数学:8.5《分式方程》课件(苏科版八年级下)
- 格式:ppt
- 大小:531.50 KB
- 文档页数:16
八年级下册数学课本目录苏科第七章一元一次不等式7.1生活中的不等式7.2不等式的解集7.3不等式的性质7.4解一元一次不等式7.5用一元一次不等式解决问题7.6一元一次不等式组7.7一元一次不等式与一元一次方程、一次函数第八章分式8.1分式8.2分式的基本性质8.3分式的加减8.4分式的乘除8.5分式方程第九章反比例函数9.1反比例函数9.2反比例函数的图象与性质9.3反比例函数的应用第十章图形的相似10.1图上距离与实际距离10.2黄金分割10.3相似图形10.4探索三角形相似的条件 10.5相似三角形的性质 10.6图形的位似10.7相似三角形的应用第十一章图形与证明一 11.1你的判断对吗11.2说理11.3证明11.4 互逆命题第十二章认识概率 12.1等可能性12.2等可能条件下的概率一 12.3等可能条件下的概率二7.1用不等号表示不等关系的式子叫做不等式7.2不等式的性质:1不等式的两边都加上或减去同一个整式,不等号的方向不变。
2不等式的两边都乘或除以不为0正数,不等号的方向不变;不等式的两边都乘或除以负数,不等号的方向改变7.4解一元一次不等式的步骤与解一元一次方程类似。
但是,在不等式两边都乘或除以同一个不等于0的数时,必须根据这个数是正数,还是负数,正确地运用不等式的性质 2特别要注意在不等式两边都乘或除以同一个负数时,要改变不等号的方向7.5用一元一次不等式解决问题7.6由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集,求不等式组解集的过程叫解不等式组。
7.7一元一次不等式与一元一次方程、一次函数当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值;当已知一次函数中的一个变量范围时,可以用一元一次不等式组确定另一个变量取值的范围。
感谢您的阅读,祝您生活愉快。
苏科版 初二(下)8.5 分式方程(2)【学习目标】1、经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程。
2、了解分式方程产生增根的原因,会检验根的合理性。
3、经历“求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识。
【重点难点】1、分式方程的解法;2、分式方程的验根。
【自学思考】师:前面我们已经学习了分式方程,初步了解了分式方程,今天我们将进一步学习分式方程及其解法。
师:首先,我们来了解一下同学们的预习情况,请问第一个问题:什么叫做方程的根?生:只含有一个未知数的方程的解叫做方程的根。
师:所以我们说,只含有一个未知数的分式方程的解也叫做分式方程的根。
第二个问题:方程1+x x =12+x 的根是什么? 生:2=x师:你是如何得到的?生:方程两边同乘1+x 后得到。
师:如果把方程中的2换成—1,方程还有解吗? 生:原方程无解。
师:其实我们将方程的两边同乘1+x ,得1-=x ,检验发现,当1-=x 时,原分式方程分母为0,所以我们将1-=x 叫做方程的什么根呀? 生:增根师:第三个问题:什么叫做方程的增根?生:如果由变形后的方程求得的根不适合原方程,那么这种根叫做原方程的增根。
师:既然方程有时有解,有时无解,那么我们在解方程时要不要检验呀? 生:要检验 师:怎么检验?生:两种方法,第一种方法是将变形后的方程求得的根代入原方程,如果原方程分母不为0且左边的值等于右边的值,那么此根为原方程的根,反之则是原方程的增根。
第二种方法是将变形后的方程求得的根代入到最简公分母中,如果使得最简公分母为0则是增根,反之则为原方程的解。
师:回答得真棒。
第四个问题:尝试解分式方程11122-=-x x ,你们解好了吗?结果如何呀?生:解好了,原方程无解。
师:同学们已经自学了本节内容,下面我们再一次研读一下例2:2=x 是)2(3104)45(3--+=-x x x 的解吗?板书课题 投影 投影 板书1+x x =12+x 板书1+x x =11+-x投影 投影 板书11122-=-x x展示台展示课本内容。