解. D CB Ay =3xy x1197531O19. 先化简,再求值:211)1211x xx x x x ++÷--+-(,其中负数x 的值是方程x 2-2=0的解.四、(本大题共3小题,每小题10分,共30分)20. 某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图(1)频数分布表中的m =_ ,n =_ ;(2)样本中位数所在成绩的组别是_ ,扇形统计图中,E 组所对应的扇形圆心角的度数是_ ;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?21. 如图,在△ABC 中,∠C =90°,∠A 、∠B 的平分线交于点D ,DE ⊥BC 于点E , DF ⊥AC 于点F , (1)求证:四边形CFDE 是正方形;(2)若AC =3,BC =4,求△ABC 的内切圆半径.22. 选做题:本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.甲题:由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,求山高CD .(结果保留根号)乙题:如图,Rt △ABO 的顶点A 是双曲线xky =与直线'(1)y x k =--+在第二象限的交点,AB ⊥x 轴于B 且S △ABO =23. (1)求这两个函数的解析式;36%30%EDCB16%A D Bxy CB A OF EDC(2)求直线与双曲线的两个交点A 、C 的坐标,并写出当x 在什么范围取值时,'y ≥y .五、(本大题共2小题,每小题10分,共20分)23. 已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC ,使 ∠FCA =∠AOE ,交AB 的延长线于点D . (1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =4,求⊙O半径的长;(3)在(2)的条件下,当OE =6时,求图中阴影部分的面积.(结果保留根号)24. 在锐角△ABC 中,AB =AC ,∠A 使关于x 的方程412x -sinA x +3sinA -43=0有 两个相等的实数根. (1)判断△ABC 的形状;(2)设D 为BC 上的一点,且DE ⊥AB 于E ,DF ⊥AC 于F ,若DE =m ,DF =n ,且3m =4n 和m 2+n 2=25,求AB 的长.六、(25题12分,26题13分,共25分)25. 在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.原问题:如图1,已知△ABC , ∠ACB =90︒ , ∠ABC =45︒,分别以AB 、BC 为边向外作△ABD 与△BCE , 且DA =DB , EB =EC ,∠ADB =∠BEC =90︒,连接DE 交AB 于点F . 探究线段DF 与EF 的数量关系.小伟同学的思路是:过点D 作DG ⊥AB 于G ,构造全等三角形,通过推理使问 题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC =30︒,∠ADB =∠BEC =60︒. 小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况. 请你参考小慧同学的思路,探究并解决这三位同学提出的问题: (1)写出原问题中DF 与EF 的数量关系;(2)如图2,若∠ABC =30︒,∠ADB =∠BEC =60︒,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB =∠BEC =2∠ABC ,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.FD BBD FF D BA26. 如图,抛物线y =ax 2+bx +c 与x 轴交于A (x 1,0)、B (x 2,0)两点,与y 轴交于C 点,对称轴与抛物线相交于点P ,与直线BC 相交于点M ,连接PB .已知x 1、x 2 恰是方程2230x x --=的两根,且sin ∠OBC(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说 明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直 接写出点R 的坐标;若不存在,说明理由.xy ABCPMO。
黑龙江省佳木斯市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2012·贺州) 等于()A . 4B . ﹣2C . ±2D . 22. (2分)(2020·虹口模拟) 若cosα=,则锐角α的度数是()A . 30°B . 45°C . 60°D . 90°3. (2分)下列四个式子:①(﹣1)0=﹣1,②(﹣1)﹣1=1,③ ,④ ,其中正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分)汶川地震后,某电视台法制频道在端午节组织发起“绿丝带行动”,号召市民为四川受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是()A . 正方形B . 等腰梯形C . 菱形D . 矩形5. (2分)如果收入50元记作+50元,那么支出30元记作A . +30元B . -30元C . +80元D . -80元6. (2分)(2019·绥化) 若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A . 球体B . 圆锥C . 圆柱D . 正方体7. (2分)若关于x的方程﹣=8有增根,那么k的值为()A . -1B . 1C . ±1D . 78. (2分)估计×+的运算结果应在()A . 6到7之间B . 7到8之间C . 8到9之间D . 9到10之间9. (2分)(2019·广西模拟) 在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A . 30°B . 45°C . 60°D . 90°10. (2分)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A . 2.25B . 2.5C . 2.95D . 311. (2分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则图中阴影部分的面积为()A .B .C .D . 1-12. (2分)小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A .B .C .D .二、填空题 (共5题;共5分)13. (1分) (2018八上·黔南期末) 因式分解:=________14. (1分)(2016·定州模拟) 小刚用一张半径为12cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为5cm,那么这张扇形纸板的面积是________ cm2 .15. (1分)(2012·宿迁) 不等式组的解集是________.16. (1分)(2016·深圳模拟) 小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是________.17. (1分)函数y=kx+b的图象如图所示,则当y<0时,x的取值范围是________.三、解答题 (共8题;共90分)18. (5分)(2017·河南模拟) 先化简,再求值:(﹣a)÷(1+ ),其中a是不等式﹣<a<的整数解.19. (5分)(2017·鹤岗) 在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.20. (15分)(2017·盐城模拟) 某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?21. (5分)(2017·马龙模拟) 如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸计算树的高度(精确到0.1米).22. (15分) (2017七下·金乡期末) 商场销售A、B两种商品,它们的进价和售价如表所示.A商品B商品进价(元/件)3040售价(元/件)5070(1)若该商场购进A、B两种商品共60件,恰好用去2050元,求购进A、B两种商品各多少件?(2)该商场第二次购买A、B两种商品,而B商品数量比A商品数量的2倍少6件,且购买总额不超过2840元,总利润不少于1900元.请你帮助该商场设计相应的进货方案;(3)若一个星期该商场销售A、B两种商品的总利润恰好是140元,求销售A、B两种商品各多少件?23. (15分) (2017·盐城模拟) 抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.24. (15分)(2017·濮阳模拟) 如图,直线y=﹣x﹣4与抛物线y=ax2+bx+c相交于A,B两点,其中A,B 两点的横坐标分别为﹣1和﹣4,且抛物线过原点.(1)求抛物线的解析式;(2)在坐标轴上是否存在点C,使△ABC为等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;(3)若点P是线段AB上不与A,B重合的动点,过点P作PE∥OA,与抛物线第三象限的部分交于一点E,过点E作EG⊥x轴于点G,交AB于点F,若S△BGF=3S△EFP,求的值.25. (15分)(2017·阜康模拟) 已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共90分)18-1、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
2012年初三适应性考试数学试题卷 2012.05考生须知:1.全卷共三大题,24小题,满分为120分。
2.考试时间为120分钟,本次考试采用闭卷形式,不允许使用计算器。
3.全卷答案必须做在答题卷的相应位置上,做在试卷上无效。
4.请用钢笔或圆珠笔将学校、姓名、准考证号、座位号分别填在答题卷的相应位置上。
一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.计算3×(-2) 的结果是 A .5B .-5C .6D .-62.某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数是 A .9.4×10-7 mB .9.4×107mC .9.4×10-8mD .9.4×108m3.下列电视台图标中,属于中心对称图形的是4.2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35 ,31 ,33,30 ,33 ,31,则下列表述错误..的是 A .众数是31B .中位数是30C .平均数是32D .极差是55.不等式组 的解集在数轴上表示正确的是6.如图,直线l 1∥l2,以直线l 1上的点A 为圆心、适当长为半径画弧,分别交直线l 1、l 2于A.B.C.D.-x +1>0x +1≥0 -110 A . B . C .D .-110 -1 1 0 -1 1点B 、C ,连接AC 、BC .若∠ABC =67º,则∠1= A .23ºB .46ºC .67ºD .78º7.已知二次函数4)1-(22+-=x y ,则 A .其图象的开口向上B .其图象的对称轴为直线1-=xC .其最大值为4D .当1x <时,y 随x 的增大而减少8.围棋盒子中有x 颗白色棋子和y 颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是32.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是21,则原来盒子中有白色棋子A .4颗B .6颗C .8颗D .12颗9. 如图,在等腰梯形ABCD 中,AB CD //,点E 、F 分别是AD 、AB 的中点,且BC AC ⊥,若AD =5,EF =6,则CF 的长为 A .6.5B .6C .5D .410.如图,在锐角△ABC 中,∠A =60°,∠ACB =45°,以BC 为弦作⊙O ,交AC 于点D ,OD与BC 交于点E ,若AB 与⊙O 相切,则下列结论:① =90°; ② DO ∥AB ; ③ CD =AD ; ④△BDE ∽△BCD ; ⑤2=DEBE正确的有 A .①② B .①④⑤ C .①②④⑤D .①②③④⑤二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:=-822a ▲ ; 12.方程x 2 =2x 的解是 ▲ ;BD ((第6题图)ABCl 1l 2167°(第10题图)ABC DOE· (第9题图)ABCD EF13.已知圆锥的底面半径为5cm ,母线长为9cm ,则它的侧面积为 ▲ ; 14. 表一给出了正比例函数y 1=kx 的图象上部分点的坐标,表二给出了反比例函数y 2=xm 的图象上部分点的坐标,则当y 1= y 2时,x 的值为 ▲ ; 表一 表二15.矩形纸片ABCD 中,AB =5,AD =3,将纸片折叠,使点B落在边CD 上的B ′处,折痕为AE .在折痕AE 上存在一点 P 到边CD 的距离与到点B 的距离相等,则此相等距离 为 ▲ ;16.如图,将边长为6的正方形ABCO 放置在直角坐标系中,使点A 在x 轴负半轴上,点C 在y 轴正半轴上。
2011—2012学年度下期初三适应性考试数学试题参考答案及评分意见一、选择题:1.C 2.D 3.B 4.B 5.C 6.A 7.B 8.D 9.D 10.B 二、填空题:11.2.049×105; 12.2:3; 13.50; 14.2π; 15.49; 16.10. 三、解答题:17.解:原式=1-5+2+3-1 …………………………………………………… (5分) =0. ………………………………………………………………(6分) 18.解:不等式两边同时乘以3,得3x -12≤4x -10, …………………………(2分) 移项整理,得 x ≥-2. ……(4在数轴上表示解集. ……… (6分)19.证明:∵ 点C 是AB 的中点,∴ AC =CB . ……………………………(1分) ∵ CD ∥BE ,∴ ∠ACD =∠B . ……………………………(3分)又∠D =∠E ,∴ △ACD ≌△CBE . ……………………………(5分)∴ CD =BE . ……………………………(6分) 20.解:设这种多边形地砖的边数为n , ……………………………(1分) 则(2)180540n -⨯=, ……………………………(3分)解得 5n =. ……………………………(5分) 答:这种多边形地砖的边数为5. ……………………………(6分)四、解答题:21.解:原式=22222224116x x x x x xx x +-+-⨯+- …………………………(3分)=(4)(4)1(4)(4)x x x x x x x +-⨯++- …………………………(6分) =21x x +. …………………………(8分) ∵2310x x --=,∴213x x += . ……………………… (9分)∴当2310x x --=时, 原式=22133x x =. ………………………… (10分)18题答图22.解:(1)∵ A (-2,0),B (4,0),∴ AB =6. ……………………………(1分) ∵ tan ∠P AB =23, ∴ 362BP =, 得BP =9. ∴ P (4,9) . ……(2分)把P (4,9)代入y =xk中,得 k =36. ∴ 反比例函数的解析式为 y =36x.…………………………………… (3分) 将A (-2,0), P (4,9) 代入y =ax +b 中,得 20,49.a b a b -+=⎧⎨+=⎩…… (5分)解得 3,23.a b ⎧=⎪⎨⎪=⎩ ………………………………………………………(6分)∴ 一次函数的解析式为 y =332x +. ……………………………… (7分) (2)由(1)得C (0,3). ……………………………………………………… (8分)由题设可知四边形OBPC 是直角梯形,∴四边形OBPC 的面积为S =21(OC +BP )×OB =21×()39+×4=24. …(10分) 23.(1)全班总人数为 16÷40%=40(人). ………………………………………(1分)喜欢吃火腿粽的人数为40-4-10-16-6=4(人) ……………………(2分) “火腿粽”部分所对应的圆心角度数是360°×440=36°. ……………………(3分) 补全条形统计图如下: …………………………………………………(5分)种类喜欢的粽子种类人数条形统计图(2)盒子里还剩1个红枣粽,1个豆沙粽,2个火腿粽共4个粽子 画树状图如下: 拿第一个拿第二个或列表如下:······························ (8分)由上得,王老师拿出的两个粽子恰好是小明和小红喜欢吃的种类的概率为13P =.(10分) 24.(1)解:过点A 作AG ⊥CD 于点G .……(1分) ∵在梯形ABCD 中,AD =BC ,AB =10,CD =18,∴DG =(18-10)÷2=4.………………(2分) ∵在Rt △ADG 中,∠ADC =60°,∴AG =4分)∴1(1018)2ABCD S =⨯+⨯=梯形5分) (2)证明:过点E 作EM ∥AD ,交CD 于点M ,∴ ∠H =∠FEM . ……………………………………………………………(6分) ∵ EF =FH ,∠DFH =∠EFM , ∴△DFH ≌△MFE . ………………(7分) ∴ DH =EM . …………………………………………………………………(8分) ∵ 四边形ABCD 为等腰梯形, ∴ ∠C =∠ADC . ∵ EM ∥AD , ∴∠ADC =∠EMC ,∴ ∠C =∠EMC .∴ EM =EC , ∴ DH =EC . …………………………………………………(9分) ∵ BC =BE +EC , AD =BC , ∴ AD =BE +DH . …………………(10分)红枣粽火 腿 粽 火腿 粽 豆沙粽 豆沙粽 火 腿 粽 火 腿 粽红 枣 粽 火腿粽 火 腿 粽豆 沙 粽 红 枣 粽 火腿粽火 腿 粽豆 沙 粽 红 枣 粽 AB CDEF 24题答图HGM ┏五、解答题: 25.解:(1) y 2=-2000x +34000(4≤x ≤6,且x 取整数). …………………(2分) (2)在1到3月份中,设每月棉花的进货金额为1w (元),1w =)242002200)(17010(11++-=⋅x x y p4114000132000220002++-=x x (1≤x ≤3,且x 取整数). ………(3分)∵32=-ab,∴第3月份的进货金额最大,其最大金额为 1w 4312000411400031320003220002=+⨯+⨯-=元.……………………(4分) 在4到6月份中,设每月棉花的进货金额为2w (元),2w )340002000)(2040(22+--=⋅=x x y p6800001400000800002-+-=x x (4≤x ≤6,且x 取整数). …… (5分) ∵8.752ba-=6>,而当4≤x ≤6时,2w 随x 的增大而增大, ∴第6月份的进货金额最大,其最大金额为2w 4840000680000614000006800002=-⨯+⨯-=元.…………………(6分) ∵4312000<4840000, ∴在前6个月中,第6月份棉被厂的棉花进货金额最大, 最大金额为4840000元. …………………………………………………………(7分)(3)6月份的进货量为p 2=40×6-20=220(吨),棉价为 y 2=-2000×6+34000=22000 (元/吨) ,由题意得0000220(12)22000(1)5130400a a +⨯-=. …………………(8分) 令00t a =,整理得 21005030t t -+=,解得 50%200t a ==. ……………………(9分)∵2361296=,2371369=,而1296更接近1300,∴36≈. ∴7a ≈或43a ≈.∵所求为最大整数值,∴a 取 43答:a 的最大整数值为43.………………………………………………………(10分)26.解:(1)由条件可知 △ABC 和△ADC 都是等腰直角三角形,∴ ∠BCA =∠D 1=45°,∴ CQ ∥D 1C 1,∴ 四边形CD 1C 1Q 是平行四边形. ∴ C 1D 1=B 1A 1=AB =8, ……………………………………………………(1分) CD 1=A 1D 1-AC =82-8. …………………………………………(2分) ∴ 四边形CD 1C 1Q 的周长为 [(82-8)+8]×2=162(cm) . …… (3分)(2) 如图①,在等腰直角△A 1B 1P 中,A 1B 1=8,∴ P A 1=42,PQ =BP =8-42. …………………………………………(5分) ∴ 两个平行四边形重合部分的面积为S =APQC S =四边形1(88)2⨯-⨯(322-16)(cm 2) .…………(7分)(3)当平行四边形A 1B 1C 1D 1运动到点C 1在BC 上时,如图②,则C 1与Q 重合, 这时运动距离为C 1H (如图①), ∴C 1 H =QC 1=CD 1=82-8 这时运动时间 x =82-8.1①若0≤x ≤82-8,如图③,AA 1=x, AP =42-x ,PQ =BP =AB -AP =8-(42-x )=x +8-42, A 2C 2=8-x . y =S 四边形ABCD -S △BPQ -S △A 2C 2D =AB ×AC -12×BP 2-12×C 2D 2 =8×8-12×(x +8-42)2-12×(8-x )2=-x 2+42x +322-16.∵2ba-= 0<22<82-8 , ∴ 当x =22时,y 最大1=322-8.………………………………………(9分) ②若82-8≤x ≤42,如图④, P C 1=P A 1=42, AA 1=A 1A 2=x ,C 2C 3=C 2D 1=82-8. y =S 梯形A 1PC 1D 1-S △AA 1A 2-S △C 2C 3D 1=(()221118222x ⨯⨯-⨯=-21x 2+642-48. ∵ -21<0, ∴ 当x >0时,y 随x 的增大而减小,∴x 在82-8≤x ≤42范围内,也是y 随x 的增大而减小,∴ 当x =82-8时,y 最大2=1282-144.………………………………(11分) ∵ y 最大2=1282-144=(322-8)+(962-136)=y 最大1+8(122-17) 且8(122-17)<0,∴ y 最大2<y 最大1 .(得出结论即可)∴当x =22秒时,y 取最大值,这个最大值是(322-8)cm 2.……………(12分)。
2012年黑龙江省佳木斯市中考数学试卷一、填空题(每小题3分,共30分)1.(2012黑龙江佳木斯,1,3分)2011年7月11日是第二十二个世界人口日,本次世界人口日的主题是“面对70亿人的世界”,70亿人用科学记数法表示为 人. 【答案】9710⨯2.(2012黑龙江佳木斯,2,3分)在函数y =x 的取值范围是 【答案】12x ≥3.(2012黑龙江佳木斯,3,3分)如图,在平行四边形ABCD中,点E 、F 分别在边BC 、AD 上,请添加一个条件 ,使四边形AECF 是平行四边形(只填一个即可).【答案】AF =CE 或E 、F 分别是AD 、BC 的中点等4.(2012黑龙江佳木斯,4,3分)把一副普通扑克牌中的13张红桃洗匀后正面向下,从中任意抽取一张,抽出的牌的点数是4的倍数的概率是 . 【答案】3135.(2012黑龙江佳木斯,5,3分)若不等式{3241x ax x >+<-的解集为x >3,则a 的取值范围是 . 【答案】3a ≤6.(2012黑龙江佳木斯,6,3分)如图,点A 、B 、C 、D 分别是⊙O上四点,∠ABD =20°,BD 是直径,则∠ACB = . 【答案】70°7.(2012黑龙江佳木斯,7,3分)已知关于x 的分式方程112a x -=+有增根,则a = . 【答案】18.(2012黑龙江佳木斯,8,3分)等腰三角形一腰长为5,一边上的高为3,则底边长为 .【答案】89.(2012黑龙江佳木斯,9,3分)某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价 元. 【答案】100010.(2012黑龙江佳木斯,10,3分)如图,直线y x =,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2,再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…按此作法进行去,点B n 的纵坐标为 (n 为正整数) .【答案】二、选择题(每小题3分,共30分)11.(2012黑龙江佳木斯,11,3分)下列各运算中,计算正确的是( )A =B .(2353(2)8xy xy-=- C .0(5)0-= D .632a a a ÷=【答案】A12.(2012黑龙江佳木斯,12,3分)下列历届世博会会徽的图案是中心对称图形的是( )A .B .C .D .【答案】C13.(2012黑龙江佳木斯,13,3分)在平面直角坐标系中,反比例函数22a a y x-+=图象的两个分支分别在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 【答案】A14.(2012黑龙江佳木斯,14,3分)如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是( )A .B .C .D .【答案】A15.(2012黑龙江佳木斯,15,3分)某校初三5名学生中考体育测试成绩如下(单位:分):12、13、14、15、14,这组数据的众数和平均数分别为( )A .13,14B .14,13.5C .14,13D .14,13.6 【答案】D16.(2012黑龙江佳木斯,16,3分)如图所示,四边形ABCD 是边长为4cm 的正方形,动点P 在正方形ABCD 的边上沿着A →B →C →D 的路径以1cm /s 的速度运动,在这个运动过程中△APD 的面积s (cm 2)随时间t (s )的变化关系用图象表示,正确的是 ( )A .B .C .D .【答案】D17.(2012黑龙江佳木斯,17,3分)若2(1)20a b -+-=,则2012()a b -的值是( )A .-1B .1C .0D .2012 【答案】B18.(2012黑龙江佳木斯,18,3分)如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( ) A .20 B .12 C .14 D .13 【答案】C19.(2012黑龙江佳木斯,19,3分)某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( )A .6种B .5种C .4种D .3种【答案】B20.(2012黑龙江佳木斯,20,3分)如图,已知直角梯形ABCD中,AD ∥BC ,∠ABC =90°, AB =BC =2AD ,点E 、F 分别是AB 、BC 边的中点,连接AF 、CE 交于点M ,连接BM 并延长交CD 于点N ,连接DE 交AF 于点P ,则结论:①∠ABN =∠CBN ;②DE ∥BN ;③△CDE 是等腰三角形;④EM :BE ;⑤S △EPM =18S 梯形ABCD ,正确的个数有( ) A .5个 B .4个 C .3个 D .2个 【答案】B三、解答题(满分5+5+7+7+8+8+10+10=60分)21.(2012黑龙江佳木斯,21,5分)先化简22144(1)11x x x x -+-÷--,再从0,-2,-1,1中选择一个合适的数代入并求值. 【答案】解:原式22(1)(1)1(2)x x x x x -+-=⋅-- 12x x +=- 当x =0时,原式011022+==-.22.(2012黑龙江佳木斯,22,5分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC 向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A 1B 1C 1; (2)写出A 1、C 1的坐标;(3)将△A 1B 1C 1绕C 1逆时针旋转90°,画出旋转后的△A 2B 2C 1,求线段B 1C 1旋转过程中扫过的面积(结果保留π). 【答案】解:(1)如图所示:(3)旋转后的图形如图所示:∵由勾股定理可知,11B C ==,∴S扇形290173604ππ⨯==.23.(2012黑龙江佳木斯,23,7分)如图,抛物线2y x bx c =++经过坐标原点,并与x 轴交 于点A (2,0). (1)求此抛物线的解析式; (2)写出顶点坐标及对称轴;(3)若抛物线上有一点B ,且S △OAB =3,求点B 的坐标. 【答案】解:(1)把(0,0),(2,0)代入2y x bx c =++得{0420c b =+=,解得{20b c =-=,所以解析式为22y x x =- (2)∵222(1)1y x x x =-=--, ∴顶点为(1,-1) 对称轴为:直线1x =(3)设点B 的坐标为(a ,b ),则1232b ⨯=,解得3b =或3b =-, ∵顶点纵坐标为-1,-3<-1 (或223x x -=-中,x 无解) ∴b =3∴223x x -=,解得123,1x x ==-所以点B的坐标为(3,3)或(-1,3)24.(2012黑龙江佳木斯,24,7分)最美女教师张丽莉在危急关头为挽救两个学生的生命而失去双腿,她的病情牵动了全国人民的心,全社会积极为丽莉老师献爱心捐款.为了解某学校的捐款情况,对学校捐款学生进行了抽样调查,把调查结果制成了下面两个统计图,在条形图中,从左到右依次为A组、B组、C组、D组、E组,A组和B组的人数比是5:7.捐款钱数均为整数,请结合图中数据回答下列问题:(1)B组的人数是多少?本次调查的样本容量是多少?(2)补全条形图中的空缺部分,并指出中位数落在哪一组?(3)若该校3000名学生都参加了捐款活动,估计捐款不少于26元的学生有多少人?【答案】解:(1)B组的人数是20÷5×7=28样本容量是:(20+28)÷(1-25%-15%-12%)=100;(2)36-45小组的频数为100×15%=15中位数落在C组(或26-35)(3)捐款不少于26元的学生人数:3000×(25%+15%+12%)=1560(人)25.(2012黑龙江佳木斯,25,8分)甲、乙两个港口相距72千米,一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回;一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,并立即返回(掉头时间忽略不计).已知水流速度是2千米/时,下图表示轮船和快艇距甲港的距离y (千米)与轮船出发时间x (小时)之间的函数关系式,结合图象解答下列问题:(顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度) (1)轮船在静水中的速度是 千米/时;快艇在静水中的速度是 千米/时; (2)求快艇返回时的解析式,写出自变量取值范围;(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?(直接写出结果) 【答案】解:(1)22 72÷2+2=38千米/时;(2)点F 的横坐标为:4+72÷(38+2)=5.8 F (5.8,72),E (4,0)设EF 解析式为y kx b =+(k ≠0){5.87240k b k b +=+=解得{40160k b ==-∴40160(4 5.8)y x x =-≤≤ (3)轮船返回用时72÷(22-2)=3.6 ∴点C 的坐标为(7.6,0)设线段BC 所在直线的解析式为y kx b =+ ∵经过点(4,72)(7.6,0) ∴{4727.60k b k b +=+= 解得:{20152k b =-=∴解析式为:20152y x =-+,根据题意得:40160(20152)12x x ---+=或20152(40160)12x x -+--= 解得:x =3或x =3.4∴快艇出发3小时或3.4小时两船相距12千米26.(2012黑龙江佳木斯,26,8分)在菱形ABCD 中,∠ABC =60°,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF =AE ,连接BE 、EF .(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.【答案】证明:(1)∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∵E是线段AC的中点,∴∠CBE=1 2 ∠ABC=30°,AE=CE,∵AE=CF,∴CE=CF,∴∠F=∠CEF,∵∠F+∠CEF=∠ACB=60°,∴∠F=30°,∴∠CBE=∠F,∴BE=EF;(2)图2:BE=EF.图3:BE=EF.图2证明如下:过点E作EG∥BC,交AB于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,又∵∠BGE=∠ECF=120°,∴△BGE≌△ECF(SAS),∴BE=EF;…(1分)图3证明如下:过点E作EG∥BC交AB延长线于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,又∵∠BGE=∠ECF=60°,∴△BGE≌△ECF(SAS),∴BE=EF.…(1分)27.(2012黑龙江佳木斯,27,10分)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表: (1)求这两种货车各多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围); (3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【答案】解:(1)解法一、设大货车用x 辆,小货车用y 辆,根据题意得{181610228x y x y +=+=解得{810x y ==答:大货车用8辆,小货车用10辆.解法二、设大货车用x 辆,则小货车用(18-x )辆,根据题意得 16x +10(18-x )=228 …(2分) 解得x =8∴18-x =18-8=10(辆)答:大货车用8辆,小货车用10辆;(2)w =720a +800(8-a )+500(9-a )+650[10-(9-a )] =70a +11550,∴7011550w a =+(0≤a ≤8且为整数) (3)16a +10(9-a )≥120, 解得a ≥5,…(1分) 又∵0≤a ≤8, ∴5≤a ≤8且为整数,∵7011550w a =+,k =70>0,w 随a 的增大而增大,∴当a =5时,w 最小,最小值为W =70×5+11550=11900(元)答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.28.(2012黑龙江佳木斯,28,10分)如图,在平面直角坐标系中,直角梯形OABC 的边OC 、OA 分别与x 轴、y 轴重合,AB ∥OC ,∠AOC =90°,∠BCO =45°,BC =,点C 的坐标为(-18,0).(1)求点B 的坐标;(2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E ,且OE =4,OD =2BD ,求直线DE 的解析式;(3)若点P 是(2)中直线DE 上的一个动点,在坐标平面内是否存在点Q ,使以O 、E 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】解:(1)过点B 作BF ⊥x 轴于F在Rt △BCF 中∵∠BCO =45°,BC =6 2∴CF =BF =12∵C 的坐标为(-18,0)∴AB =OF =6∴点B 的坐标为(-6,12).(2)过点D 作DG ⊥y 轴于点G∵AB ∥DG∴△ODG ∽△OBA∵ 23DG OD OG AB OB OA ===,AB =6,OA =12 ∴DG =4,OG =8∴D (-4,8),E (0,4)设直线DE 解析式为y =kx +b (k ≠0)∴{484k b b -+==∴{14k b =-= ∴直线DE 解析式为4y x =-+.(3)结论:存在.设直线y =-x +4分别与x 轴、y 轴交于点E 、点F ,则E (0,4),F (4,0),OE =OF =4,EF =如答图2所示,有四个菱形满足题意.①菱形OEP 1Q 1,此时OE 为菱形一边.则有P 1E =P 1Q 1=OE =4,P 1F =EF -P 1E = 4.易知△P 1NF 为等腰直角三角形,∴P 1N =NF = 14=-设P 1Q 1交x 轴于点N ,则NQ 1=P 1Q 1-P 1N = 4(4--=又ON =OF -NF = Q 1-;②菱形OEP 2Q 2,此时OE 为菱形一边.此时Q 2与Q 1关于原点对称,∴Q 2(-;③菱形OEQ 3P 3,此时OE 为菱形一边.此时P 3与点F 重合,菱形OEQ 3P 3为正方形,∴Q 3(4,4);④菱形OP 4EQ 4,此时OE 为菱形对角线.由菱形性质可知,P 4Q 4为OE 的垂直平分线,由OE =4,得P 4纵坐标为2,代入直线解析式y =-x +4得横坐标为2,则P 4(2,2),由菱形性质可知,P4、Q4关于OE或x轴对称,∴Q4(-2,2).综上所述,存在点Q,使以O、E、P、Q为顶点的四边形是菱形;点Q的坐标为:Q1-,Q2(-,Q3(4,4),Q4(-2,2).。
佳木斯市2012年初中学业考试适应性训练数 学 试 题考生注意:1、考试时间120分钟;全卷共三道大题,总分120分2、请将答案写在答题卡上,答在试卷上无效。
一 、填空题(每题3分,满分30分)1. 前几年甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明甲型H1N1流感球形病毒细 胞的直径约为0.00000156 m ,保留两个有效数字,用科学记数法表示这个数是 . 2、函数y=x 31-中,自变量x 的取值范围是 。
3、如图所示,E 、F 是矩形ABCD 对角线AC 上的两点,试添加一个条件:_______________,使得△ADF ≌△CBE .4、把抛物线y=2x 2-3向右平移1个单位,再向上平移4个单位, 则所得抛物线的解析式是 . 5、如图,Rt ABC △的斜边10AB cm =,3cos 5A =, 则_____.BC =6、从编号为1到10的10张卡片中任取1张,所得编号是 3的倍数的概率为 .7、过平行四边形 ABCD 对角线交点O 作直线m,分别交直线AB 于点E ,交直线CD 于点F ,若AB = 4,AE = 6 ,则DF 的长是 .8、分式112+-x x 的值为0 ,则 x 的值为 .9、已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为__ _____度 . 10.如图,有一系列有规律的点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1)、A 2(1,1)、A 3(1,0)、 A 4(2,0)、A 5(2,2)、A 6(0,2)、A 7(0,3)、A 8(3,3)……, 依此规律,点A 20的坐标为 . 二、选择题(每题3分,满分30分) 11、 下列运算正确的是( )A .236·a a a = B .11()22-=- C .164=± D .|6|6-=第5题图ABC12、在下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是( ).(A )1个 (B )2个 (C )3个 (D )4个 13、 某班数学学习小组8名同学在一节数学课上发言的次数分别为 1、5、6、7、6、5、6、6则这组同学发言次数的众数和中位数分别是( )A .6和6B .5和5C .6和5D .5和614、小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图象能表示小明离家距离与时间关系的是( )15、如图,一个由若干个相同的小正方体堆积成的几何体,它的主视图、左视图和俯视图都是田字形,则小正方体的 个数是 ( )A .6B .6、7或8C .7 或8D .816、点P (-2,1)关于x 轴对称的点的坐标是( )A .(-2,-1)B .(2,-1)C .(1,-2)D .(2,1)17、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A .直角梯形 B .矩形 C .菱形 D .正方形 18.若x ,y 为实数,且1x ++1y -=0,则2011()x y的值是( ) A .0B .1C .-1D .-201119、某城市计划用两年时间增加全市绿化面积,若平均每年绿化面积比上一年增长20%, 则两年后城市绿化面积是原来的 ( )A 1.2倍 B1.4倍 C 1.44倍 D 1.8倍 20、.如图,矩形ABCD 中,AB=3,AD=4,△ACE 为等腰直角三角形,∠AEC=90°,连接BE 交AD 、AC 分别于F 、N ,CM 平分∠ACB 交BN 于M ,下列结论:①AB=AF ;②AE=ME ;10 20 30 40 50 900 0 A . 时间/分 距离/米 900 距离/米 900 距离/米 900 距离/米 10 20 30 40 0 时间/分10 20 30 40 50 0 时间/分10 20 30 40 50 0 时间/分B .C .D .(第15题图)③BE ⊥DE ;④52=∆∆CEN CMN S S ,其中正确的结论的个数有( ).A.1个B.2个C.3个D.4个(第20题图)三、解答题(满分60分) 21.(本小题满分5分)先化简,再选一个你喜欢的值代入求值。
2012年初中毕业生学业考试模拟卷数学参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题4分,共24分)11. 3(a+3)(a -3) 12. 4 :25 13.6114. 25 15.6或-6 16.(1)32 (2分) (2) )932,316(),314,7(),32,1( (写对1个1分,全对2分)三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.解:原式=21121-+-…………………………(对1个2分,2个3分,3个4分)4分 =0 ………………………………………………6分18. 解:1211112)2()1()1)(1(221212222-=--+=⋅--+--+=÷--++--a a a a a a a a a a a a a a a a a …3分 当a =3时 原式=2232=- ………6分 19.证明:∵AF =BE ,EF =EF ,∴AE =BF .………2分∵四边形ABCD 是矩形, ∴∠A =∠B =90°,AD =BC . ………4分 ∴△DAE ≌△CBF . ………6分 20.解:在Rt ECD ∆中,tan DEC ∠=DCEC. ∴EC =tan DC DEC ∠≈30400.75=(m ). ………2分 在Rt BAC ∆中,∠BCA =45°,∴BA CA =………4分 在Rt BAE ∆中,tan BEA ∠=BA EA .∴0.7540hh =+.∴120h =(m ). 答:电视塔高度约为120m .………8分 21.解:(1)∵DE 是⊙O 的切线,且DF 过圆心O∴DF ⊥DE 又∵AC ∥DE ∴DF ⊥AC∴DF 垂直平分AC ………2分 (2)由(1)知:AG =GC题号1 2 3 4 5 6 7 8 9 10 答案 A B C B ABDCDCDA又∵AD ∥BC∴∠DAG =∠FCG 又∵∠AGD =∠CGF∴△AGD ≌△CGF (ASA ) ∴AD =FC ………3分 ∵AD ∥BC 且AC ∥DE∴四边形ACED 是平行四边形 ∴AD =CE ………4分 ∴FC =CE ……… 5分(3)连结AO ; ∵AG =GC ,AC =8cm ,∴AG =4cm在Rt △AGD 中,由勾股定理得 GD =3452222=-=-AG AD ……… 6分设圆的半径为r ,则AO =r ,OG =r -3在Rt △AOG 中,由勾股定理得 AO 2=OG 2+AG 2 有:r 2=(r -3)2+42解得 r =625 ∴⊙O 的半径为625cm. ……… 8分 22. 解:(1)①5,三.……… 2分②13280100%65%80-⨯= 答:2011年5月至6月用电量的月增长率是65%.……… 5分(2)设6月至7月用电量月增长率为x ,则5月至6月用电量月增长率是1.5x .由题意得120(1 1.5)(1)240x x ++= ……… 7分 化简得23520x x +-= 解得113x =,22x =-(不合题意,舍去)………8分 ∴1120(1 1.5)120(1 1.5)1803x ⨯+=⨯+⨯=(千瓦时) 答:预计小芳家今年6月份的用电量是180千瓦时.………10分23.(1))23,47((2分)(2)过P 作PD ⊥OB 于点D ,过C 作CF ⊥PA 于点F 在Rt △OPD 中 PD =OP ·sin60°=t 23…………3分 ∵120=∠+∠=∠+∠OPB CPF OPB OBP ∴FPC DBP ∠=∠……………………4分·A BCPO yxE DF∵90=∠=∠CFP PDB∴△BPD ∽△PCF ……………………5分∴CF =t DP 4321=,t BD PF 41221-==∴点C 的坐标是(t t 43432,+) ……………………6分 (3)取OA 的中点M ,连结MC ,由(2)得t CF 43=,t MF 43=.∴334343tan ==∠t tCMF ∴30=∠CMF °. …………………………8分 ∴点C 在直线MC 上运动.当点P 在点O 时,点C 与点M 重合. 当点P 运动到点A 时,点C 的坐标为)3,5(∴点C 所经过的路径长为32 ………………………………10分 24.解:(1)在等腰梯形ABCD 中,S 梯形ABCD =8 ∴824=⨯OD∴OD =4 ∴D (0,4) ………………………………1分 ∵tan ∠DAO =4 ∴OA =1∴A (-1,0) ………………………………2分 把A (-1,0)、B (2,0)、D (0,4)代入y =ax 2+b x +c 得⎪⎩⎪⎨⎧==++=+-40240c c b a c b a ∴⎪⎩⎪⎨⎧==-=422c b a ∴y =-2x 2+2x +4 ……………………4分 (2)当点O 在线段AD 上时,如图, BB 1=5t B 1O 1=2 B 1H =2 t BH = t B 1G =2-t O 1G =2-(2-t )= t 由△DO 1G ∽△DAO 得4241t t -= ∴32=t …………………6分 F·ABCP OyxE Mxy A BDC E O O 1 B 1 E 1H Gy D C当点E 在线段AD 上时,如图, BB 1=5t B 1H =2 t BH = t ∵B 1O 1=2∴E 1G =t DG =4-(2 t -1)=5-2 t 由△DE 1G ∽△DAO 得4251t t -= ∴65=t ∴6532≤≤t ………………………………8分 (3)(-2,2) (25,23) (3,23) (-1,23) ………12分。
更多精彩资料请关注教育城中考网:/zhaokao/zk/佳木斯市2012年初中学业考试适应性训练数 学 试 题考生注意:1、考试时间120分钟;全卷共三道大题,总分120分2、请将答案写在答题卡上,答在试卷上无效。
一 、填空题(每题3分,满分30分)1. 前几年甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明甲型H1N1流感球形病毒细 胞的直径约为0.00000156 m ,保留两个有效数字,用科学记数法表示这个数是 . 2、函数y=x 31-中,自变量x 的取值范围是 。
3、如图所示,E 、F 是矩形ABCD 对角线AC 上的两点,试添加一个条件:_______________,使得△ADF ≌△CBE .4、把抛物线y=2x 2-3向右平移1个单位,再向上平移4个单位, 则所得抛物线的解析式是 . 5、如图,Rt ABC △的斜边10AB cm =,3cos 5A =, 则_____.BC =6、从编号为1到10的10张卡片中任取1张,所得编号是 3的倍数的概率为 .7、过平行四边形 ABCD 对角线交点O 作直线m,分别交直线AB 于点E ,交直线CD 于点F ,若AB = 4,AE = 6 ,则DF 的长是 .8、分式112+-x x 的值为0 ,则 x 的值为 .9、已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为__ _____度 .10.如图,有一系列有规律的点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1)、A 2(1,1)、A 3(1,0)、 A 4(2,0)、A 5(2,2)、A 6(0,2)、A 7(0,3)、A 8(3,3)……, 依此规律,点A 20的坐标为 . 二、选择题(每题3分,满分30分) 11、 下列运算正确的是( )A .236·a a a = B .11()22-=- C .164=± D .|6|6-=12、在下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是( ).第5题图ABC(A )1个 (B )2个 (C )3个 (D )4个 13、 某班数学学习小组8名同学在一节数学课上发言的次数分别为 1、5、6、7、6、5、6、6则这组同学发言次数的众数和中位数分别是( )A .6和6B .5和5C .6和5D .5和614、小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图象能表示小明离家距离与时间关系的是( )15、如图,一个由若干个相同的小正方体堆积成的几何体,它的主视图、左视图和俯视图都是田字形,则小正方体的 个数是 ( )A .6B .6、7或8C .7 或8D .816、点P (-2,1)关于x 轴对称的点的坐标是( )A .(-2,-1)B .(2,-1)C .(1,-2)D .(2,1)17、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A .直角梯形 B .矩形 C .菱形 D .正方形 18.若x ,y 为实数,且1x ++1y -=0,则2011()x y的值是( ) A .0B .1C .-1D .-201119、某城市计划用两年时间增加全市绿化面积,若平均每年绿化面积比上一年增长20%, 则两年后城市绿化面积是原来的 ( )A 1.2倍 B1.4倍 C 1.44倍 D 1.8倍 20、.如图,矩形ABCD 中,AB=3,AD=4,△ACE 为等腰直角三角形,∠AEC=90°,连接BE 交AD 、AC 分别于F 、N ,CM 平分∠ACB 交BN 于M ,下列结论:①AB=AF ;②AE=ME ;10 20 30 40 50 900 0 A . 时间/分 距离/米 900 距离/米 900 距离/米 900 距离/米 10 20 30 40 0 时间/分10 20 30 40 50 0 时间/分10 20 30 40 50 0 时间/分B. C .D .(第15题图)③BE ⊥DE ;④52=∆∆CEN CMN S S ,其中正确的结论的个数有( ).A.1个B.2个C.3个D.4个(第20题图)三、解答题(满分60分) 21.(本小题满分5分)先化简,再选一个你喜欢的值代入求值。
xx x x x x x x x 42)44122(322-+÷+----+ 22.(本题满分6分)如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标 分别为(2,5),(4,3),(1,1)A B C ---.点P ),(n m 是△ABC 内部一点,平移△ABC 得到11A BC ∆, 使点P ),(n m 移到点)2,3('-+n m P 处。
(1)直接写出点111,,C B A 的坐标; (2)将ABC ∆绕点C 逆时针旋转90° 得到△222C B A , 画出△222C B A ;(3)直接写出△222C B A 的面积。
23、(本题满分5分)如图,已知二次函数24y ax x c =-+的图象与坐标轴交 于点A (-1, 0)和点B (0,-5). (1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P , 使得△ABP 的周长最小.请求出点P 的坐标.xOA(第23题图)By24. (本题满分8分)某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了 名学生; (2)请将上面两幅统计图补充完整; (3)图①中,“踢毽”部分所对应的圆心角为 度; (4)如果全校有1860名学生,请问全校学生中, 最喜欢“球类”活动的学生约有多少人?25、(本小题满分8分)为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a 折售票,节假日按团体人数分段定价售票,即m 人以下(含m 人)的团体按原价售票;超过m 人的团体,其中m 人仍按原价售票,超过m 人部分的游客打b 折售票.设某旅游团人数为x 人,节假日购票款为y 1(元),非节假日购票款为y 2(元).y 1,y 2与x 之间的函数图象如图所示.(1)观察图象可知:a =__________;b =__________;m =__________;(2)直接写出y 1,y 2与x 之间的函数关系式;(3)某旅行社导游王娜于5月1日带A 团,5月20日(非节假日)带B 团都到该景区旅游,共付门票款1900元,A ,B 两个团队合计50人, 求A ,B 两个团队各有多少人?26、(本小题满分8分)已知,△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作菱形ADEF ,使∠DAF=60°,连接CF .⑴如图1,当点D 在边BC 上时,①求证:∠ADB =∠AFC ;②请直接判断结论∠AFC =∠ACB +∠DAC 是否成立. ⑵如图2,当点D 在边BC 的延长线上时,其他条件不变,结论∠AFC =∠ACB +∠DAC 是否成立?请写出∠AFC 、∠ACB 、∠DAC 之间存在的数量关系,并写出证明过程.100 90 80 70 60 50 40 30 20 10 0球类 跳绳 踢毽 其它类别304080人数 图②图① 球类 40%跳绳其它踢毽15%0 10 20 300500 900x y y 1 y 2第25题图⑶如图3,当点D 在边CB 的延长线上时,且点A 、F 分别在直线BC 的异侧,其他条件不变,并直接写出∠AFC 、∠ACB 、∠DAC 之间存在的等量关系.图1 图227、(本题满分10分)某市化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A 种物资的车辆数为x ,装运B 种物资的车辆数为y .求y 与x 的函数关系式; (2)如果装运A 种物资的车辆数不少于5辆,装运B 种物资的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费. 28、(本题满分10分)如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y 轴的正半轴上,且满足2310OB OA -+-=.(1)求点A ,点B 的坐标. (2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.物资种类 A B C 每辆汽车运载量(吨)12108每吨所需运费(元/吨) 240 320 200图3y xAOC BAB CDFABC DFEABC D FEE参考答案及评分标准一、(1)1. 6×610- m (2)x ≤ 31(3)AF =CE 或AE =CF 或DF ∥BE 或∠AFD =∠BEC 等 (4)y=2(x -1)2+1(5) 8 cm (6)310(7)10 或2 (8) 1 (9) 120(10)(7,7) 二、(11) D (12) C (13) A (14)D (15) B (16)A (17) B (18) C (19) C (20) D 三、(21)解:原式=2)2)(2(])2(1)2(2[2+-+⨯----+x x x x x x x x x ………………1分 =x+2-22--x xx ………………2分=24--x x ………………3分 当x=6时,原式=21………………5分( 答案不唯一,正确即可)(22)、解:(1) A 1 ( 1,3 ) B 1 ( -1,1) C 1 (2,-1) ……….3 分 (2) 如下图 ……….5分 (3)△222C B A 的面积为5 ...……..6分A 2B 2(C 2)(23)解:(1)根据题意,得⎪⎩⎪⎨⎧+⨯-⨯=-+-⨯--⨯=.0405,)1(4)1(022c a c a …1分解得 ⎩⎨⎧-==.5,1c a …………………………………2分 ∴二次函数的表达式为542--=x x y .……………3分 (2)令y =0,得二次函数542--=x x y 的图象与x 轴 的另一个交点坐标C (5, 0).…………………………4分由于P 是对称轴2=x 上一点,连结AB ,由于2622=+=OB OA AB ,要使△ABP 的周长最小,只要PB PA +最小. 由于点A 与点C 关于对称轴2=x 对称,连结BC 交对称轴于点P ,则PB PA += BP +PC =BC ,根据两点之间,线段最短,可得PB PA +的最小值为BC .因而BC 与对称轴2=x 的交点P 就是所求的点.设直线BC 的解析式为b kx y +=,根据题意,可得⎩⎨⎧+=-=.50,5b k b 解得⎩⎨⎧-==.5,1b k所以直线BC 的解析式为5-=x y ……………………5 分 因此直线BC 与对称轴2=x 的交点坐标是方程组⎩⎨⎧-==5,2x y x 的解,解得⎩⎨⎧-==.3,2y x所求的点P 的坐标为(2,-3).………………………6分(24)解:(1)200………1分 (2)如下图…….3分 (3) 54 ……..4分(4)1860 x 40% = 744 ……….. 6分答:最喜欢“球类”活动的学生约有744人。