九年级下册初中中考数学模拟试题
- 格式:doc
- 大小:1.01 MB
- 文档页数:13
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √-92. 若x=2,则代数式3x^2 - 4x + 1的值为()A. 1B. 3C. 5D. 73. 已知一元二次方程ax^2 + bx + c = 0(a≠0)的判别式△=b^2 - 4ac,若△=0,则方程有两个()A. 两个不相等的实数根B. 两个相等的实数根C. 一个实数根D. 没有实数根4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 2D. y = 2x^25. 已知等腰三角形ABC中,AB=AC,AD是BC边上的高,则∠BAC的大小为()A. 45°B. 60°C. 90°D. 120°6. 在平面直角坐标系中,点A(-2,3),点B(2,-3),则线段AB的中点坐标为()A. (0,0)B. (-1,-1)C. (-1,3)D. (1,-1)7. 若a、b、c、d为实数,且a^2 + b^2 + c^2 + d^2 = 0,则()A. a = b = c = d = 0B. a、b、c、d中至少有一个为0C. a、b、c、d中至多有一个为0D. a、b、c、d中最多有一个为08. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形9. 若sinα = 1/2,则α的取值范围是()A. 0° < α < 90°B. 0° < α < 180°C. 90° < α < 180°D. 180° < α < 270°10. 下列各式中,正确的是()A. 3^2 = 9B. 2^3 = 8C. (-2)^2 = 4D. (-3)^2 = 9二、填空题(每题5分,共20分)11. 若x = 3,则代数式2x^2 - 5x + 2的值为______。
人教版九年级下册《数学》模拟考试卷一、选择题(每题3分,共30分)1.下列哪个数是实数?A. 2iB. 3C. √5D. 1/02.下列哪个函数的图像是一条直线?A. y=x²B. y=2x3C. y=x³D. y=|x|3.下列哪个数是负数?A. 5B. 0C. 5D. √94.下列哪个不等式成立?A. 2x+3<0B. 3x2>0C. 4x+1<0D. 5x3>05.下列哪个是正比例函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x36.下列哪个是反比例函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x37.下列哪个是二次函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x38.下列哪个是指数函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x39.下列哪个是对数函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x310.下列哪个是三角函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x3二、填空题(每题4分,共40分)11.下列数列中,第10项是几?1, 3, 5, 7,12.下列数列中,第n项是几?2, 4, 6, 8,13.下列数列中,第n项是几?1, 2, 4, 8,14.下列数列中,第n项是几?1, 3, 6, 10,15.下列数列中,第n项是几?1, 4, 9, 16,16.下列数列中,第n项是几?1, 8, 27, 64,17.下列数列中,第n项是几?1, 2, 4, 8,18.下列数列中,第n项是几?1, 3, 6, 10,19.下列数列中,第n项是几?1, 4, 9, 16,20.下列数列中,第n项是几?1, 8, 27, 64,三、解答题(每题10分,共50分)21.解方程:2x3=522.解方程组:\begin{align}2x+3y=7 \\3x2y=4\end{align}23.解不等式:3x2<024.解不等式组:\begin{align}2x+3y>7 \\3x2y<4\end{align}25.解方程:x²3x+2=026.解方程组:\begin{align}x²+y²=25 \\xy=5\end{align}27.解不等式:x²3x+2<028.解不等式组:\begin{align}x²+y²>25 \\xy<5\end{align}29.解方程:x³2x²+3x6=030.解方程组:\begin{align}x³+y³=27 \\x+y=3\end{align}四、证明题(每题10分,共20分)31.证明:若a²+b²=c²,则a、b、c为勾股数。
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
2024年初中学业水平模拟考试(一)数学试题2024.04注意事项:1.本场考试时间120分钟,试卷分为第Ⅰ卷和第Ⅱ卷,共22小题,满分150分;2.答卷前,请将试卷密封线内和答题卡上面的项目填涂清楚;3.请在答题卡相应位置作答,不要超出答题区域,不要答错位置.第Ⅰ卷选择题(共44分)一、单项选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得4分,错选、不选均记0分)1.下列用于证明勾股定理的图形中,是轴对称图形的是()A. B. C. D.2.爱达·魔都号,是中国第一艘国产大型邮轮,全长323.6米,总吨位为13.55万吨,可搭载乘客5246人.将13.55万吨用科学记数法表示为()A.吨B.吨C.吨D.吨3.中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的俯视图为()A. B. C. D.4.实数a,b在数轴上的位置如图所示,则下列判断正确的是()A. B. C. D.5.如图,正五边形ABCDE内接于,P为劣弧上的动点,则的大小为()A. B. C. D.不能确定6.如图,在直角坐标系中,一次函数的图象与反比例函数的图象交于,两点,与y轴、x轴分别交于C,D两点,下列结论正确的是()A. B.C.当时,D.连接OA,OB,则二、多项选择题(本大题共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)7.下列运算正确的是()A. B. C. D.8.如图,在中,,,观察尺规作图的痕迹,下列结论正确的是()第8题图A. B. C. D.9.如图,是用计算机模拟随机投掷一枚图钉的某次实验的结果.下面是根据实验结果所作出的四个推断,其中合理的是()第9题图A.当投掷次数是1000时,“钉尖向上”的次数是620B.当投掷第1000次时,“钉尖向上”的概率是0.620C.随着实验次数的增加,“钉尖向上”的频率趋近于0.618,故可以估计其概率是0.618D.若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.62010.如图,圆柱体的母线长为2,BC是上底的直径.一只蚂蚁从下底面的点A处出发爬行到上底面的点C处.设沿圆柱体侧面由A处爬行到C处的最短路径长为,沿母线AB与上底面直径BC形成的折线段爬行到C 处的路径的长为.当圆柱体底面半径r变化时,为比较与的大小,记,则d是r的二次函数,下列说法正确的是()A.该函数的图象都在r轴上方B.该函数的图象的对称轴为C.当时,D.当时,第Ⅱ卷非选择题(共106分)说明:将第Ⅱ卷答案用0.5mm的黑色签字笔答在答题卡的相应位置上.三、填空题(本大题共4小题,每小题4分,共16分.只填写最后结果)11.因式分解:______.12.已知x是满足的整数,且使的值为有理数,则______.13.已知关于x的一元二次方程的两个根为,,且,则______.14.如图,在中,,,,以B为圆心BC为半径画弧,分别交CD,AB 于点F,E,再以C为圆心CD为半径画弧,恰好交AB边于点E,则图中阴影部分的面积为______.四、解答题(本大题共8小题,共90分.请写出必要的文字说明、证明过程或演算步骤)15.(本题10分)(1)下面是小亮解一道不等式的步骤,请阅读后回答问题.解不等式:解去分母,得…… 第一步移项,得…… 第二步合并同类项,得…… 第三步系数化为1,得…… 第四步①小亮的解法有错吗?如果有,错在哪一步?并给出改正.②小亮解不等式的过程中从第一步到第二步的变形依据是什么?(2)先化简再求值:,已知.16.(本题10分)如图,在平面直角坐标系中,的顶点坐标分别是,,,按要求完成下列问题.(1)将向左平移2个单位长度得到,直接写出点,,的坐标;(2)将绕点A顺时针旋转得到,画出,并写出,的坐标;(3)点C的坐标为,用作图的方法在x轴上确定一点M,使最小,并写出点M的坐标.17.(本题11分)如图1,某社区服务中心在墙外安装了遮阳棚,便于居民休憩.在如图2的侧面示意图中,遮阳棚AM长为5米,其与墙面的夹角,其靠墙端离地高AB为3.9米,ME是为了增加纳凉面积加装的一块前挡板(前挡板垂直于地面).(参考数据:,,,)图1 图2(1)求出遮阳棚前端M到墙面AB的距离;(2)已知本地夏日正午的太阳高度角(太阳光线与地面夹角)最小为,若此时房前恰好有3.7米宽的阴影BC,则加装的前挡板的宽度ME的长是多少?18.(本题11分)随着快递行业在农村的深入发展,全国各地的特色农产品有了更广阔的销售空间.不同的快递公司在配送、服务、收费和投递范围等方面各具优势,某农产品种植户经过前期调研,打算从甲、乙两家快递公司中选择一家合作.为此,该种植户收集了10家农产品种植户对两家公司的相关评价,并整理、描述、分析如下:配送速度和服务质量得分统计表项目配送速度得分服务质量得分统计量快递公司平均数中位数平均数方差甲7.8m7乙887(1)补全频数直方图,并求扇形统计图中圆心角的度数;(2)表格中的______;______(填“>”“=”或“<”);(3)综合上表中的统计量,你认为该农产品种植户应选择哪家公司?请说明理由;(4)如果A,B,C三家农产品种植户分别从甲、乙两个快递公司中任选一个公司合作,求三家种植户选择同一快递公司的概率.19.(本题12分)某校羽毛球社团的同学们用数学知识对羽毛球技术进行分析,下面是他们对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离米,米,米,击球点P在y轴上.他们用仪器收集了扣球和吊球时,羽毛球的飞行高度y(米)与水平距离x(米)的部分数据,并分别在直角坐标系中描出了对应的点,如下图所示.同学们认为,可以从,,中选择适当的函数模型,近似的模拟两种击球方式对应的羽毛球的飞行高度y(米)与水平距离x(米)的关系.(1)请从上述函数模型中,选择适当的模型分别模拟两种击球方式对应的羽毛球的飞行高度y(米)与水平距离x(米)的关系,并求出函数表达式;(2)请判断上面两种击球方式都能使球过网吗?如果能过,选择哪种击球方式使球的落地点到C点的距离更近;如果不能,请说明理由.20.(本题12分)如图,内接于,AB是直径,点E在圆上,连接EB,EC,交AB于点F,过点C作CD交AB 的延长线于点D,使.(1)求证:CD是的切线;(2)若,,,求的长.21.(本题11分)某无人机租赁公司有50架某种型号的无人机对外出租,该公司有两种租赁方案:方案A:如果每架无人机月租费300元,那么50架无人机可全部租出.如果每架无人机的月租费每增加5元,那么将少租出1架无人机.另外,公司为每架租出的无人机支付月维护费20元.方案B:每架无人机月租费350元,无论是否租出,公司均需一次性支付月维护费共计185元.说明:月利润=月租费-月维护费.设租出无人机的数量为x架,根据上述信息,解决下列问题:(1)当时,按方案A租赁所得的月利润是______元,按方案B租赁所得的月利润是______元;(2)如果按两种方案租赁所得的月利润相等,那么租出的无人机数量是多少?(3)设按方案A租赁所得的月利润为,按方案B租赁所得的月利润为,记函数,求w的最大值.22.(本题13分)【问题情境】综合与实践课上,老师发给每位同学一张正方形纸片ABCD.在老师的引导下,同学们在边BC上取中点E,取CD边上任意一点F(不与C,D重合),连接EF,将沿EF折叠,点C的对应点为G,然后将纸片展平,连接FG并延长交AB所在的直线于点N,连接EN,EG.探究点F在位置改变过程中出现的特殊数量关系或位置关系.图1 图2 图3【探究与证明】(1)如图1,小亮发现:.请证明小亮发现的结论.(2)如图2、图3,小莹发现:连接CG并延长交AB所在的直线于点H,交EF于点M,线段EN与CH 之间存在特殊关系.请写出小莹发现的特殊关系,并从图2、图3中选择一种情况进行证明.【应用拓展】在图2、图3的基础上,小博士进一步思考发现:将EG所在直线与AB所在直线的交点记为P,若给出BP 和BC的长,则可以求出CF的长.请根据题意分别在图2、图3上补画图形,并尝试解决:当,时,求CF的长.九年级数学试题参考答案一、单选题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来每小题选对得4分,错选、不选均记0分)二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)三、填空题(本大题共4小题,每小题4分,共16分.只填写最后结果)11.12.5 13.214.四、解答题(本题共8小题,共90分.请写出必要的文字说明、证明过程或演算步骤)15.解:(本题10分,第(1)题4分,第(2)题6分)(1)①有错误,第四步,……2分②不等式的基本性质1(只答不等式的基本性质不得分)………………………4分(2) (1)分 (3)分……4分由得………………………………………………………5分所以,原式…………………………………………………………………6分16.(本题10分)(1),,……3分题号123456答案CBADCD题号78910答案BDACDACBCD(2)……5分,…………………………………………………………………7分(3)……9分……………………………………………………………………………10分17.(本题11分)解:(1)过点M作,垂足为F,在中,……2分所以,………………………………………3分(2)延长ME交BC于点N,由题意可知,垂足为N,又因为,,所以四边形MFBN为矩形,所以,,……………………………………4分所以,……………………………………5分在中,………………7分在中,……………9分所以,,所以,……………………………………………10分所以,…………………………11分18.(本题11分)解:(1)……………………………………………1分……………………………………………2分(2)7.5,<…………………………………………………………………………………4分(3)应选择甲公司(答案不唯一),……………………………………………………5分理由:因为,甲和乙配送速度得分的平均数和中位数相差不大,服务质量得分的平均数相同,但是甲的方差明显小于乙的方差.所以,甲更稳定,故应选择甲公司.…………………………………………………7分(4)……………………………9分所以,三家种植户选择同一快递公司的概率是…………………………………11分19.(本题12分)(1)扣球方式:将,代入得:…………………………………………………………………………1分解得:………………………………………………………………………2分所以,………………………………………………………………3分吊球方式:将,代入中,得:……………………………………………………………4分解得:…………………………………………………………………………5分所以,…………………………………………………………6分(2)能,将代入,得,,将代入,得,,所以,两种击球方式都能过网…………………………………………………………8分将代入,得,,将代入,得,,(舍去)…………………………………………10分因为米,米,所以米,所以点C的横坐标为5.因为………………………………………………………………11分所以,选择吊球方式,球的落地点到C点的距离更近………………………………12分20.(本题12分)(1)证明:连接OC,因为AB为的直径所以,所以………………………………1分因为,所以,因为,所以--------------------------------2分所以,因为,所以----------------------------------3分所以---------------------------4分所以,所以CD是的切线-------------------------------5分(2)解:因为,AB为的直径,所以,---------7分在中,,所以-------------------------------------------------8分所以------------9分因为,所以为等边三角形,所以---------------------------10分所以的长度--------------12分21.(本题11分)解:(1)当时,,……………………………………………1分当每月租出的无人机为10架时,按方案A租赁所得的月利润是4800元;,………………………………………………………………2分当每月租出的无人机为10架时,按方案B租赁所得的月利润是3315元;(2)由题意可得:,……………………………4分解得:或(舍),……………………………………………………………6分∴当租出的无人机为37架时,按两种方案租赁所得的月利润相等;………………7分(3)根据题意,得………………………………………8分…………………………………………………………………………9分因为,函数图象开口向下,因为对称轴为直线,………………………………………………………10分所以当时,w最大,.………………11分22.(本题13分)(1)证明:因为四边形ABCD是正方形,所以,因为是由沿EF折叠所得,点C的对应点为G,所以,,.…………………………………1分所以.所以和均为直角三角形.因为E为BC的中点,所以.所以.因为,…………………………………………………2分所以.所以.…………………………………………3分所以.所以.……………………………………………4分图1(2)且.证明:因为是由沿EF折叠所得所以.…………………5分因为,所以.所以.所以.…………………6分所以.…………………7分因为E为BC中点,所以.所以,即N为BH的中点,图2 图3(3)解:①如图4,因为E为BC中点,,所以.所以.因为,所以在中,.所以.………………………………………………………………9分因为,所以.设GN为x,所以.所以.所以在中,.所以.解得.所以.…………………………………………………………………………10分因为,所以.因为,所以在中,.所以,又因为,所以.所以.图4②如图5因为E为BC中点,,所以.所以.因为,所以在中,.所以.因为,,所以.所以.所以.所以.…………………………………………………12分同①可得,所以.所以…………………………………………………………13分图5。
2022-2023学年度下学期九年级数学中考模拟卷一、选择题(本大题共10个小题,每小题3分,满分30分)1.在-1,0,4,-5这几个数中,最小的数是( )A.-1B.0C.4D.-52.下列立体图形中,主视图是三角形的是( )A .B .C .D .3.下列运算正确的是( )A. B.C. D.4.如图.已知直线a ∥b .直线c 与直线a 、b 分别交于点A ,B ,若∠1=54°,则∠2等于( )A.126°B.134°C.130°D.144°5.不等式组的解集在数轴上表示正确的是( )A . B .C .D .6.下列说法正确的是( )A.为了解我国中小学生的睡眠情况,应采取全面调查的方式B.一组数据1,2,5,5,5,3,3的众数和中位数都是5C.若甲、乙两组数据的方差分别是0.01,0.1,则甲组数据比乙组数据更稳定D.抛掷一枚硬币200次,一定有100次“正面向上”22=-a a 1122-=-a a )(236a a a =÷62342a a =-)(⎩⎨⎧<-≥+xx x 29217.如图,四边形ABCD 的两条对角线相交于O ,且互相平分,添加下列条件仍不能判断四边形ABCD 是菱形的是( )A.AC ⊥BDB.AB=ADC.AC=BDD.∠ABD=∠CBD8.已知反比例函数,下列结论不正确的是( )A.图象必经过点(-1,-2) B.当时,y 随x 的增大而减小C.图象在第一、三 象限D.若时,则10. 如图是二次函数的图象,下列说法:①,②,③,④,⑤当时,随的增大而减小,其中正确的是( ) A .①②③B .①②④C .②③④D .③④⑤二、填空题(本大题共6个小题,每小题3分,满分18分)11. 式子在实数范围内有意义,则的取值范围是 .12. 2003年2月14日,襄阳市召开2022年经济运行情况新闻发布会,公布了相关数据:2022年全市实现地区生产总值5827.81亿元,稳居全省第二位.将数据5827.81用科学记数法表示为 .13. 从2名男生和2名女生中任选2名学生参加志愿者服务,那么选出的2名学生中至少有1名女生的概率是 .14. 某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么一个月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是_____元/件,才能在一个月内获得最大利润.15. 已知,⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F ,点P 是⊙O 上异于E ,F的一点,若∠BAC=50°,则∠EPF= .xy 2=0>x 1>x 2>x 2y ax bx c =++0>ac 20a b +>24ac b <0a b c ++<0x >y x 2-x x三、解答题(本大题共9个题,满分72分)17.(本小题满分6分)先化简,再求值:,其中.18.(本小题满分6分)某中学为了解学生对“爱眼护眼”知识的知晓情况,从七、八年级中各随机抽取了20名学生进行调查测试(百分制),测试成绩均不低于50分,对测试成绩进行了收集、整理、分析、描述、应用,将测试成绩共分五组:A.50≤x <60B.60≤x <70 C.70≤x <80 D.80≤x <90 E.90≤x ≤100. 并绘制了不完整的统计图(如图所示),请将统计过程中的有关问题补充完整.Ⅰ.收集、整理数据七年级20名学生的测试成绩分别为:51,66,68,73,75,78,85,86,86,86,87,87,87,87,90,91,93,93,94,97.八年级学生测试成绩在C 组和D 组的分别为:76,78,78,78,78,78,78,84,86,88,89.Ⅱ.分析数据Ⅲ.描述、应用数据(1)补全频数分布直方图(直接在图中作答);(2)统计表格中a = ,b = ,c = ;(3)从样本数据分析可以看出,测试成绩较好且比较整齐的是 年级(填“七”或“八”);(4)若该中学七年级共有学生300名,八年级共有学生200名,则估计七、八年级本次测试成绩不低于80分的总人数为 .成绩平均数中位数众数方差七年级8386.5a 122.6八年级81b c 128.85121)11(22+--÷--x x x x x 15-=x 10%10%E D C B A 八年级测试成绩扇形图第18题图七年级测试成绩频数分布直方图19.(本小题满分6分)如图,在Rt △ABC 中,∠A =90º,BH ‖AC.(1) 尺规作图:作BC 的垂直平分线,交AC 于E ,交BH 于D ,(保留作图痕迹,不写作法);(2) 连接BE 、CD,求证:四边形BECD 是菱形.20.(本小题满分6分)关于x 的一元二次方程++1=0有两个不相等的实数根,.(1)求k 的取值范围;(2)若+=3,求k 的值及方程的根.21.(本小题满分6分)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31°,再向东继续航行30m 到达B 处,侧的灯塔的最高点C 的仰角为45°,根据测得的数据,计算这座灯塔的高度CD.(结果保留整数)参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)()221x k x -+2k 1x 2x 1x 2x22.(本小题满分8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E.过点D作DF⊥AC ,垂足为点F.(1)求证:直线DF是⊙O的切线;(2)若⊙O的半径为4, ∠CDF=22.5°, 求阴影部分的面积.23.(本小题满分10分)某儿童用品专卖店进货时发现:8件A商品和4件B商品共需640元;4件 A 商品和3件B商品共需380元.已知两种商品共进货300件,其中B商品购进x件(80≤x≤200),A商品每件售价为60元,B商品的销售额y(元)与销量x(件)之间的关系如图所示:⑴求A,B 每件商品的进价各是多少元?⑵设销售A,B两种商品所获总利润为w元,请分别求出当80≤x≤100和100<x≤200时,w与x之间的函数关系式;⑶在⑵的条件下,若该专卖店按获得最大利润的情况进货,为了让利消费者,该体育专卖店把A商品的售价每件降低m元,B商品的售价每件降低2m 元.购进的300件A,B商品全部售完时,超市的利润要想不低于4000元,求m的最大值.24.(本小题满分12分)如图,已知矩形ABCD 中,E 是边AD 上一点,将△BDE沿BE 折叠得到△BFE ,连接DF.(1)初步探究如①图1,当,BF 落在直线BA 上时.①填空:______;②求证:∠EBA =∠FDA ;(2)深入思考如图2,当,BF 与边AD 相交时,在BE 上取一点G ,使∠BAG =∠DAF ,AG 与BF 交于点H ,求的值(用含n 的式子表示),并说明理由;(3)拓展延伸在(2)的条件下,当,E 是AD 的中点时,若,求AG 的长.1ABAD ==AEAF )1n ABAD ≠=n (AGAF 2=n 12FH FD =∙25.(本小题满分12分)参考答案一、选择题:(本大题共10个小题,每小题3分,满分30分)1.C2.D3.D4.A5.C6.C7.C8.D9.B 10.C二、填空题:(本大题共6个小题,每小题3分,满分18分)11. 12. 13. 14.35 15.65°或115° 16.三、解答题:(本大题共9个题,满分72分)17.(本小题满分6分)解:原式 = …………………… 1分= ………………………… 2分 = …………………………… 3分= ……………………………… 4分当x =时,原式== ……………… 6分18.(本小题满分6分)解:(1)补全直方图如图所示; ……………… 1分(2)a =87,b =78,c =78; …………………… 4分(3)七; ………………………… 5分(4)300. ……………………………………6 分19.(本小题满分6分)解:(1) 如图,直线DE 为所求; ……………… 3分(2) 证明:DE 交BC 于F ,如图,∵DE 垂直平分BC ,∴BF=CF,又∵BH ‖AC ,∴∠1=∠2,∠3=∠4, ……………… 4分2≥x 31082781.5⨯65522)1()1)(1()111(--+÷----x xx x x x x 2)1()1)(1(1)1(--+÷---x xx x x x )1)(1()1(112-+-∙-x x x x 11+x 15-1151+-5155第18题答案图在△BDF 和△CEF 中,,∴△BDF ≌△CEF(AAS), ∴BD=CE ,∵BD ‖CE ,∴四边形BECD 是平行四边形.……………… 5分又∵DE ⊥BC ,∴平行四边形BECD 是菱形.……………… 6分20.(本小题满分6分)解:(1)由题意可得:△==>0,解得k >. ………………… 2分(2)由根与系数关系可知:+=-=2k+1,∴2k+1=3,解得,k =1>(符合题意), ………………… 4分把k =1代回原方程,原方程为,解得,. ………………… 6分21.(本小题满分6分)解: 如图,根据题意∠CAD=31°,∠CBD=45°,∠CDA=90°,AB=30,∵在Rt △ACD 中,∠CBD=45°,∴∠BCD=45°,∴BD=CD, …………………1分设CD=x,则BD=x,AD=30+x,∵在Rt △ACD 中,tan ∠CAD=, ∴, …………………3分∴x=0.60×(30+x),∴x=45, ∴CD=45. …………………5分(此处若列分式方程,未检验扣1分)答:这座灯塔的高度CD 约为45m. …………………6分⎪⎩⎪⎨⎧=∠=∠∠=∠CF BF 432124b ac -()()222141k k -+-+⎡⎤⎣⎦341x 2x b a3423+2=0x x -11x =22x =ADCD AD CAD ∙∠=tan CD22.(本小题满分8分)解:(1)连接AD,OD ,∵AB 是直径,∴∠ADB=90°,∴AD ⊥BC. ……………1分∵AB=AC,∴D 是BC 的中点.∵O 是AB 的中点,∴OD//AC. ……………………2分∴∠ODF+∠DFA=180°∵DF ⊥AC,∴∠DFA=90°.∴∠ODF=90°. ∴OD ⊥DF∴DF 是⊙O 的切线. ……………………………………4分(2)连接OE ,∵∠ADB=∠ADC=90°,∠DFC=∠DFA=90°,∴∠DAC=∠CDF=22.5°∵AB=AC,D 是BC 中点,∴∠BAC=2∠DAC=2×22.5°=45°. …………………………5分∴. ……………8分23.(本小题满分10分)解:(1)设 A ,B 两件商品的进价分别是a 元,b 元,则:,解得: ……………1分答:A ,B 两件商品的进价分别是50元,60元. …………2分(2)① 当80≤x ≤100时,设y=kx ,由题意知图象经过(100,8000),即 100k =8000,解得 k =80∴y =80x …………………3分w=(60−50)(300−x)+80x −60x=10x+3000…………………4分8444213601690S S S AOE AOE -=⨯⨯-⨯⨯=-=∆ππ扇形阴影⎩⎨⎧=+=+3803464048b a b a ⎩⎨⎧==6050b a② 当100≤x ≤200 时,设 y=kx+b ,由题意知图象经过(100,8000),(200,15500),,解得: ∴y =75x +500, ……………………………5分∴w=(60−50)(300−x)+75x+500−60x=5x+3500 ……………6分(3)当80≤x ≤100,w=10x+3000时,因为k =10>0,所以w 随x 的增大,∴当 x =100 时,w 有最大值,即w=10×100+3000=4000. ………………………7分当100≤x ≤200,w=5x+3500时,因为k =5>0,所以w 随x 的增大而增大,∴当x =200时,w 有最大值即w=5×200+3500=4500.…………………………………8分∵4500>4000,∴该专卖店按A 商品进货100件,B 商品进货200件时,可获得最大利润. ………………………………9 分(60-m -50)×100+15500-200×60-200×2m ≥4000.解得m ≤1.∴m 的最大值是1. …………………………… 10分24.(本小题满分12分)(1) ①;…………………… 1分 ②证明:如图1,∵,∴AD=AB , ∵四边形ABCD 是矩形,∴四边形ABCD 是正方形,…………………… 2分∴,,由折叠可知:,,∵折叠时BF 落在直线BA 上,∴,∴,∴AE=AF , ………………………………… 3分∴△EAB ≌△FAD(SAS),⎩⎨⎧=+=+155002008000100b k b k ⎩⎨⎧==50075b k 1AEAF =1ABAD =045ADB ABD =∠=∠090DAB =∠DBE FBE ∠=∠045BDE BFE =∠=∠090DAB FAE =∠=∠045AFE AEF =∠=∠∴; ……………………………… 4分(2),理由如下: ……………………5分如图2,延长BE 交DF 于点T ,由折叠可知BE 垂直平分DF ,∴∵四边形ABCD 是矩形,∴,∵,∴,∵,∴△DAF ∽△BAG ,∴;(此题也可以利用(1)中②的结论直接证明) …………… 7分(3) 如图3,延长BE 交DF 于点T ,连接FG ,∵是AD 的中点,∴DE=AE ,由折叠可知:EF=DE ,∴EF=DE=AE ,∴△ADF 为直角三角形,∴,……………………8分由(2)知 ∴△DAF ∽△BAG ,∴,∴, ∴,,∵ BT ⊥FD ,∴ ∠DTE =∠AGE =90∘,在和中,{∠DTE =∠AGE ∠DET =∠AEG DE =AE ,FDA EBA ∠=∠n =AGAF 090DET FDA =∠=∠090ABE =∠=∠AEB DET AEB ∠=∠E FDA AB ∠=∠BAG ∠=∠DAF n ABAD ==AG AF 090=∠DFA 090AFD =∠=∠AGB 2n GB FD ====ABAD AG AF AG 2AF =AB 2AD =DTE ∆AGE ∆∴△DTE ≌△AGE(AAS),∴DT=AG , ……………………9分设AG=x ,则DT=x ,由折叠得:BE 垂直平分FD ,∴FT =DT =x ,FD =2DT =2x ,∴GB =22FD =22×2x =2x ,∴AF =GB =2x ,在Rt △AGB 中,,∵AD =2AB ,∴AD =2×3x =6x ,∵四边形ABCD 是矩形,∴,∴BF =BD =A B 2+A D 2=(3x )2+(6x )2=3x ,∵∠BAG =∠DAF ,∴∠BAG +∠DAG =∠DAF +∠DAG ,即,又,∴∠AGB =∠GAF =90∘,∴AF//GB ,又∵,∴四边形ABGF 是平行四边形,∴FH =BH =12BF =12×3x =32x ,又∵,,即,∴,∴. ………………………………12分x x x BG AG AB 3)2(2222=+=+=090=∠BAD o GAF BAD 90=∠=∠o AGB 90=∠x GB AF 2==12=∙FH FD 12232=∙x x 42=x 2=x 2=AG∴x 的取值范围为1≤x ≤5. ……………………8分…………………………… 9分…………………………… 10分………………………………… 12分。
一、选择题(每题5分,共50分)1. 若一个等差数列的前三项分别为2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 42. 下列函数中,在定义域内是单调递增的是()A. y = -x^2 + 4x - 3B. y = 2x - 1C. y = 1/xD. y = x^33. 在平面直角坐标系中,点A(2,3),点B(-1,4)关于直线y=x的对称点分别是()A. A'(3,2),B'(4,-1)B. A'(3,2),B'(-1,4)C. A'(-1,4),B'(3,2)D. A'(-1,4),B'(4,-1)4. 已知三角形ABC中,∠A=60°,∠B=45°,∠C=75°,则AB:AC:BC=()A. 1:√3:2B. √3:1:2C. 2:√3:1D. 1:2:√35. 在等腰三角形ABC中,AB=AC,AD是底边BC上的高,且AD=4cm,AB=8cm,则BC的长度是()A. 8cmB. 12cmC. 16cmD. 10cm6. 已知函数f(x) = ax^2 + bx + c,若f(1) = 4,f(2) = 8,f(3) = 12,则a、b、c的值分别是()A. a=2,b=0,c=2B. a=1,b=2,c=1C. a=0,b=2,c=2D. a=1,b=0,c=17. 下列数列中,是等比数列的是()A. 1,2,4,8,16B. 1,3,9,27,81C. 1,4,16,64,256D. 1,2,4,8,16,328. 已知函数y = log2(x - 1),则其定义域是()A. x > 1B. x ≥ 1C. x > 0D. x ≥ 09. 在平面直角坐标系中,点P(-2,3)关于直线y=x+1的对称点Q的坐标是()A. Q(3,-2)B. Q(-2,3)C. Q(-3,2)D. Q(2,-3)10. 若一个数的平方根是2,则这个数是()A. 4B. -4C. 8D. -8二、填空题(每题5分,共50分)11. 已知数列{an}是等比数列,若a1=3,公比q=2,则a10=________。
2024年山东省泰安九年级中考数学模拟试题(四)一、单选题1.2018-的绝对值是( )A .12018B .2018-C .2018D .12018- 2.2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为( ) A .0.827×1014 B .82.7×1012 C .8.27×1013 D .8.27×1014 3.下列四个图案中,不是轴对称图形的是( )A .B .C .D .4.下列运算正确的是( )A .358x x x +=B .()()2111y y y +-=-C .1025a a a ÷=D .()3263a b a b -= 5.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( )A .众数是60B .平均数是21C .抽查了10个同学D .中位数是50 6.一辆汽车从A 地出发,向东行驶,途中要经过十字路口B ,在规定的某一段时间内,若车速为每小时60千米,就能驶过B 处2千米;若每小时行驶50千米,就差3千米才能到达B 处,设A 、B 间的距离为x 千米,规定的时间为y 小时,则可列出方程组是( )A .602350y x x y-=⎧⎨=-⎩ B .602503y x y x -=⎧⎨-=⎩ C .602503y x y x =+⎧⎨=-⎩ D .602503y x y x =-⎧⎨=+⎩7.小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程组为( )A .5000085%11095000x y x y +=⎧⎨+=⎩B .50000115%90%95000x y x y -=⎧⎨-=⎩C .5000085%110%95000x y x y +=⎧⎨-=⎩ D .5000085%110%95000x y x y -=⎧⎨-=⎩ 8.二次函数()20y ax bx c a =++≠的图象如图,则函数a b y x+=与函数y bx c =+的图象可能是( )A .B .C .D .9.如图,M e 和N e 都经过A ,B 两点,且点N 在M e 上.点C 是优弧¼ANE 上的一点(点C 不与A ,B 重合),AC 的延长线交N e 于点P ,连接,,AB BC BP .若30APB ∠=︒,3AB =,则MN 长为( )AB .3CD 10.对任意实数x ,二次函数20y ax bx c a =++≠()满足2225246x x y x x ++≤≤++,则a b c -+的值是( )A .2B .3C .4D .511.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,OG AB ⊥,垂足为G ,延长GB 至点E ,使得GE BC =,连接OE 交BC 于点F .若12AB =,8BC =,则BF 的长为( )A .12B .1C .32D .212.如图,是二次函数2y ax bx c =++图象的一部分,在下列结论中:①0abc >;②0a b c -+>;③210ax bx c +++=有两个相等的实数根;④42a b a -<<-;其中正确的结论有( )A .1个B .2 个C .3 个D .4个二、填空题13.已知2023x =,则x 的取值范围是.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为.15.二次函数y =ax 2+bx+c 的图象如图所示,下列结论:①ab >0;②a+b ﹣1=0;③a >1;④关于x 的一元二次方程ax 2+bx+c =0的一个根为1,另一个根为﹣1a.其中正确结论的序号是.16.如图,矩形ABCD 中,以A 为圆心,AB 的长为半径画圆,交CD 于点E ,再以D 为圆心,DA 的长为半径画圆,恰好经过点E .已知AB =2AD =,则图中阴影部分的面积为.17.如图,已知直线L :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3,…在直线L 上点B 1,B 2,B 3,…在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…均为等腰直角三角形,直角顶点都在x 轴上,则△A 2019B 2018B 2019的面积为.18.如图,在ABC V 中,90ACB ∠=︒,CD AB ⊥于点D .E 为线段BD 上一点,连结CE ,将边BC 沿CE 折叠,使点B 的对称点B '落在CD 的延长线上.若5AB =,4BC =,则AC E △的面积为.三、解答题19.(1)先化简,再求值:2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭,其中2m =; (2)解不等式组:()3125322x x x x ⎧-≥-⎪⎨+<⎪⎩①②并写出它的所有整数解. 20.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为; (2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.21.某公司引入一条新生产线生产A ,B 两种产品,其中A 产品每件成本为100元,销售价格为120元,B 产品每件成本为75元,销售价格为100元,A ,B 两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A ,B 两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A ,B 两种产品各多少件?(2)下个月该公司计划生产A ,B 两种产品共180件,且使总利润不低于4300元,则B 产品至少要生产多少件?22.如图,一次函数2y x b =-的图像与反比例函数k y x=的图像交于点A 、B 两点,与x 轴、y 轴分别交于C 、D 两点,且点A 的坐标为()3,2.(1)求一次函数和反比例函数的表达式.(2)求AOB V 的面积.(3)点P 为反比例函数图像上的一个动点,PM x ⊥轴于M ,是否存在以P 、M 、O 为顶点的三角形与COD △相似,若存在,直接写出P 点的坐标,若不存在,请说明理由. 23.在ABC V 中、()045B C αα∠=∠=︒<<︒,AM BC ⊥于点M ,D 是线段MC 上的动点(不与点M ,C 重合),将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足DF DC =,连接AE ,EF ,直接写出AEF ∠的大小,并证明.24.如图,矩形ABCD 中,点E 在DC 上,DE BE =,AC 与BD 相交于点O .BE 与AC 相交于点F .⊥;(1)若BE平分CBD∠,求证:BF AC(2)找出图中与OBFV相似的三角形,并说明理由;(3)若3OF=,2EF=,求DE的长度.25.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √-1B. πC. √4D. 无理数2. 如果 |a| = 5,那么 a 的值是()。
A. ±5B. 5C. -5D. 03. 下列各式中,正确的是()。
A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²4. 下列各图中,相似图形是()。
A.B.C.D.5. 一个等腰三角形的底边长为10cm,腰长为12cm,那么这个三角形的面积是()。
A. 60cm²B. 120cm²C. 100cm²D. 80cm²6. 如果x² - 5x + 6 = 0,那么 x 的值是()。
A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -47. 在直角坐标系中,点 A(-2,3)关于 x 轴的对称点是()。
A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)8. 下列函数中,是反比例函数的是()。
A. y = 2x + 3B. y = 3/xC. y = x²D. y = 3x9. 下列各式中,正确的是()。
A. a² = aB. (a + b)² = a² + b² + 2abC. (a - b)² = a² - b²D. (a + b)² = a² + b² - 2ab10. 下列各数中,绝对值最大的是()。
A. -3B. -2C. 1D. 0二、填空题(每题5分,共25分)11. 3 + (-5) 的值是 _______。
2024年江苏省宿迁市钟吾初级中学九年级中考数学模拟试题一、单选题1.在0,-31四个数中,最大的数是( ) A .0B .-3CD .12.若0a b >>,则下列不等式中错误的是( ) A .a b -<- B .11a b> C .a b b a ->-D .a b b a> 3.下列说法错误的是( ) A .等弧所对的圆心角相等 B .半圆是弧C .长度相等的两条弧是等弧D .半径相等的两个半圆是等弧 4.某女子排球队6名场上队员的身高(单位:cm )是:172,174,178,180,180,184.现用身高为177cm 的队员替换场上身高为174cm 的队员,与换人前相比,场上队员的身高( ) A .平均数变小,中位数不变 B .平均数变小,中位数变大 C .平均数变大,中位数不变D .平均数变大,中位数变大5.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象大致为( )A .B .C .D .6.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y 斗,那么可列方程组为( ) A .10375x y x y +=⎧⎪⎨+=⎪⎩B .10375x y x y +=⎧⎪⎨+=⎪⎩C .75103x y x y +=⎧⎪⎨+=⎪⎩D .75103x y x y +=⎧⎪⎨+=⎪⎩7.如图,Rt ABC V 中,90C ∠=︒,5AB =,BC=D 在折线ACB 上运动,过点D 作AB 的垂线,垂足为E .设AE x =,ADE S y =V ,则y 关于x 的函数图象大致是( )A .B .C .D .8.如图,将矩形纸片ABCD 沿对角线AC 所在直线折叠,点D 落在点D ¢处.过AC 的中点O 作OE BC ∥交A D ¢于点E .若8AB =cm ,6BC =cm ,则OE 的长为( )A .103B .4C .256D .5二、填空题9.把多项式3222x x y xy -+分解因式的结果是.10 11.2021全国人口普查结果显示,全国人口共141178万人,与2010年(第六次全国人口普查数据,下同)的133972万人相比,增加7206万人,增长5.38%,年平均增长率为0.53%,比2000年到2010年的年平均增长率0.57%下降0.04个百分点.数据7206万用科学记数法表示为.12.校园里一片小小的树叶,也蕴含着“黄金分割”,如图,P 为AB 的黄金分割点(AP PB >).如果AB 的长度为10cm ,那么AP 的长度为cm .13.已知一个圆锥侧面展开图是一个半圆,其底面圆半径为1,则该圆锥母线长为. 14.如图,D ,E 两点分别在AB AC ,上,AB AC =,要使ABE ACD @V V ,只需添加一个条件,则这个条件可以是.15.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 在线段BO 上,连接AE ,若3CD BE =,DAE DEA ∠=∠,1EO =,则线段AE 的长为.16.已知二次函数221y kx x =++的图象与x 轴有两个交点,则实数k 的取值范围是 . 17.如图,平面直角坐标系中,A 为函数ky x=(0x >)图像上的一点,其中()02B ,,AB AC ⊥,交x 轴于点C ,3AC AB =,若四边形ABOC 的面积为12,则k 的值为.18.在ABC V 中,90,ACB AC BC ∠=︒=,点D 在ABC V 内部,且满足2ACD BCD DAB ∠-∠=∠,若BCD △的面积为13,则CD =.三、解答题19.计算:2cos45°﹣(π﹣3)01|. 20.先化简,再求值:2344111x x x x x -+⎛⎫--÷ ⎪--⎝⎭,其中3x =. 21.毛泽东主席曾亲笔题词号召全国人民“向雷锋同志学习”,“雷锋精神”激励着一代又一代中国人.今年3月5号,某校团委组织全校学生开展“学习雷锋精神,爱心捐款活动”,活动结束后对本次活动的捐款抽取了样本进行了统计,制作了下面的统计表,根据统计表回答下面的问题:(1)本次共抽取了______名学生的捐款; (2)补全条形统计图;(3)本次抽取样本学生捐款的众数是______元,中位数是______元; (4)求本次抽取样本学生捐款的平均金额.22.(1)如图,已知ABC V ,P 为边AB 上一点,请用尺规作图的方法在边AC 上求作一点E ,使AE EP AC +=;(保留作图痕迹,不写作法)(2)在(1)的条件下,若E 在ABC ∠的平分线上,猜想APE ∠和ACB ∠的数量关系并证明.23.如图所示,甲、乙两个带指针的转盘分别被分成三个面积相等的扇形(两个转盘除表面数字不同外,其它完全相同),转盘甲上的数字分别是−6,−1,8,转盘乙上的数字分别是−4,5,7(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘甲指针指向正数的概率是__________;转盘乙指针指向正数的概率是__________.(2)若同时转动两个转盘,转盘甲指针所指的数字记为a ,转盘乙指针所指的数字记为b ,请用列表法或树状图法求满足a +b <0的概率.24.2022年举世瞩目的北京冬奥会的成功举办掀起了全民冰雪运动的热潮.图1、图2分别是一名滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿ED 与斜坡AB 垂直,大腿EF 与斜坡AB 平行,G 为头部,假设G ,E ,D 三点共线且头部到斜坡的距离GD 为1.05m ,上身与大腿夹角53GFE ∠=︒,膝盖与滑雪板后端的距离EM 长为0.9m ,30EMD ∠=︒(1)求此滑雪运动员的小腿ED 的长度;(2)求此运动员的身高.(运动员身高由GF EF DE 、、三条线段构成;参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)25.如图,AB 是O e 的直径,点D 是»BC的中点,PAC ADC ∠=∠,且CD AD 与BC 交于点E .(1)求证:PA 是O e 的切线;(2)若1tan 3CAD ∠=,求DE 的长;26.某超市用5000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次每千克的进价比第一次的进价提高了5元,购进干果数量是第一次的1.5倍.(1)该种干果的第一次进价是每千克多少元?(2)如果超市按每千克40元的价格出售,当大部分干果售出后,余下的100千克按售价的6折售完,超市销售这种干果共盈利多少元?(3)如果这两批干果每千克售价相同,且全部售完后总利淘不低于25%,那么每千克干果的售价至少是多少元?27.【问题背景】(1)如图1,点B ,C ,D 在同一直线上,B ACE D ∠=∠=∠,求证:ABC CDE ∽△△; 【问题探究】(2)在(1)条件下,若点C 为BD 的中点,求证:2AC AB AE =⋅; 【拓展运用】(3)如图2,在ABC V 中,90BAC ∠=︒,点O 是ABC V 的内心,若OA =OB ,则BC 的长为______.28.如图1,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴相交于点A ,B (A 在B 的左边),与y 轴相交于点C ,已知()1,0A 、()3,0B ,()0,3C ,M 是y 轴上的动点(M 位于点C 下方),过点M 的直线l 垂直于y 轴,与抛物线相交于两点P 、Q (P 在Q 的左边),与直线BC 交于点N .(1)求抛物线的表达式;(2)如图1,四边形PMGH 是正方形,连接CP ,PNC △的面积为1S ,正方形PMGH 的面积为2S ,求12S S 的取值范围; (3)如图2,以点O 为圆心,OA 为半径作O e .①动点F 在O e 上,连接BF CF 、,请直接写出13BF CF +的最小值为 ;②点P 是y 轴上的一动点,连接PA PB 、,当sin APB ∠的值最大时,请直接写出P 的坐标.。
菏泽市二0二四年初中学业水平考试(模拟)数学试题本试卷共4页,共24个题。
满分120分,时间120分钟。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、考生号和座号填写在答题卡和试卷规定的位置上。
考试结束后,将试卷和答题卡一并交回。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第I 卷选择题部分(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.1.下面四个数中,最小的是()A .(1)--B .2(0.2)-C .|3|--D .13-2.2020年12月3日.中共中央政治局常务委员会召开会议,听取脱贫攻坚总结评估汇报.中共中央总书记习近平主持会议并发表重要讲话.指出经过8年持续奋斗,我们如期完成了新时代脱贫攻坚目标任务,现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,消除了绝对贫困和区域性整体贫困,近1亿贫困人口实现脱贫,取得了令全世界刮目相看的重大胜利.将100000000用科学记数法表示为()A .80.110⨯B .7110⨯C .8110⨯D .81010⨯3.如图几何体中,主视图是三角形的是()A .B .C .D .4.如图,将矩形纸片ABCD 沿AC 折叠,使点B 落到点B '处,2∠等于()第4题图A .1∠B .21∠C .901︒-∠D .9021︒-∠5.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是()第5题图A .37.8C ︒B .38C ︒C .38.7C ︒D .39.4C︒6.如图,AB 是半圆O 的直径,,2,30,AC AD OC CAB E ==∠=︒为线段CD 上一个动点,连接OE ,则OE 的最小值为()第6题图A B .1C D .27.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+和反比例函数c y x=在同一平面直角坐标系中的图象可能是()第7题图A .B .C .D .8.正ABC △的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数的图像大致为()第8题图A .B .C .D .第II 卷非选择题部分(共96分)二、填空题:本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.9.已知3m n +=,则226m n n -+=______.10.若代数式12x-有意义,则实数x 的取值范围是______.11.如图,是一张撕掉一个角的四边形纸片,根据图中所标示的数据,可得被撕掉的A ∠大小为______.第11题图12.如图,两半圆的圆心点1O 、2O 分别在直角ABC △的两直角边AB 、AC 上,直径分别为AB 、CD ,如果两半圆相外切,且10AB AC ==,那么图中阴影部分的面积为______.第12题图13.设实数,,a b c 满足:2223,4a b c a b c ++=++=,则222222222a b b c c a c a b +++++=---______.14.直角坐标系中,函数y =和3y x =-的图象分别为直线12,l l ,过2l 上的点131,3A ⎛⎫- ⎪ ⎪⎝⎭作x 轴的垂线交1l 于点2A ,过点2A 作y 轴的垂线交2l 于点3A ,过点3A 作x 轴的垂线交1l 于点4,A ⋯依次进行下去,则点2020A 的横坐标为______.第14题图三、解答题:本题共78分,把解答和证明过程写在答题卡的相应区域内.15.(6分)(1)解分式方程:214124x x -=--;(2)计算:10181tan 603-⎛⎫-++-︒ ⎪⎝⎭16.(5分)解不等式组53(1)92151132x x x x --<⎧⎪-+⎨-≤⎪⎩,并在数轴上表示出其解集.。
1 32 (第5题)A .B .C .D . 九年级下册模拟试卷数学模拟试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号.3.所有的试题都必须在考用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答.在试卷或草稿纸上答题无效. 4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置.......上) 1.12-的相反数是( ) A .2 B .12 C .2- D .12-2.下列计算正确的是( )A .236a a a =· B .()()2222a b a b a b +-=-C .()2326aba b = D .523a a -=3.下列调查,适合用普查方式的是( )A .了解一批炮弹的杀伤半径B .了解扬州电视台《关注》栏目的收视率C .了解长江中鱼的种类D .了解某班学生对“扬州精神”的知晓率 4.已知相交两圆的半径分别为4和7,则它们的圆心距可能是( ) A .2 B .3 C .6 D .115.如图是由几个小立方块所塔成的几何的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是( )6.某反比例函数图象经过点()16-,,则下列各点中此函数图象也经过的点是( )A .()32-,B .()32,C .()23,D .()61,7.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( ) A .1个 B .2个C .3个D .4个 8.如图,在Rt ABC △中,90ACB ∠=°,30A ∠=°, 2BC =.将ABC △绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .302, B .602, C .602, D.60二、填空题(本大题共有10小题,每小3分,共30分.不需写出解答过程,请把答案直接填写在答题..卡相应位置.....上) 9.“十一五”期间,我市农民收入稳步提高,2010年农民人均纯收入达到9462元,将数据9462用科学记数法表示为______________. 10-=_______________. 11.因式分解:3244x x x -+=_______.12.数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是___________题.答对题数7 8 9 10 人数44816713.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A B 、两岛的视角ACB ∠=__________°.14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是___________.15.如图,O ⊙的弦CD 与直线径AB 相交,若50BAD ∠=°,则ACD ∠=___________°.E (第8题)北(第13题)B (第15题)A D E NCBM (第16题)16.如图,DE 是ABC △的中位数,M N 、分别是BD CE 、的中点,6MN =,则BC =_____________.17.如图,已知函数3y x=-与()200y ax bx a b =+>>,的图象交于点P ,点P 的纵坐标为1,则关于x 的方程230ax bx x++=的解为_____________.18.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为_____________.三、解答题(本大题共有10个小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)()()0332011422---+÷- (2)2111x x x -⎛⎫+÷ ⎪⎝⎭20.(本题满分8分)解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出它的所有整数解.(第17题) 475 (第18题)21.(本题满分8分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图. (1)本次抽测的男生有________人,抽测成绩的众数是_________; (2)请你将图2中的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?22.(本题满分8分)扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项. (1)每位考生有__________种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种主案用A B C 、、、…或①、②、③、…等符号来代表可简化解答过程)23.(本题满分10分)已知:如图,锐角ABC △的两条高BD CE 、相交于点O ,且O B O C =.(1)求证:ABC △是等腰三角形;(2)判断点O 是否在BAC ∠的角平分线上,并说明理由.4次20% 3次 7次 12% 5次6次图1抽测成绩/次图2A ED OBC24.(本题满分10分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A B、两工程队先后接力....完成.A工作队每天整治12米,B工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:128x yx y+⎧⎨+⎩乙:128x yx y+⎧⎪⎨+⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x y、表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示________________,y表示_______________;乙:x表示________________,y表示_______________.(2)求A B、两工程队分别整治河道多少米.(写出完整..的解答过程)25.(本题满分10分)如图是某品牌太阳能热火器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面O⊙的圆心O,支架CD与水平面AE垂直,150AB=厘米,30BAC∠=°,另一根辅助支架76DE=厘米,60CED∠=°.(1)求垂直支架CD的长度;(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,1.73)ODBACE26.(本题满分10分)已知:如图,在Rt ABC △中,90C BAC ∠=∠°,的角平分线AD 交BC 边于D .(1)以AB 边上一点O 为圆心,过A D 、两点作O ⊙(不写作法,保留作图痕迹),再判断直线BC 与O ⊙的位置关系,并说明理由;(2)若(1)中的O ⊙与AB 边的另一个交点为E,6AB BD ==,,求线段BD BE 、与劣弧DE 所围成的图形面积.(结果保留根号和π)27.(本题满分12分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题: (1)图2中折线ABC 表示________槽中水的深度与注水时间的关系,线段DE 表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是________________________________;(2)注水多长时间时,甲、乙两个水槽中水的深度相同? (3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积; (4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)A C DB 甲槽 乙槽图128.(本题满分12分)在ABC △中,90BAC AB AC M ∠=<°,,是BC 边的中点,MN BC ⊥交AC 于点N .动点P 从点B 出发沿射线BA时,动点Q 从点N 出发沿射线NC 运动,且始终保持MQ MP ⊥.设运动时间为t 秒(0t >). (1)PBM △与QNM △相似吗?以图1为例说明理由;(2)若60ABC AB ∠==°, ①求动点Q 的运动速度;②设APQ △的面积为S (平方厘米),求S 与t 的函数关系式;(3)探求22BP PQ CQ 2、、三者之间的数量关系,以图1为例说明理由.ABP NQC M ABNM 图1图2(备用图)参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8个小题,每小题3分,共24分)题号 12 3 4 5 6 7 8 选项 BC D C A A B C 二、填空题(本大题共有10小题,每小题3分,共30分)9.39.46210⨯ 1011.()22x x - 12.9 13.10514.25% 15.40 16.8 17.3- 18.39三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19.解:(1)原式=31122--=0. (2)原式=211x xx x +-·=()()111x xx x x ++-· =11x -. 20.解:解不等式(1),得2x <-, 解不等式(2),得5x -≥,∴原不等式组的解集为52x -<-≤. ∴它的所有整数解为:543---、、. 21.(1)50,5次. (2)(3)1614635025250++⨯=(人).抽测成绩/次20 18018020 答:该校350名九年级男生约有252人体能达标. 22.解:(1)4.(2)用A B C D 、、、代表四种选择方案.(其他表示方法也可) 解法一:用树状图分析如下:解法二:用列表法分析如下: 小刚小明A B C DA (A ,A ) (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,B ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,C )(C ,D )D(D ,A )(D ,B )(D ,C ) (D ,D )∴P (小明与小刚选择同种方案)=41164=. 23.(1)证明:BD CE 、是ABC △的高,90BEC CDB ∴∠=∠=°.OB OC OBC OCB =∴∠=∠,.又BC 是公共边,()BEC CDB AAS ∴△≌△.ABC ACB ∴∠=∠.AB AC ∴=,即ABC △是等腰三角形. (2)解:点O 在BAC ∠的角平分线上. 理由如下:BEC CDB BD CE ∴=△≌△,. OB OC OD OE =∴=,.又OD AC OE AB ⊥,⊥,∴点O 在BAC ∠的角平分线上.24.(1)甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数; 乙:x 表示A 工程队整治河道的米数,y 表示B 工程队整治河道的米数. 甲: 128x y x y +=⎧⎨+=⎩ 乙:128x y x y +=⎧⎪⎨+=⎪⎩(2)解:设A B 、两工程队分别整治河道x 米和y 米,A B C D A A B C D B A B C D C A B C D D 开始小明 小刚由题意得:18020128x y x y+=⎧⎪⎨+=⎪⎩ 解方程组得:60120x y =⎧⎨=⎩答:A B 、两工程队分别整治了60米和120米.25.解:(1)在Rt CDE △中,6076cm CED DE ∠==°,,sin 60CD DE ∴==·°.(2)设cm OD OB x ==, 在Rt AOC △中,30A ∠=°,2OA OC ∴=,即(1502x x +=+.解得150x =- 18.5≈ ∴水箱半径OD 的长度为18.5cm . 26.解:(1)作图正确(需保留线段AD 中垂线的痕迹). 直线BC 与O ⊙相切. 理由如下: 连结OD ,OA OD =,OAD ODA ∴∠=∠.AD 平分BAC ∠,OAD DAC ∴∠=∠. ODA DAC ∴∠=∠.OD AC ∴∥. 9090C ODB ∠=∴∠=°,°,即OD BC ⊥.又直线BC 过半径OD 的外端,BC ∴为O ⊙的切线. (2)设OA OD r ==,在Rt BDO △中,222OD BD OB +=,(()226r r ∴+=-2,解得2r =.tan 60BDBOD BOD OD∠==∴∠=°. 260π22π3603ODE S ∴=扇形·=.∴所求图形面积为2π3BOD ODE S S -△扇形=.D B27.解:(1)乙,甲,铁块的高度为14cm (或乙槽中水的深度达到14cm 时刚好淹没铁块,说出大意即可)(2)设线段DE 的函数关系式为11y k x b =+,则1116012k b b ⎧+=⎪⎨=⎪⎩,,∴11212k b ⎧=-⎪⎨=⎪⎩,.DE ∴的函数关系式为212y x =-+.设线段AB 的函数关系式为22y k x b =+,则22241412k b b ⎧+=⎪⎨=⎪⎩,,∴2232k b ⎧=⎪⎨=⎪⎩,.∴AB 的函数关系式为32y x =+.由题意得21232y x y x =-+⎧⎨=+⎩,解得28x y =⎧⎨=⎩.∴注水2分钟时,甲、乙两水槽中水的深度相同.(3)水由甲槽匀速注入乙槽,∴乙槽前4分钟注入水的体积是后2分钟的2倍. 设乙槽底面积与铁块底面积之差为S ,则()()1422361914S -=⨯⨯-,解得230cm S =. ∴铁块底面积为236306cm -=.∴铁块的体积为361484cm ⨯=.(4)甲槽底面积为260cm .铁块的体积为3112cm ,∴铁块底面积为2112148cm ÷=.设甲槽底面积为2cm s ,则注水的速度为3122c m /min 6s s =. 由题意得()2642481914142s s ⨯-⨯-=--,解得60s =. ∴甲槽底面积为260cm .28.解:(1)PBM QNM △≌△.理由如下:如图1,MQ MP MN BC ⊥⊥,,∴9090PMB PMN QMN PMN ∠+∠=∠+∠=°,°, ∴PMB QMN ∠=.9090PBM C QNM C ∠+∠=∠+∠=°,°,∴PBM QNM ∠=∠. ∴PBM QNM △∽△.(2)90602BAC ABC BC AB ∠=∠=∴==°,°,. 又MN 垂直平分BC,BM CM ∴==.30C MN ∠=∴=°,=4cm . ①设Q 点的运动速度为v cm/s .如图1,当04t <<时,由(1)知PBM QNM △≌△. NQ MN BP MB ∴=,1v =∴=. 如图2,易知当4t ≥时,1v =.综上所述,Q 点运动速度为1 cm/s . ②1284cm AN AC NC =-=-=,∴如图1,当04t <<时,4AP AQ t =-=+. ∴12S AP=()()2142AQ t =+=+·. 如图2,当t ≥4时,AP =-4AQ t =+, ∴12S AP=()2142AQ t =-+=-·综上所述,))22044t S t ⎧+<<⎪⎪=-≥(3)222PQ BP CQ =+.理由如下:如图1,延长QM 至D ,使MD MQ =,连结BD 、PD .BC 、DQ 互相平分,∴四边形BDCQ 是平行四边形,∴BD CQ∥. 90BAC ∠=°,∴90PBD ∠=°,∴22222PD BP BD BP CQ =+=+. PM 垂直平分DQ ,∴PQ PD =.∴222PQ BP CQ =+.A B P N Q C M A B C N M 图1图2(备用图) D P Q。