1.(2023四川甘孜州中考)如图,AB与CD相交于点O,AC∥BD, 只添加一个条件,能判定△AOC≌△BOD的是 ( B )
A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD 解析 由AC∥BD可得∠A=∠B,∠C=∠D,可添加AO=BO,利 用AAS证明△AOC≌△BOD.故选B.
2.(2024江苏南京鼓楼期中)如图,在四边形ABCD中,∠B= ∠D,要使△ABC≌△CDA,可添加下列选项中的 ( C )
A.AB=CD B.AD=BC C.AB∥CD D.∠B=∠CAB
解析 添加AB∥CD,得出∠BAC=∠DCA,利用AAS证明△ ABC≌△CDA,符合题意.故选C.
在Rt△ABF和Rt△CDE中,
AF BF
CE, DE,
∴Rt△ABF≌Rt△CDE(HL).故答案为AF=EC.
4.(教材变式·P28例8)如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥ AB,DF⊥AB,垂足分别是E,F.求证:CE=DF.
证明 ∵AC⊥BC,AD⊥BD,∴∠ACB=∠BDA=90°.
AB BA,
在Rt△ABC和Rt△BAD中,
BC
AD,
∴Rt△ABC≌Rt△BAD(HL),∴S△ABC=S△BAD.
∵CE⊥AB于点E,DF⊥AB于点F1,∴ AB·1CE=
2
2
∴CE=DF.
AB·DF,
5.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如 果AD=AF,AC=AE. 求证:BC=BE.
BD CE,
∴△BOD≌△COE(AAS),∴OB=OC,OD=OE.
在Rt△ADO和Rt△AEO中,
OA OD
OA, OE,