解: 用t检验法.
检验假设 H0:112.6(0) H1:112.6(0) Q0.05,n7
t(n1)t0.025(6)2.4469
2
23
返回
第八章 假设检验
概率统计
Q x 1 1 2 .8 ,s7 27 1 1i 7 1(x i 1 1 2 .8 )2 (1 .1 3 6 )2
t x112.6 0.4659 s7 / 7
0.511 0.520 0.515 0.512
问机器是否正常?
7
返回
第八章 假设检验
概率统计
分析:用 和 分别表示这一天袋装糖重总体 X
的均值和标准差.则 X~N (,0.01 2)其 5 , 中 未.知
问题:根据样本值判断 0还 .5 是 0..5
提出两个对立假设 H 0 : 0 0 . 5 和 H 1 : 0 .
返回
第八章 假设检验
(2)检验假设 H 0:0,H 1:0
概率统计
选择统 U计 X/n量 ~N(0,1)
当H
成立时,
0
P( X u0
/ n
u )
P(Xuuu0
/ n
u)
P(X/unu0/unu)
Xu P(
/ n
u)
对于给定的检验水平 01
得拒绝域为 (3)检验假设
W{uu}
其中u X 0 / n
不拒绝H0同样要承担风险,这时,可能将错误的 假设误认为是正确的,这种“以假为真”的错误称 为第二类错误(取伪), 犯第二类错误的概率是:
β=P{当H0不真时 , 不拒绝H0}.
13
返回
第八章 假设检验
概率统计
三、假设检验的基本步骤