2007年高考数学模拟考试题(理科卷5)长沙宁
- 格式:doc
- 大小:291.50 KB
- 文档页数:5
2007年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数22i 1+i ⎛⎫⎪⎝⎭等于( )A .4iB .4i -C .2iD .2i -2.不等式201x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-,3.设M N ,是两个集合,则“M N =∅”是“M N ≠∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件4.设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b5.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.9756.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .17.下列四个命题中,不正确...的是( ) A .若函数()f x 在0x x =处连续,则0lim ()lim ()x x x x f x f x +-=→→B .函数22()4x f x x +=-的不连续点是2x =和2x =- C .若函数()f x ,()g x 满足lim[()()]0x f x g x ∞-=→,则lim ()lim ()x x f x g x ∞∞=→→D.112x =→8.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( ) AB .1C.1 D9.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )A .02⎛ ⎝⎦,B .03⎛ ⎝⎦,C.12⎫⎪⎪⎣⎭ D.13⎫⎪⎪⎣⎭10.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( )A .10B .11C .12D .13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.圆心为(11),且与直线4x y +=相切的圆的方程是 .12.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b,c =则B = .13.函数3()12f x x x =-在区间[33]-,上的最小值是 .14.设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,(1)b 的取值范围是 ;(2)若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ……………………………………… 图1三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值. (II )求函数()()()h x f x g x =+的单调递增区间.17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.18.(本小题满分12分)如图2,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <.连结2BG ,如图3.图2 图3(I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角. 19.(本小题满分12分)如图4,某地为了开发旅游资源,欲修建一条连接风景点P 和居民区O 的公路,点P 所在的山坡面与山脚所在水平面α所成的二面角为θ(090θ<<),且2sin 5θ=,点P 到平面α的距离0.4PH =(km ).沿山脚原有一段笔直的公路AB 可供利用.从点O 到山脚修路的造价为a 万元/km ,原有公路改建费用为2a万元/km .当山坡上公路长度为l km (12l ≤≤)时,其造价为2(1)l a +万元.已知OA AB ⊥,PB AB ⊥, 1.5(km)AB =,OA =. (I )在AB 上求一点D ,使沿折线PDAO 修建公路的总造价最小;(II ) 对于(I )中得到的点D ,在DA 上求一点E ,使沿折线PDEO 修建公路的总造价最小. (III )在AB 上是否存在两个不同的点D ',E ',使沿折线PD E O ''修建公路的总造价小于(II )中得到的最小总造价,证明你的结论.20.(本小题满分12分)已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.(I )若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点),求点M 的轨迹方程; (II )在x 轴上是否存在定点C ,使CA ·CB 为常数?若存在,求出点C 的坐标;若不存在,请说明理由.21.(本小题满分13分)已知()n n n A a b ,(n ∈N*)是曲线xy e =上的点,1a a =,n S 是数列{}n aOAEDBHP1G 2GDF CBAE的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,234n =,,,…. (I )证明:数列2n n b b +⎧⎫⎨⎬⎩⎭(2n ≤)是常数数列; (II )确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (III )证明:当a M ∈时,弦1n n A A +(n ∈N*)的斜率随n 单调递增.2007年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 2.D 3.B 4.A 5.C 6.B 7.C 8.D 9.D 10.B 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.22(1)(1)2x y -+-=12.5π6 13.16-14.(1)[1)+∞,(2)9215.21n-,32三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(I )由题设知1π()[1cos(2)]26f x x =++. 因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =, 即0 π2π6x k =-(k ∈Z ). 所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭,当k 为奇数时,01π15()1sin 12644g x =+=+=.(II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦1π3113cos 2sin 2cos2sin 22622222x x x x ⎛⎫⎡⎤⎛⎫=+++=++ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭ 1π3sin 2232x ⎛⎫=++ ⎪⎝⎭.当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时, 函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数,故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ). 17.解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =.(I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯= 所以该人参加过培训的概率是21110.10.9P P =-=-=.解法二:任选1名下岗人员,该人只参加过一项培训的概率是3()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是4()0.60.750.45P P A B ==⨯=. 所以该人参加过培训的概率是5340.450.450.9P P P =+=+=.(II )因为每个人的选择是相互独立的,所以3人中参加过培训的人数ξ服从二项分布(30.9)B ,,3()0.90.1k k k P k C ξ-==⨯⨯,0123k =,,,,即ξ的分布列是(或ξ的期望是30.9 2.7E ξ=⨯=) 18.解:解法一:(I)因为平面1G AB ⊥平面ABCD ,平面1G AB 平面ABCD AB =,AD AB ⊥,AD ⊂平面ABCD ,所以AD ⊥平面1G AB ,又AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )过点B 作1BH AG ⊥于点H ,连结2G H .由(I )的结论可知,BH ⊥平面12G ADG , 所以2BG H ∠是2BG 和平面12G ADG 所成的角.因为平面1G AB ⊥平面ABCD ,平面1G AB 平面ABCDAB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,故1G E EF ⊥. 因为12G G AD <,AD EF =,所以可在EF 上取一点O ,使12EO G G =,又因为12G G AD EO ∥∥,所以四边形12G EOG 是矩形.由题设12AB =,25BC =,8EG =,则17GF =.所以218G O G E ==,217G F =, 15OF ==,1210G G EO ==.因为AD ⊥平面1G AB ,12G G AD ∥,所以12G G ⊥平面1G AB ,从而121G G G B ⊥.故222222221126810200BG BE EG G G =++=++=,2BG =.又110AG ==,由11BH AG G E AB =得81248105BH ⨯==. 故2248sin 5BH BG H BG ∠===1G 2G DF C BA E OH即直线2BG 与平面12G ADG所成的角是arcsin25. 解法二:(I )因为平面1G AB ⊥平面ABCD ,平面1G AB 平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,从而1G E AD ⊥.又AB AD ⊥,所以AD ⊥平面1G AB .因为AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )由(I )可知,1G E ⊥平面ABCD .故可以E 为原点,分别以直线1EB EF EG ,,为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题设12AB =,25BC =,8EG =,则6EB =,25EF =,18EG =,相关各点的坐标分别是(600)A -,,(6250)D -,,,1(008)G ,,,(600)B ,,. 所以(0250)AD =,,,1(608)AG =,,.设()n x y z =,,是平面12G ADG 的一个法向量,由100n AD n AG ⎧=⎪⎨=⎪⎩,.得250680y x z =⎧⎨+=⎩,故可取(403)n =-,,. 过点2G 作2G O ⊥平面ABCD 于点O ,因为22G C G D =,所以OC OD =,于是点O 在y 轴上.因为12G G AD ∥,所以12G G EF ∥,218G O G E ==.设2(08)G m ,, (025m <<),由222178(25)m =+-,解得10m =,所以2(0108)(600)(6108)BG =-=-,,,,,,. 设2BG 和平面12G ADG 所成的角是θ,则2222222sin 610843BG n BG nθ===+++ 故直线2BG 与平面12G ADG 所成的角是arcsin 25. 19.解:(I )如图,PH α⊥,HB α⊂,PB AB ⊥, 由三垂线定理逆定理知,AB HB ⊥,所以PBH ∠是山坡与α所成二面角的平面角,则PBH θ∠=,1sin PH PB θ==.设(km)BD x =,0 1.5x ≤≤.则PD =[12]∈,. 记总造价为1()f x 万元,据题设有2211111()(1)(224f x PD AD AO a x x a =+++=-+2143416x a a ⎛⎫⎛=-+ ⎪ ⎝⎭⎝当14x =,即1(km)4BD =时,总造价1()f x 最小.(II )设(km)AE y =,504y ≤≤,总造价为2()f y 万元,根据题设有yα AOE DBHP22131()1224f y PD y a ⎡⎤⎛⎫=+-- ⎪⎢⎥⎝⎭⎣⎦43216y a a ⎫=+⎪⎭.则()212f y a ⎛⎫'⎪=⎪⎭,由2()0f y '=,得1y =. 当(01)y ∈,时,2()0f y '<,2()f y 在(01),内是减函数;当514y ⎛⎫∈ ⎪⎝⎭,时,2()0f y '>,2()f y 在514⎛⎫ ⎪⎝⎭,内是增函数. 故当1y =,即1AE =(km )时总造价2()f y 最小,且最小总造价为6716a 万元. (III )解法一:不存在这样的点D ',E '.事实上,在AB 上任取不同的两点D ',E '.为使总造价最小,E 显然不能位于D ' 与B 之间.故可设E '位于D '与A 之间,且BD '=1(km)x ,1(km)AE y '=,12302x y +≤≤,总造价为S 万元,则211111224x y S x a ⎛⎫=-++ ⎪⎝⎭.类似于(I )、(II )讨论知,2111216x x --≥1322y ≥,当且仅当114x =,11y =同时成立时,上述两个不等式等号同时成立,此时1(km)4BD '=,1(km)AE =,S 取得最小值6716a ,点D E '',分别与点D E ,重合,所以不存在这样的点 D E '',,使沿折线PD E O ''修建公路的总造价小于(II )中得到的最小总造价.解法二:同解法一得211111224x y S x a ⎛⎫=-++ ⎪⎝⎭))2111114334416x a y y a a ⎛⎫⎡⎤=-+++ ⎪⎢⎥⎣⎦⎝⎭143416a a ⨯+≥ 6716a =. 当且仅当114x =且11)y y ,即11114x y ==,同时成立时,S 取得最小值6716a ,以上同解法一. 20.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,. 解法一:(I )设()M x y ,,则则1(2)FM x y =+,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+=,,,,由1111FM F A F B FO =++得 121226x x x y y y +=++⎧⎨=+⎩,即12124x x x y y y+=-⎧⎨+=⎩, 于是AB 的中点坐标为422x y -⎛⎫⎪⎝⎭,.当AB 不与x 轴垂直时,121224822yy y y x x x x -==----,即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得 12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8yy y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.所以点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点(0)C m ,,使CA CB 为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+-- 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA CB 是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,, 此时(12)(12)1CA CB =-=-,,. 故在x 轴上存在定点(10)C ,,使CA CB 为常数.解法二:(I )同解法一的(I )有12124x x x y y y+=-⎧⎨+=⎩,当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-.21212244(4)411k ky y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭.由①②③得22441k x k -=-.…………………………………………………④241ky k =-.……………………………………………………………………⑤ 当0k ≠时,0y ≠,由④⑤得,4x k y-=,将其代入⑤有2222444(4)(4)(4)1x y x y y x x yy -⨯-==----.整理得22(6)4x y --=. 当0k =时,点M 的坐标为(40),,满足上述方程. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.故点M 的轨迹方程是22(6)4x y --=.(II )假设在x 轴上存在定点点(0)C m ,,使CA CB 为常数,当AB 不与x 轴垂直时,由(I )有212241k x x k +=-,2122421k x x k +=-.以上同解法一的(II ).21.解:(I )当2n ≥时,由已知得22213n n n S S n a --=.因为10n n n a S S -=-≠,所以213n n S S n -+=. …… ① 于是213(1)n n S S n ++=+. ……②由②-①得163n n a a n ++=+. …… ③ 于是2169n n a a n +++=+. …… ④ 由④-③得26n n a a +-=, …… ⑤所以2262n n n n a a a n a n b e e e b e ++-+===,即数列2(2)n n b n b +⎧⎫⎨⎬⎩⎭≥是常数数列.(II )由①有2112S S +=,所以2122a a =-.由③有3215a a +=,4321a a +=,所以332a a =+,4182a a =-.而 ⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列, 所以226(1)k a a k =+-,2136(1)k a a k +=+-,2246(1)()k a a k k +=+-∈N*, 数列{}n a 是单调递增数列12a a ⇔<且22122k k k a a a ++<<对任意的k ∈N*成立. 12a a ⇔<且2346(1)6(1)6(1)a k a k a k +-<+-<+-1234a a a a ⇔<<<9151223218244a a a a a ⇔<-<+<-⇔<<.即所求a 的取值集合是91544M a a ⎧⎫=<<⎨⎬⎩⎭.(III )解法一:弦1n n A A +的斜率为1111n na a n n n n n n nb b e e k a a a a ++++--==-- 任取0x ,设函数00()x x e e f x x x -=-,则0020()()()()x x x e x x e e f x x x ---=-记00()()()x x x g x e x x e e =---,则00()()()x x x xg x e x x e e e x x '=-+-=-,当0x x >时,()0g x '>,()g x 在0()x +∞,上为增函数, 当0x x <时,()0g x '<,()g x 在0()x -∞,上为减函数,所以0x x ≠时,0()()0g x g x >=,从而`()0f x '>,所以()f x 在0()x -∞,和0()x +∞,上都是增函数.由(II )知,a M ∈时,数列{}n a 单调递增,取0n x a =,因为12n n n a a a ++<<,所以11n n a a n n n e e k a a ++-=-22n na a n n e e a a ++-<-. 取02n x a +=,因为12n n n a a a ++<<,所以12112n n a a n n n e e k a a +++++-=-22n n a a n n e e a a ++->-. 所以1n n k k +<,即弦1()n n A A n +∈N*的斜率随n 单调递增.解法二:设函数11()n a x n e e f x x a ++-=-,同解法一得,()f x 在1()n a +-∞,和1()n a ++∞,上都是增函数, 所以111111lim n n n n n a a a x a n n a n n n e e e e k e a a x a +++-+++--=<=--→,211111211lim n n n n n a a a x a n n a n n n e e e e k e a a x a ++++++++++--=>=--→. 故1n n k k +<,即弦1()n n A A n +∈N*的斜率随n 单调递增.。
2007年普通高等学校招生全国统一考试(宁夏卷)数学(理科)试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第II 卷第22题为选考题,其他题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑。
参考公式: 样本数据1x ,2x ,,n x 的标准差锥体体积公式(n s x x =++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式球的表面积、体积公式V=Sh24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题:p x∀∈R,sin x≤1,则()A.:p x⌝∃∈R,sin x≥1B.:p x⌝∀∈R,sin x≥1C.:p x⌝∃∈R,sin x>1D.:p x⌝∀∈R,sin x>12.已知平面向量a=(1,1),b(1,-1),则向量1322-=a b()A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)3.函数πsin23y x⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是()4.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d =( )A .23-B .13-C .13 D .235.如果执行右面的程序框图,那么输出的S=( )A .2450B .2500C .2550D .26526.已知抛物线22(0)y px p =>的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3, 则有( )A .123FP FP FP +=B .222123FP FP FP +=C .2132FP FP FP =+D .2213FP FP FP =·7.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则2()a b cd+的最小值是( )A .0B .1C .2D .48.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .34000cm 3 B .38000cm 3C .2000cm 3D .4000cm 39.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ) A .7-B .12-C .12D 7 10.曲线12ex y =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .29e 2B .4e 2C .2e 2D .e 211.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A .s 3>s 1>s 2B .s 2>s 1>s 3C .s 1>s 2>s 3D .s 2>s 3>s 112.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等。
2007年普通高等学校招生全国统一考试理科数学(宁夏、 海南卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式:样本数据1x ,2x , ,n x 的标准差锥体体积公式s =13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >【答案】:C【分析】:p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >2.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( )A.(21)--,B.(21)-,C.(10)-,D.(12)-,【答案】:D 【分析】:1322-=a b (12).-,3.函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )【答案】:A【分析】:π()sin 2,32f ππ⎛⎫=-=- ⎪⎝⎭排除B、D, π()sin 20,663f ππ⎛⎫=⨯-= ⎪⎝⎭排除C。
2007届江苏省高考数学模拟试题(理科)10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有 一项是符合题目要求的。
等于(4.已知函数yf (x)的反函数f 1(x)log 1 (x21-),则方程 2f (x ) 1的解集是 A. {1} B.{2} C . {3}D . { 4}5.设等比数列{ a n }的前n 项和为s ,若S 6 : S 3 1:2,则 S 9 :S 3( )A. 1:2 B .2:3 C. 3:4D. 1:3充要条件 .既不充分又不必要条件C. D在等差数列{a n }中, n 项和s n 的最小值为6 . S8,则前 )a 1、选择题:本大题共 1. 满足条件 1, 2M = 1,2,3 的所有集合 M 的个数是(A.如果复数 2 bi(b R )的实部和虚部互为相反数,则 b 的值等于(A.若条件p : x 1 条件 q :X 2 5x 6,则 p 是 q 的( ) A. 必要不充分条件.充分不必要条件25, S 3A.80767574 已知|a|2、、2 ,a 与b 的夹角为一,如果p42b , q2aA. 2.13.,53.3.6 490,a1),若f(4)g( 4)0,则 yf (x), y g(x)在同一坐标系内的图象大致是()Jy1 1・ I111f■ n A2 xoB12 ' xlog |x| (aa 8 .已知 f (x) a x 2,g(x)9•设函数f(x)是奇函数,并且在R上为增函数,若0 < w—时,f (m sin )+ f (1—2m >0恒成立,则实数m的取值范围是 ( )1A(0,1) B.(―汽0) C. (—3 1) D. (21 x10•关于函数f (x) lg ,有下列三个命题:1 x①对于任意x ( 1,1),都有f (x) f( x) 0 ;② f (x)在(1,1)上是减函数;③对于任意x1, x2 ( 1,1),都有f (x-1 ) f (x2) f( 一);1 x1x2其中正确命题的个数是( )A • 0B • 1C • 2D • 3二、填空题:本大题共6小题,每小题5分,共30分。
2007年普通高等学校招生全国统一考试(湖南卷)数学(理科)注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。
本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数)2)(1(++i mi 是纯虚数,则m =( )A .1=mB .1-=mC .2=mD .21-=m2.已知命题:p “若b a =,则||||b a =”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是( )A .1个B .2个C .3个D .4个3.要完成下列两项调查:①从某社区125户高收入家庭、200户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;② 从某中学的5名艺术特长生中选出3名调查学习负担情况.宜采用的方法依次为( )A .①简单随机抽样调查,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,② 分层抽样D .①② 都用分层抽样4.如图,一个几何体的三视图都是边长为1的正方形,那么这个几何体的体积为( ) A .32 B .31 C .32 D .15.关于函数函数=)(x f 1)sin 3(cos cos 2-+x x x ,以下结论正确的是( )A .)(x f 的最小正周期是π,在区间),(12512ππ-是增函数 B .)(x f 的最小正周期是π2,最大值是2 C .)(x f 的最小正周期是π,最大值是3D .)(x f 的最小正周期是π,在区间),(612ππ-是增函数6.某人欲购铅笔和圆珠笔共若干只,已知铅笔1元一只,圆珠笔2元一只.要求铅笔不超 过2只,圆珠笔不超过2只,但铅笔和圆珠笔总数不少于2只,则支出最少和最多的钱数 分别是( )A .2元,6元B .2元,5元C .3元,6元D . 3元,5元 7.已知F 1 、F 2分别是双曲线1by ax 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( ) A .2 B . 3 C . 4D . 58.函数xxx y sin 2sin 3cos 42---=的最大值是( )A .37- B .3- C .37 D . 1第Ⅱ卷 非选择题 (共110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9—12题)9.已知集合}0|){(≥+-=m y x y x A ,,集合}1|){(22≤+=y x y x B ,.若φ=B A ,则实数m 的取值范围是____________. 10.关于函数⎩⎨⎧≤≤-≤<-=11cos 41)(x x x x x f ,,的流程图如下,现输入区间][b a ,,则输出的区间是____________.11.函数3)12(2--+=x a ax y 在区间[23-,2]上的最大值是3,则实数a =____________.12.设平面上n 个圆周最多把平面分成)(n f 片(平面区域),则=)2(f ____________,=)(n f ____________.(1≥n ,n 是自然数) (二)选做题(13—15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)设曲线C 的参数方程为θθθ(,sin 41c os 4⎩⎨⎧+=+=y a x 是参数,0>a ),若曲线C 与直线0543=-+y x 只有一个交点,则实数a 的值是____________.14.(不等式选讲选做题)设函数2)(--=a x x f ,若不等式)(x f <1的解)4,2()0,2( -∈x ,则实数a =____________.15.(几何证明选讲选做题)如右图,已知PB 是⊙O 的 切线,A 是切点,D 是弧AC 上一点,若︒=∠70BAC , 则_______=∠ADC .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分)如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O 处后发现,在南偏西20、5海里外的洋面M 处有一条海盗船,它正以每小时20海里的速度向南偏东40的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出)40sin(+θ的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等)NM17.(本小题满分12分)某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润,事件A 为“购买该商品的3位顾客中,至少有1位采用1期付款”. (Ⅰ)求事件A 的概率()P A ; (Ⅱ)求η的分布列及期望E η.18.(本小题满分13分)如图,已知直四棱柱ABCD-1111D C B A 的底面是边长为2、Q1A 1CA∠ADC=120的菱形,Q 是侧棱1DD (1DD >22)延长线上的一点,过点Q 、1A 、1C 作菱形截面Q 1A P 1C 交侧棱1BB 于点P .设截面Q 1A P 1C 的面积为1S ,四面体P C A B 111-的三侧面111C A B ∆、11PC B ∆、P A B 11∆面积的和为2S ,21S S S -=. (Ⅰ)证明:QP AC ⊥;(Ⅱ) 当S 取得最小值时,求cos ∠11QC A 的值.19.(本小题满分14分)在直角坐标平面内,定点 )0,1(-F 、)0,1('F ,动点M,满足条件22||||'=+MF MF .(Ⅰ)求动点M 的轨迹C 的方程;(Ⅱ)过点F 的直线交曲线C 交于A,B 两点,求以AB 为直径的圆的方程,并判定这个圆与直线2-=x 的位置关系.20.(本小题满分14分)已知数列}{n a 的前n 项和 ,3,2,1,4232=+⋅-=n a S n n n . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设n T 为数列}4{-n S 的前n 项和,求⋅n T21.(本小题满分14分)理科函数()326f x x x =-的定义域为[]2,t -,设()()2,f m f t n -==,)(x f '是)(x f 的导数.(Ⅰ)求证:n m ≥ ;(Ⅱ)确定t 的范围使函数()f x 在[]2,t -上是单调函数; (Ⅲ)求证:对于任意的2t >-,总存在()02,x t ∈-,满足()'02n m f x t -=+;并确定这样的0x 的个数.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
2007年高考数学模拟考试题(理科卷2)长沙宁时量120分钟 总分150分一、选择题(每小题5分,共50分)1.非空集合A 、B 满足≠⊂B A ,U 是全集,则下列式子:①B B A =Y ,②A B A =I ,③(A U )Y B =U ,④(A U )Y (B U )=U 中成立的是( ).A .①,②B .③,④C .①,②,③D .①,②,③,④2.已知OM =(3,-2),ON =(-5,-1),则21等于( ). A .(8,1) B .(-8,1) C .(-8,-1) D .4(-,21) 3.函数)3(log 1sinl x y -=的定义域是( ). A .(2,3) B .[2,)3 C .(2,]3 D .(2,+∞)4.如果数列}{n a 的前n 项和))(49(41*N ∈-=n S n n n n ,那么这个数列( ). A .是等差数列而不是等比数列 B .是等比数列而不是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列5.锐二面角βα--l 的棱l 上一点A ,射线α⊂AB ,且与棱成45°角,又AB 与β成30°角,则二面角βα--l 的大小是( ).A .30°B .45°C .60°D .90°6.有6个人分别来自3个不同的国家,每一个国家2人。
他们排成一行,要求同一国家的人不能相邻,那么他们不同的排法有( ).A .720B .432C .360D .2407.直线经过点A (2,1),B (1,2m )两点)(R ∈m ,那么直线l 的倾斜角取值范围是( ).A .[0,)πB .[0,2π(]4πY ,)πC .0[,]4πD .4π[,2π()2πY ,)π 8.下列函数中同时具有性质:(1)最小正周期是π,(2)图象关于3π=x 对称,(3)在6π[-,]3π上是增函数的是( ).A .)6π2sin(+=x yB .)3π2cos(+=x yC .)6π2sin(-=x yD .)6π2cos(-=x y9分数 [0,80) [80,)90 [90,100) [100,)110 [110,)120 [120,)130 [130,)140 [140,150] 人数 2 5 6 8 12 6 4 2那么分数在[100,110]中和分数不满110分的频率和累积频率分别是( ).A .0.18,0.47B .0.47,0.18C .0.18,1D .0.38,110.已知)3π2sin(3)(+=x x f ,则以下选项正确的是( ).A .f (3)>f (1)>f (2)B .f (3)>f (1)>f (2)C .f (3)>f (2)>f (1)D .f (1)>f (3)>f (2) 二、填空题:本大题共5小题;每小题4分,共20分.把答案填在题中横线上11.已知直线ax+by+1=0中的a ,b 是取自集合{-3,-2,-1,0,1,2}中的2个不同的元素,并且直线的倾斜角大于60°,那么符合这些条件的直线的共有A .8条B .11条C .13条D .16条12.某学校共有学生4500名,其中初中生1500名,高中生3000名,用分层抽样法抽取一个容量为300的样本,那么初中生应抽取 名.13.不等式(x -2)x 2-2x -3 ≥0的解集是 .14.若(1+x +31x)10=∑40i=1 a i x 10-i ,则a 10= . 15.给出下列四个命题:①过平面外一点,作与该平面成θ角的直线一定有无穷多条;②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;③对确定的两条异面直线,过空间任意一点有且只有唯一的一个平面与这两条异面直线都平行;④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等;其中正确的命题序号为 (请把所有正确命题的序号都填上).三、解答题:本大题共6小题;共74分,解答应写出文字说明,证明过程或演算步骤.16.(本题满分12分)已知数列}{n a 满足n a >0,且对一切n ∈N + ,有∑n i=1 a 3i =S 2n ,其中S n =∑ni=1a i , 对一切n ∈N +,有a 2n+1 -a n+1=2S n ; 求数列}{n a 的通项公式; 17.(本小题满分12分)已知向量a= ( 3 sin ωx ,cos ωx),b =( cos ωx ,cos ωx),其中ω>0,记函数()f x =a ·b ,已知)(x f 的最小正周期为π.(Ⅰ)求ω;(Ⅱ)当0<x ≤π3时,试求f(x)的值域. 18.(本小题满分12分)对5副不同的手套进行不放回抽取,甲先任取一只,乙再任取一只,然后甲又任取一只,最后乙再任取一只.(Ⅰ)求下列事件的概率:①A :甲正好取得两只配对手套;②B :乙正好取得两只配对手套;(Ⅱ)A 与B 是否独立?并证明你的结论.19.(本小题满分12分)已知斜三棱柱ABC —A 1B 1C 1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点1B 在底面上的射影D 落在BC 上.(Ⅰ)求证:AC ⊥平面BB 1C 1C ;(Ⅱ)当α为何值时,AB 1⊥BC 1,且使D 恰为BC 中点?(Ⅲ)若α = arccos 13,且AC=BC=AA 1时,求二面角C 1—AB —C 的大小. 20.(本小题满分12分)已知函数f(x)=(x -a)(x -b)(x -c).(Ⅰ)求证:f ′(x)=(x -a)(x -b)+(x -a) (x -c)+(x -b) (x -c); (Ⅱ)若f(x)是R 上的增函数,是否存在点P ,使f(x)的图像关于点P 中心对称?如果存在,请求出点P 坐标,并给出证明;如果不存在,请说明理由.21.(本题满分12分) 已知正方形的外接圆方程为 x 2+y 2-24x+a=0,A 、B 、C 、D 按逆时针方向排列,正方形一边CD 所在直线的方向向量为(3,1).(Ⅰ)求正方形对角线AC 与BD 所在直线的方程;(Ⅱ)若顶点在原点,焦点在x 轴上的抛物线E 经过正方形在x 轴上方的两个顶点A 、B ,求抛物线E 的方程.数学参考答案与评分标准一、1.C 2.D 3.A 4.B 5.B 6.D 7.B 8.C 9.A 10.A二、填空题:本大题共5小题;每小题4分,共20分.11.16条 12.100 13. {x|x=-1或x ≥3}, 14. 2101 15.(2)、(4)三、解答题:本大题共6小题;共80分.16. (Ⅰ)由∑n i=1 3i a =S n 2, (1) 由∑n +1i=1 3i a =S n +12, (2) (2)-(1),得22131n n n S S a -=++=(S n+1+S n )(S n+1-S n )=(2 S n +a n+1) a n+1.∵ a n+1 >0,∴a n +12-1n a +=2S n . ……………………………12分17.(Ⅰ)()f x = 3 sin ωxcos ωx +cos 2ωx …………………… 2分ωx +12 (1+cos2ωx) =sin(2ωx+π6 )+ 12……………………… 4分 ∵ ω>0,∴T=π=2π2ω,∴ω=1. ……………………… 6分 (Ⅱ)由(1),得()f x =sin(2x+π6 ) + 12, ∴0<x ≤π3 , ∴π6 <2x+π6 ≤5π6. ………………………… 9分 C 1AB C D A 1 B 1∴()f x ∈[1,32]. ………………………… 12分 18. (Ⅰ)①P (A )= C 15 ·2·A 28 A 410 = 19. ……………………… 4分 ②()P B =C 15 ·2·A 28 A 410 = 19. ……………………… 8分 (Ⅲ) P (AB )= C 25 ·2·C 12·2 A 410 = 163 , ()()P A P B =181, ∴()()P A P B ≠()P AB ,故A 与B 是不独立的. ……………………… 14分19. (Ⅰ)∵ B 1D ⊥平面ABC , AC ⊂平面ABC ,∴ B 1D ⊥AC, 又AC ⊥BC, BC ∩B 1D=D .∴ AC ⊥平面BB 1C 1C . ………………………… 3分 (Ⅱ) ∵ AC ⊥平面BB 1C 1C ,要使AB 1⊥BC 1 ,由三垂线定理可知,只须B 1C ⊥BC 1, ………………………… 5 分 ∴ 平行四边形BB 1C 1C 为菱形, 此时,BC=BB 1.又∵ B 1D ⊥BC, 要使D 为BC 中点,只须B 1C= B 1B ,即△BB 1C 为正三角形, ∴ ∠B 1BC= 60°. ………………………… 7分∵ B 1D ⊥平面ABC ,且D 落在BC 上,∴ ∠B 1BC 即为侧棱与底面所成的角.故当α=60°时,AB 1⊥BC 1,且使D 为BC 中点. ……………………… 8分(Ⅲ)过C 1作C 1E ⊥BC 于E ,则C 1E ⊥平面ABC .过E 作EF ⊥AB 于F ,C 1F ,由三垂线定理,得C 1F ⊥AB .∴∠C 1FE 是所求二面角C 1—AB —C 的平面角. …………………… 10分设AC=BC=AA 1=a ,在Rt △CC 1E 中,由∠C 1BE=α=1arccos 3,C 1E=322a . 在Rt △BEF 中,∠EBF=45°,EF=22BE=322a . ∴∠C 1FE=45°,故所求的二面角C 1—AB —C 为45°.……………… 14分解法二:(1)同解法一 ……………… 3分(Ⅱ)要使AB 1⊥BC 1,D 是BC 的中点,即11BC AB ⋅=0,|BB 1→ |=|B 1C → |,∴11()0AC CB BC +=u u u r u u u r u u u r , ||||11B BC ⋅=0,∴||||1BB =. ∴1BB BC B C ==u u u r u u u r u u u r ,故△BB 1C 为正三角形,∠B 1BC=60°;∵ B 1D ⊥平面ABC ,且D 落在BC 上, …………………… 7分∴ ∠B 1BC 即为侧棱与底面所成的角.故当α=60°时,AB 1⊥BC 1,且D 为BC 中点. …………………8分(Ⅲ)以C 为原点,CA 为x 轴,CB 为y 轴,经过C 点且垂直于平面ABC 的直线为z 轴建立空间直角坐标系,则A (a ,0,0),B (0,a ,0),C (0,-34a ,322a ), 平面ABC 的法向量n 1=(0,0,1),设平面ABC 1的法向量n 2=(x ,y ,z ). 由⋅n 2=0,及⋅1BC n 2=0,得⎩⎪⎨⎪⎧-x +y=0,-43y +2 2 3 z=0 . ∴n 2=(22,22,1). ……………………10分 cos<n 1, n 2>=112 +12 +1 = 2 2, 故n 1 , n 2所成的角为45°,即所求的二面角为45°.………………………14分20. (Ⅰ)∵ f(x)=(x -a)(x -b)(x -c)=x3-(a+b +c)x 2+(ab+bc+ac)x -abc ……………3 分f ′(x)=3 x 2-2(a+b +c)x +(ab+bc+ac)=[ x 2- (a+b)x +ab]+[ x 2- (a+c)x +ac]+[ x 2- (b+c)x +bc]=(x -a)(x -b)+(x -a)(x -c) +(x -b)(x -c).……………………………6分(Ⅱ)∵f(x)是R 上的单调函数,∴f ′(x)≥0,对x ∈R 恒成立,即 3x 2-2(a+b+c)x+(ab+bc+ca)≥0 对x ∈R 恒成立.∴△≤0, 4(a+b+c)2-12(ab+bc+ca) ≤0,∴ (a -b)2+(a -c )2+ (b -c)2≤0,∴ a=b=c .∴ f(x)=(x -a)3 , ∴f(x)关于点(a ,0)对称. ………………………9分 证明如下:设点P(x ,y)是 f(x)=(x -a)3图像上的任意一点,y=(x -a)3, 点P 关于点(a ,0)对称的点P ′(2a -x ,-y),∵(2a -x -a)3=(2a -x)3= -(x -2a)3=-y ,∴点P ′在函数f(x)=(x -a)3的图像上,即函数f(x)=(x -a)3关于点(a ,0)对称.…………………………………………………………14分21.(Ⅰ) 由(x -12)2+y 2=144-a(a<144),可知圆心M 的坐标为(12,0), …………………………2分依题意,∠ABM=∠BAM=π4 ,k AB = 13 , MA 、MB 的斜率k 满足| k -13 1+13 k |=1, 解得AC k =2,BD k =- 12. …………………………………4分 ∴所求BD 方程为x+2y -12=0,AC 方程为2x -y -24=0. ……………6分(Ⅱ) 设MB 、MA 的倾斜角分别为θ1,θ2,则tan θ1=2,tan θ2=-12,设圆半径为r ,则A (12+,55r ),B (12-5r ,5r ), ……9分 再设抛物线方程为y 2=2px (p >0),由于A ,B 两点在抛物线上,∴⎩⎪⎨⎪⎧)2=2p(12)(5r )2=2p (12) ∴ r=4 5 ,p=2.得抛物线方程为y 2=4x 。
第1题影响钢筋混凝土梁正截面破坏形式的因素中,影响最大的因素是()。
(1分)第2题建筑物高度相同、面积相同时,耗热量比值最小的平面形式是()。
(1分)第31题【案例题1】(20分)某广场地下车库工程,建筑面积18000平方米。
建设单位和某施工单位根据《建设工程施工合同(示范文本)》(GF-1999-0201)签订了施工承包合同,合同工期140d。
工程实施过程中发生了下列事件:事件一:施工单位将施工作业划分为A、B、C、D四个施工过程,分别由指定的专业班组进行施工,每天一班工作制,组织无节奏流水施工,流水施工参数见下表:事件二:项目经理部根据有关规定,针对水平混凝士构件模板(架)体系,编制了模板(架)工程专项施工方案,经施工项目负责人批准后开始实施,仅安排施工项目技术负责人进行现场监督。
事件三:在施工过程中,该工程所在地连续下了6d特大暴雨(超过了当地近10年来该季节的最大降雨量),洪水泛滥,给建设单位和施工单位造成了较大的经济损失。
施工单位认为这些损失是由于特大暴雨(不可抗力事件)所造成的,提出下列索赔要求(以下索赔数据与实际情况相符):(1)工程清理、恢复费用18万元;(2)施工机械设备重新购置和修理费用29万元;(3)人员伤亡善后费用62万元;(4)工期顺延6d。
问题1.事件一中,列式计算A、B、C、D四个施工过程之间的流水步距分别是多少天?2.事件一中,列式计算流水施工的计划工期是多少天?能否满足合同工期要求?3.事件二中,指出专项施工方案实施中有哪些不妥之处?说明理由。
4.事件三中,分别指出施工单位的索赔要求是否成立?说明理由。
第32题【案例题2】(20分)工单位承建两栋15层的框架结构工程。
合同约定:①钢筋由建设单位供应;②工程质量保修按《建设工程质量管理条例》(国务院第279号令)执行。
开工前施工单位编制了单位工程施工组织设计,并通过审批。
施工过程中,发生下列事件:事件一:建设单位按照施工单位提出的某批次钢筋使用计划按时组织钢筋进场。
表观密度和毛体积密度试验:将待测试样用4.75mm方孔筛或5mm的圆孔筛过筛,用四分法缩分成需要的质量,留两份待用。
将待测试样浸泡水中一段时间后漂洗干净。
取一份放在盛水器中注入清水高出试样至少20mm搅动石料排气泡,室温浸水24h。
将吊篮浸入水槽中控制水温15-25度,天平调平。
将试样转入吊篮称取集料水中质量mw。
将试样用毛巾擦干表面的水。
称取集料的质量为饱和面干质量mf。
将试样放入烘箱中烘干至恒重,冷却称重ma。
结果计算ra=ma/ma-mwrb=ma/ma-mw水泥混凝土用粗集料针片状颗粒含量试验(规准仪法)将待测风干试样采用四分法缩分成规定的检测数量称重m0。
采用标准筛将试样划分不同粒级。
首先目测将不可能是针状或片状的颗粒挑出,对有怀疑的逐一对应于规准仪相应位置进行鉴定,凡长度大于针状水准仪上相应间距的为针状,颗粒厚度小于片状规准仪相应孔宽的为片状颗粒,结束后称出各粒级挑出的针状和片状总质量m1。
沥青混合料针片状颗粒含量试验(游标卡尺法)采用随机取样方式采集待测试样。
待测试样国4.75mm标准筛称至少800试样。
先目测挑出接近立方体的颗粒剩余的用卡尺作鉴别。
观察待测颗粒找出一相对平整且面积较大的面作为基准面然后用卡尺逐一测量集料颗粒的厚度和长度。
长度与厚度之比大于或等于3的颗粒挑出判定为针状或片状颗粒称出总质量。
压碎试验水泥混凝土压碎试验:用10mm和20mm圆孔筛剔除10以下和20以上的颗粒用针片状规准仪挑出针状和片状颗粒备三份每份3kg待用。
将圆筒置于底盘上取份试样分两层装入筒中,每装完一层在底盘上垫一根10mm圆钢筋,按住圆筒左右颠击25下在第二层装好后要求试样装填高度从底盘量起在100mm左右。
将试样顶面整平压上加压盖放到压力机上施加荷载,3-5分内均匀加荷200kn。
倒出试样称实验时总质量然后用2.5mm圆孔筛过筛,筛除被压碎颗粒称留在筛上的质量。
沥青混合料压碎试验:风干试样用13.2mm和16mm标准筛过筛取3kg待用。
2007年普通高等学校招生全国统一考试理科数学(宁夏)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上. 2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式:样本数据1x ,2x , ,n x 的标准差锥体体积公式s =13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >2.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--,B.(21)-,C.(10)-,D.(12)-,3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )4.已知{}n a 是等差数列,1010a =,其前10其公差d =( ) A.23-B.13-C.13D.235.如果执行右面的程序框图,那么输出的S =A.2450 B.2500 C.2550 D.2652 6.已知抛物线22(0)y px p =>的焦点为F , 点111222()()P x y P x y ,,,,333()P x y ,且2132x x x =+, 则有( ) A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+ D.2213FP FP FP =· 7.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则2()a b cd+的最小值是( ) A.0 B.1C.2D.4xA.B.C.8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A.34000cm 3B.38000cm 3C.32000cmD.34000cm 9.若c o s2πs i n 4αα=⎛⎫- ⎪⎝⎭则c o s s i n αα+的值为( )A.-B.12-C.1210.曲线12e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为( ) A.29e 2B.24eC.22eD.2e123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有()A.312s s s >> B.213s s s >> C.123s s s >>D.231s s s >>12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =( )2:2第II 卷正视图侧视图俯视图本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .14.设函数(1)()()x x a f x x ++=为奇函数,则a = .15.i 是虚数单位,51034ii-+=+ .(用a bi +的形式表示,a b ∈R ,)16.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答) 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .18.(本小题满分12分)如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=°,O 为BC 中点. (Ⅰ)证明:SO ⊥平面ABC ;(Ⅱ)求二面角A SC B --的余弦值. 19.(本小题满分12分)在平面直角坐标系xOy中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ + 与AB共线?如果存在,求k 值;如果不存在,请说明理由.20.(本小题满分12分)OSBC如图,面积为S 的正方形ABCD 中有一个不规则的图形M ,可按下面方法估计M 的面积:在正方形ABCD 中随机投掷n 个点,若n 个点中有m 个点落入M 中,则M 的面积的估计值为mS n,假设正方形ABCD 的边长为2,M 的面积为1,并向正方形ABCD 中随机投掷10000个点,以X 表示落入M 中的点的数目. (I )求X 的均值EX ;(II )求用以上方法估计M 的面积时,M 的面积的估计值与实际值之差在区间(0.03)-0.03,内的概率.附表:1000010000()0.250.75ktt t t P k C-==⨯⨯∑21.(本小题满分12分) 设函数2()ln()f x x a x =++(I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于eln2. 22.请考生在A B C ,,三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22.A(本小题满分10分)选修4-1:几何证明选讲如图,已知AP 是O 的切线,P 为切点,AC 是O 的割线,与O 交于B C ,两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(Ⅰ)证明AP O M ,,,四点共圆; (Ⅱ)求OAM APM ∠+∠的大小.22.B(本小题满分10分)选修4-4:坐标系与参数方程1O 和2O 的极坐标方程分别为4cos 4sin ρθρθ==-,.(Ⅰ)把1O 和2O 的极坐标方程化为直角坐标方程; (Ⅱ)求经过1O ,2O 交点的直线的直角坐标方程.22.C(本小题满分10分)选修45-;不等式选讲 设函数()214f x x x =+--.D C BA A(I )解不等式()2f x >; (II )求函数()y f x =的最小值.2007年普通高等学校招生全国统一考试理科数学试题参考答案(宁夏)一、选择题 1.C 2.D 3.A 4.D 5.C 6.C7.D 8.B 9.C 10.D 11.B 12.B二、填空题 13.3 14.1- 15.12i +16.240三、解答题17.解:在BCD △中,πCBD αβ∠=--. 由正弦定理得sin sin BC CDBDC CBD=∠∠.所以sin sin sin sin()CD BDC s BC CBD βαβ∠==∠+·.在ABC Rt △中,tan sin tan sin()s AB BC ACB θβαβ=∠=+·.18.证明: (Ⅰ)由题设AB AC SB SC ====SA ,连结OA ,ABC △为等腰直角三角形,所以OA OB OC SA ==,且AO BC ⊥,又SBC △为等腰三角形,故SO BC ⊥,且2SO SA =,从而222OA SO SA +-. 所以SOA △为直角三角形,SO AO ⊥. 又AO BO O = .所以SO ⊥平面ABC . (Ⅱ)解法一:取SC 中点M ,连结A M O M ,,由(Ⅰ)知S O O C S A A ==,,得O M S C A M S⊥⊥,. OMA ∠∴为二面角A SC B --的平面角.由AO BC AO SO SO BC O ⊥⊥= ,,得AO ⊥平面SBC .所以AO OM ⊥,又AM SA =,故sin AO AMO AM ∠===. OSBC M所以二面角A SC B --解法二:以O 为坐标原点,射线OB OA ,分别为x 轴、y 轴的正半轴,建立如图的空间直角坐标系O xyz -.设(100)B ,,,则(100)(010)(001)C A S -,,,,,,,,.SC 的中点11022M ⎛⎫- ⎪⎝⎭,,,111101(101)2222MO MA SC ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭ ,,,,,,,,.00MO SC MA SC ==,∴··.故,MO SC MA SC MO MA ⊥⊥>,,<等于二面角A SCB --的平面角.cos MO MA MO MA MO MA<>==,·· 所以二面角A SC B --19.解:(Ⅰ)由已知条件,直线l的方程为y kx =代入椭圆方程得22(12x kx +=.整理得221102k x ⎛⎫+++=⎪⎝⎭① 直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=->⎪⎝⎭,解得2k <-或2k >.即k的取值范围为22⎛⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,,∞∞. (Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,,由方程①,12212x x k +=-+. ②又1212()y y k x x +=++ ③而(01)()A B AB =,,.所以OP OQ + 与AB共线等价于1212)x x y y +=+,将②③代入上式,解得2k =.由(Ⅰ)知2k <-或2k >,故没有符合题意的常数k .20.解:每个点落入M 中的概率均为14p =. 依题意知1~100004X B ⎛⎫ ⎪⎝⎭,. (Ⅰ)11000025004EX =⨯=. (Ⅱ)依题意所求概率为0.03410.0310000X P ⎛⎫-<⨯-< ⎪⎝⎭,0.03410.03(24252575)10000X P P X ⎛⎫-<⨯-<=<< ⎪⎝⎭2574100001000024260.250.75t t t t C-==⨯⨯∑2574242510000100001100001000024260.250.750.250.75tt ttt t t CC --===⨯⨯-⨯⨯∑∑0.95700.04230.9147=-=.21.解: (Ⅰ)1()2f x x x a'=++, 依题意有(1)0f '-=,故32a =. 从而2231(21)(1)()3322x x x x f x x x ++++'==++. ()f x 的定义域为32⎛⎫-+ ⎪⎝⎭,∞,当312x -<<-时,()0f x '>;当112x -<<-时,()0f x '<; 当12x >-时,()0f x '>. 从而,()f x 分别在区间31122⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭,,,∞单调增加,在区间112⎛⎫-- ⎪⎝⎭,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221()x ax f x x a++'=+. 方程22210x ax ++=的判别式248a ∆=-.(ⅰ)若0∆<,即a <<()f x 的定义域内()0f x '>,故()f x 的极值.(ⅱ)若0∆=,则a a =若a =()x ∈+,2()f x '=.当2x =-时,()0f x '=,当x ⎛⎛⎫∈+ ⎪ ⎪⎝⎭⎝⎭∞时,()0f x '>,所以()f x 无极值.若a =)x ∈+,2()0f x '=>,()f x 也无极值.(ⅲ)若0∆>,即a >或a <,则22210x a x ++=有两个不同的实根1x =2x =.当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点,故()f x 无极值.当a >1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点,由根值判别方法知()f x 在12x x x x ==,取得极值.综上,()f x 存在极值时,a 的取值范围为)+.()f x 的极值之和为2221211221()()ln()ln()ln 11ln 2ln 22ef x f x x a x x a x a +=+++++=+->-=.22.A(Ⅰ)证明:连结OP OM ,.因为AP 与O 相切于点P ,所以OP AP ⊥. 因为M 是O 的弦BC 的中点,所以OM BC ⊥.于是180OPA OMA ∠+∠=°. 由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以AP O M ,,,四点共圆. (Ⅱ)解:由(Ⅰ)得AP O M ,,,四点共圆,所以OAM OPM ∠=∠. 由(Ⅰ)得OP AP ⊥.由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=°. 所以90OAM APM ∠+∠=°. 22.B解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ)cos x ρθ=,sin y ρθ=,由4cos ρθ=得24cos ρρθ=.所以224x y x +=.即2240x y x +-=为1O 的直角坐标方程. 同理2240x y y ++=为2O 的直角坐标方程.(Ⅱ)由22224040x y x x y y ⎧+-=⎪⎨++=⎪⎩,解得1100x y =⎧⎨=⎩,,2222x y =⎧⎨=-⎩. 即1O ,2O 交于点(00),和(22)-,.过交点的直线的直角坐标方程为y x =-. 22.C解:(Ⅰ)令214y x x =+--,则1521334254x x y x x x x ⎧---⎪⎪⎪=--<<⎨⎪⎪+⎪⎩, ,, ,, .≤≥...............3分作出函数214y x x =+--的图象,它与直线2y =的交点为(72)-,和523⎛⎫ ⎪⎝⎭,.所以2142x x +-->的解集为5(7)3x x ⎛⎫--+ ⎪⎝⎭,,.A(Ⅱ)由函数214y x x =+--的图像可知,当12x =-时,214y x x =+--取得最小值92-.。
2007年高考数学模拟考试题(理科卷5)长沙宁一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合P={ 0, m},Q={x│Z x x x ∈<-,0522},若P∩Q≠Φ,则m 等于( )A.1B.2C.1或25 D. 1或22. 在△ABC 中,“sin2A>23”是“A>150”的( )A.充分不必要条件 B 。
必要不充分条件C .充要条件D 。
既不充分也不必要条件3.已知α与L 分别是一个平面和一条直线,则α内至少有一条直线与直线L( )A.平行B.相交C.异面D.垂直4.如图示,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面 上升高度h 与注水时间t 之间的函数关系大致是下列图像中的( )t t0 tCD5. 奇函数f(x)在[3,7]上是增函数,在[3,6]上的最大值为8,最小值为-1,则2f(-b)+f(-3)=( )A.5B.-5C.-13D.-156. 已知函数y=sinx-cosx,给出以下四个命题,其中正确的命题是( )A. 若x ∈[2π,π],则y ∈[0,2]B. 在区间[47,43ππ]上是增函数C. 直线43π=x 是函数图像的一条对称轴D. 函数的图像可由函数x y sin 2=的图像向左平移4π个单位得到7. 若直线a by ax (022=+-、b 〉0)始终平分圆014222=+-++y x y x 的周长,则ba 11+的最小值是( )A. 4B. 2C.41 D.218. 已知函数y=f(x)是R 上的偶函数,且在[0,+∞]上是减函数,若f(m)≤f (3),则实数m 的取值范围是( )A.m≥3B.m≤-3 或m≥3C. .m≤-3D. m≥3 9.在圆x y x 522=+内,过点)23,25(有n 条弦的长度成等差数列,最短弦长为数列的首项1a ,最长弦长为n a ,若公差]31,61(∈d ,则n 的取值集合为 ( )A.{4,5,6}B.{6,7,8,9}C.{3,4,5}D.{3,4,5,6}10. 已知A,B,C,D 是同一球面上的四点,且连接每两点的线段长都等于2,则球心到平面BCD 的距离为( )A.332 B.962 C.66 D.932二、填空题:本大题共5小题,每小题4分,共20分。
把答案填在题中横线上。
11.椭圆12222=+by ax )0(>>b a 的四顶点为A 、B 、C 、D ,若菱形ABCD 的内切圆恰好过焦点,则椭圆的离心率是12.某篮球运动员在罚球线投中球的概率为32,在某次比赛中罚3球恰好命中2球的概率为__________________。
13.如果三棱锥的三个侧面两两垂直,它们的面积分别为6cm 2、4cm 2和3cm 2,那么它的外接球体积是______________。
14.设O 、A 、B 、C 为平面上四个点,aOA=,bOB=,cOC=,且o c b a =++,c b b a ⋅=⋅=a c ⋅=-1,则||||||c b a ++=___________________。
15.已知M={(x,y)|x+y+1>0},N={(x,y)|y=k(x-a)+a},若M N=φ,则a 、k 满足的条件是 _______________。
三、解答题:本大题共6小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
16.设锐角∆ABC 中,22cos sin 22=-A A .(1)求∠A 的大小;(2)求)62sin(sin 22π++=B B y 取最大值时,∠B 的大小;17.{n a }、{n b }都是各项为正的数列,对任意的+∈N n ,都有n a 、2n b 、1+n a 成等差数列,2n b 、1+n a 、21+n b 成等比数列.(1)试问{n b }是否为等差数列,为什么?(2)如1a =1,1b =2,求nna a a S 11121+++=;18.如图,已知直三棱柱ABC -A 1B 1C 1,AB=AC ,F 为BB 1上一点, D 为BC 的中点,且BF=2BD. (1)当1FB BF 为何值时,对于AD 上任意一点E 总有EF ⊥FC 1;(2)若A 1B 1=3,C 1F 与平面AA 1B 1B 所成角的正弦值为15104,当1FB BF 在(1)所给的值时,求三棱柱的体积.19.已知cbx axx x f +++=23)(有极大值)(αf 和极小值)(βf .(1)求)(αf +)(βf 的值;(2)设曲线y=f(x)的极值点为A 、B ,求证:线段AB 的中点在y=f(x)上. 20.已知a 、b 、R c ∈,cbx axx f ++=2)(.(1)若0=+c a ,)(x f 在[-1,1]上的最大值为2,最小值为25-,求证:0≠a 且2||<ab ; (2)若a>0,p 、q 满足1=+q p ,且对任意x 、∈y R ,均有)()(y qf x pf+≥)(qy px f +,求证: 0≤p ≤1.21.已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆中心O ,且0=⋅BC AC,|BC|=2|AC|.(1)求椭圆方程;(2)如果椭圆上两点P 、Q ,使∠PCQ 的平分线垂直AO ,是否总存在实数λ,使ABPQ λ=?请给出说明。
参考答案及评分标准一.DADBD CABAC二、填空题11.215- 12.94 13.362929cm π 14. 23 15. ⎪⎩⎪⎨⎧-≤-=211a k三、解答题16.(1)∵2sin 2A-cos2A=2 ∴cos2A=-21∴A=3π(6分)(2)y=2sin 2B+sin(2B+6π)=1+sin(2B-6π) (10分)∵0<2B<π34 ∴当2B-6π=2π即B=3π时,max y =2 (12分)17.(1)依题意⎪⎩⎪⎨⎧⋅==++++(2)(1)22122121n n n n n n b b a b a a (2分)∴nn n b b b 211=++- )1(>n ∴{n b }为等差数列 (6分) (2)由11=a ,21=b ,求得)1(22+=n b n(8分)∴)1(21+=n n a n∴12)1113121211(211121+=+-++-+-=+++=n n n n a a a S nn (12分)18.解(1)由三垂线定理知C 1F ⊥DF ,易证Rt ∆BDF ≌Rt ∆B 1FC 1 ∴B 1F=BD=21BF ∴21=FB BF (6分)(2)在平面A 1B 1C 1中,过C 1作C 1G ⊥A 1B 1于G ,连FG ,易证∠C 1FG 就是CF 与侧面AA 1B 1B 所成的角 (8分) 则有1510411=FC G C ,FC GC 1115104=,∆A 1B 1C 1中,取B 1C 1的中点D 1,连A 1D 1,设B 1F=x ,由C 1G ·A 1B 1=B 1C 1·A 1D 1求得x=1,∴BB 1=3,26211111111=⋅⋅=-BB D A G B V CB A ABC (12分)19.解(1)f ’(x)=3x 2+2ax+b=0两根为α、β ∴a32-=+βα,3b =⋅βα(3分)cab ac b a f f 2322742)()()()(32233+-=++++++=+βαβαβαβα (6分)(2)A(α,f(α)),B(β,f(β)),其中点M(2)()(,2βαβαf f ++)∵))()((213272)3()2(3βαβαf f c ab aa f f +=+-=-=+∴M 在y=f(x)图象上 (12分) 20.(1)反证法(2)pf(x)+qf(y)-f(px+qy)=apq(x-y)2 (8分) 依题意apq(x-y)2≥0∵a>0 ,(x-y)2≥0 ∴ pq ≥0,即p(1-q)≥0∴0≤p ≤q 得证 (12分)21.(1)以O 为原点,OA 为x 轴建立直角坐标系,A(2,0),椭圆方程14222=+by x∵0=⋅BC AC,∴AC ⊥BC ,∴C(1,1) (4分)将C(1,1)代入椭圆方程得342=b,即椭圆方程为143422=+yx(6分)(2)依题意可设PC :y=k(x-1)+1,QC :y=-k(x-1)+1∵C(1,1)在椭圆上,x=1是方程(1+3k 2)x 2-6k(k-1)x+2k 2-bk-1=0的一个根 ∴22311631k k kx p +--=⋅,用-k 代换p x 中的k 得2231163kk kx Q+-+=∴312)(=--+=--=Qp Q p Qp Q p PQx x kx x k x x y y k∵B(-1,-1), ∴31=AB k∴AB PQ ||,因此总存在实数λ,使ABPQ λ= (14分)。