北师大版七年级数学下册第二章相交线与平行线全套
- 格式:ppt
- 大小:2.39 MB
- 文档页数:10
北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。
课 题第二章 相交线与平行线1、两条直线的位置关系(第1课时)教 学 目 标1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。
3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。
教学重、难点1. 2.教 学 过 程 教 学 内 容可根据学生实际增减内容 第一环节 走进生活 引入课题 活动内容一:两条直线的位置关系1. 巩固练习:教师展示下列图片,学生快速回答:2.1—1 2.1—2 结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 . 2.定义分别为: 。
问题1:在2.1—1中,直线m 和n 的关系是 ;a 和b 是 ;a 和n 是 。
问题2:在2,1—2你能提出哪些问题?第二环节 动手实践 探究新知动手实践一m nab请先画一画:两条直线直线和,交于点O,再回答下列问题..问题1:观察2.1—4:∠1和∠2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义。
问题2:剪子可以看成图2.1—4,那么剪子在剪东西的过程中,∠1和∠2还保持相等吗?∠3和∠4呢?你有何结论? 问题3:下列各图中,∠1和∠2是对顶角的是( )问题4:如图2.1—6所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?动手实践二补角定义:一般地,如果两个角的和是1800,那么称这两个角互为补角( ) 余角定义:如果两个角的和是900,那么称这两个角互为余角( ) 动手实践三打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,与交于点O ,∠∠900,∠1=∠2小组合作交流,解决下列问题:在图2.1—8中 问题1:哪些角互为补角?哪些角互为余角?1 2 1 2 1 212A B CD 注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。
1北师大版七年级下数学第二章《相交线与平行线》教案 《2.1两条直线的位置关系》教案一:教学目标1、掌握两条直线平行与垂直的条件;2、会运用条件判断两直线是否平行或垂直;3、能运用条件确定两平行或垂直直线的方程系数.二:教学重点、难点两条直线平行与垂直的条件, 两条直线平行与垂直的条件的应用.三:教学设计(一)情景引入A :两条直线位置关系当中平行为简单;现在我们来研究平面内两条直线平行的关系. ①先入为主的思想;在研究直线问题时首先考虑特殊情况:α=90°时,画图.这个情况很简单:当α=90°时只要x 1≠x 2,则两条直线平行.②一般情况:α≠90°时,则k 存在,∴y 1=kx +b 1 y 2=kx +b 2已知直线l 1,l 2的斜截式方程为:l 1:y =k 1x +b 1 l 2:y =k 2x +b 2,若l 1//l 2,则有α1=α2且b 1≠b 2,∴tan α=tan α [α1∈[0,180°),α2∈[0,180°)]∴k 1=k 2反之,是否成立?若k 1=k 2且b 1≠b 2则有tan α=tan α,∵0≤α1,α2<π,∴α1=α2且b 1≠b 2,∴l 1//l 2结论一:①特殊情况:若两条直线l 1,l 2斜率都不存在也不重合,则两直线l 1,l 2平行; ②有斜率的两条直线l 1//l 2 <=> k 1=k 2且b 1≠b 2∴判断不重合的两条直线平行的程序:两条直线方程——两条直线斜率都不存在且不重合→平行.两条直线方程——化为斜截式方程→求两条直线斜率.若k 1=k 2且b 1≠b 2→平行若k 1≠k 2→相交或者若A 1B 2≠B 1A 2且B 1C 2≠B 2C 1或A 1B 2=A 2B 1且A 1C 2≠A 2C 1 则两条直线平行.例1:已知两条直线l 1:4x +2y -7=0,l 2:2x -y -5=0求证l 1∥l 212122∵l 1的斜率为,l 2的斜率为 ∴k 1=k 2∴l 1∥l 2 例2:求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程?解:已知直线的斜率为-,因为所求直线与已知直线平行,因此它的斜率也是-. 根据点斜式,得到所求直线的方程是:y +4=-(x -1)即2x +3y +10=0 例3:如果直线ax +2y +2=0与3x -y -2=0平行,那么系数a =()A .3B .-6C .-D . 例4:求与直线3x +4y +1=0平行,且在两坐标轴上截距之和为的直线l 的方程? 法一:设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-),由题意可得(-)+(-)=即m =-4, ∴所求直线l 的方程为3x +4y -4=0, 法二:设直线方程为+=1, ∴a +b =,-=-,可得a =,b =1, ∴所求直线l 的方程为3x +4y -4=0B :平时我们已经理解了;接下来我们来研究两直线相互垂直的关系.①同样的先考虑特殊情况:若已知一条直线的倾斜角为90°,x =x 1,则求其另一条与它垂直的直线方程.②一般情况:若已知两条直线l 1:y =k 1x +b 1,l 2:y =k 2 x +b 2,相互垂直则k 1与k 2有何关系? α+(π-β)= ∴α-β=- ∴β=α+ 21213232322332373m 4m 3m 4m 37a x b y 37a b 43342π2π2π3tan β=tan (α+)=-cot α ∴tan α·tan β=tan α·(-cot α)=-1∴最后我们得证:若两条直线垂直则k 1k 2=-1.③α=90°时=>β=0°(特殊情况)k 1=0,k 2不存在.或者k 1不存在,k 2=0.例4:已知直线l 1:ax -y +2a =0与l 2:(2a -1)x +ay +a =0互相垂直,求a 的值一、①当α=90°即a =0时,l 2:x =0 ∴l 1:y =0 ∴l 1⊥l 2②当α≠90°则k 1·k 2=a ·(-)=-1 ∴a =1 二、A 1A 2+B 1B 2=0 =>a (2a -1)-a =0 2a ²-2a =0 =>a =1或a =0例5:求与3x +4y +1=0平行,且在两坐标轴上截距之和为7/3的直线l 的方程.(一)设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-) ∴(-)+(-)= ∴m =-4∴所求直线l 的方程为3x +4y -4=0(二)设直线方程为+=1 =>a +b =;-=-=>a =,b =1 ∴l :3x +4y -4=0例6:已知三角形两条高线为x +y =0和2x -3y +1=0且一个顶点C (1,2),求三角形AC ,BC 边所在直线的方程.∵AC ,BC 与两条高线垂直∴AC ,BC 的斜率为1和- ∴边AC ,BC 所在直线的方程为y -2=1(x -1),y -2=-(x -1) 即x -y +1=0,3x +2y -7=0《2.2探索直线平行的条件》教案一、导学目标1.使学生能够熟练识别同位角;2πaa )12(-3m 4m 3m 4m 37a xb y 37a b 433423232.使学生会用同位角相等判定二条直线平行.二、重点难点1.重点(1)识别同位角.(2)用同位角相等判定二条直线平行.2.难点用同位角相等判定二条直线平行.三、导学过程一、自主学习:操作---观察---探索如图:3根木条(或硬纸条)相交成∠1、∠2,固定木条b、c,转动木条a.问:1.在木条a的转动过程中,木条a、b的位置关系发生了什么变化?∠2与∠1的大小关系发生了什么变化?2.改变图中∠1的大小,按照上面的方式再试一试,当∠2与∠1的大小满足什么关系时,木条a与木条b平行?二、合作探究:活动一:利用平移三角尺的方法画平行线,探索直线平行的条件.当∠1与∠2相等,直线a、b就;当∠1与∠2不相等时,直线a、b平行吗?活动二:通过观察、比较,认识“同位角”,探索直线平行的条件.直线a、b被第三条直线c所截而成的8个角中,像∠1与∠2这样的一对角称为.请问图中还有没有其他的同位角?4归纳:相等,两直线.活动三:例题讲解.例:如图,∠1=∠C,∠2=∠C,请找出图中互相平行的直线,并说明理由.三、拓展提高:1.∠1与∠C、∠2与∠B、∠ 3与∠ C分别是哪两条直线被哪一条直线截成的同位角?2.如图,直线a、b被直线c所截,∠1=35°,∠2=145°,问:直线a与b平行吗?四、达标检测:1.如图,∠1与∠B是直线和被直线所截构成的同位角;∠2与∠A直线和被直线所截构成的同位角.2.如图,∠1、∠2、∠3中,和是同位角.3.如图,如果∠B=∠1,根据,那么可得DE//BC;如果∠B=∠2,根据同位角相等,两直线平行,那么可得// .4.如图,已知直线AB、CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,那么MQ∥NP,为什么?AB CD EF13256《2.3平行线的性质》教案教学目标:理解平行线的性质的推导,掌握平行线的性质.教学重点:平行线的性质以及应用.教学难点:平行线的性质公理与判定公理的区别.教学过程:一、梳理旧知,引出新课平行线的判定:判定方法1、同位角相等,两直线平行.判定方法2、内错角相等,两直线平行.判定方法3、同旁内角互补,两直线平行.问题:反过来也成立吗?过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?再看下面的例子:“如果一个整数个位上的数字是5,那么它一定能够被5整除.”对吗?这句话反过来怎么说?对不对?【结论】如果一个句子是正确的,反过来说(因果对调),就未必正确.二、动手操作,归纳性质上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?(板书)性质1、两直线平行,同位角相等.P Q M N21F ED C B A7如果把平行线性质1:“两直线平行,同位角相等”看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:“两直线平行,内错角相等”.【例】如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1=∠2.证明:∵a ∥b ,∴∠1=∠3(__________________).∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换).(板书)性质2、两直线平行,内错角相等【变式】下面我们来证明平行线的性质3:两直线平行,同旁内角互补.请模仿范例写出证明.如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1+∠2=180º.证明:(略)(板书)性质:两直线平行,同旁内角互补三、巩固新知,深化理解例1、如图,平行线AB ,CD 被直线AE 所截.(1)从∠1=110º.可以知道∠2是多少度吗?为什么?(2)从∠1=110º可以知道∠3是多少度吗?为什么?(3)从∠1=110º可以知道∠4是多少度吗?为什么?例2、如图,已知AB ∥CD ,AE ∥CF ,∠A = 39°,∠C 是多少度?为什么?ab1 2 3 c ab 1 23c ED CB A12348方法一解:∵AB ∥CD , ∴ ∠C=∠1.∵ AE ∥CF ,∴ ∠A=∠1.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.方法二解:∵AB ∥CD ,∴ ∠C=∠2.∵ AE ∥CF ,∴ ∠A=∠2.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.练习1:如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据: (1)∵a ∥b ,∴∠1=∠3(___________________);(2)∵∠1=∠3,∴a ∥b (_________________).(3)∵a ∥b ,∴∠1=∠2(__________________);(4)∴a ∥b ,∴∠1+∠4=180º(_____________________________________)(5)∵∠1=∠2,∴a ∥b (___________________);(6)∵∠1+∠4=180º,∴a ∥b (_______________).练习2:教材第51页 随堂练习四、盘点收获,布置作业1、(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题?2、作业G FED C B Aa b12 3 c 49《2.4用尺规作角》教案教学目的:1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识.2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学难点:作图步骤和作图语言的叙述,及作角的综合应用.教学过程:一、问题的提出如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB .(1)请过点C 画出与AB 平行的另一条边.(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?二 、新课内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹)(一) 用尺规作一个角等于已知角.(1)已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB(2)已知:∠10求作:∠AOB ,使∠AOB=∠(二)用尺规作一个角等于已知角的倍数:(3)已知:∠1求作:∠MON ,使∠MON=2∠1∠COD ,使∠COD=3∠1(三)用尺规作一个角等于已知角的和:(4) 已知:∠1、∠2、∠3求作:①∠AOB ,使∠AOB=∠1+∠2②∠POQ ,使∠POQ=∠1+∠2+∠3③∠MON ,使∠MON=2∠1+∠2(四)用尺规作一个角等于已知角的差:已知:∠、∠、∠求作:①∠AOB ,使∠AOB=∠-∠②∠POQ ,使∠POQ=∠-∠-∠③求作一个角,使它等于2∠-∠(五) 综合练习:(通过以下练习,意味着你掌握了作角的真本领,多动一下脑筋,你一定会完成得很出色的)1、已知:线段AB 、 ∠、∠αα1αβγαβγαβαβγβγαβ13211求作:分别过点A 、点B 作∠CAB=∠、∠CBA=∠2、如图,点P 为∠ABC 的边AB 上的一点,过点P 作直线EF//BC .3、已知:直线L 和L 外一点P ,求作:一条直线,使它经过点P ,并与已知直线L 平行.4、已知:△ABC ,求作:直线MN ,使MN 经过点A ,且MN//BC .5、如图,以点B 为顶点,射线BA 为一边,在∠ABC 外再作一个角,使其等于∠ABC .(六)小结(七)作业αβLA αβ。
北师大版七年级数学下
第二章平行线和相交线
内容二:
议一议:
(1)用剪刀剪东西的时候,哪对角同时变大或变小?
(2)如果将剪刀简单的表示为右图,那么∠1和∠2有什么位置关系?它们的大小有什么关系?能试着说明理由吗?
1
2
2
由此引出对顶角的概念和“对顶角相等”的结论。
学生观察课件
的演示过程,获得直观的体会,在观察中总结出对顶角的特征,并
用自己的语言表达出来。
思考:如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量角的度数
是多少度吗?你的根据是什么?
小结:(1)余角、补角的概念。
(2)同角或等角的余角相等,同角或等角的补角相等。
(3)对顶角的概念和“对顶角相等”。
作业:课本P52 习题2.1:1、2、3。
板书
设计
2.1余角与补角
一、导入2、对顶角及其性质四、小结
二、探究新知三、巩固练习五、作业
1、余角、补角的概念1、
2、
课后
反思
北师大版七年级数学下
第二章平行线和相交线
北师大版七年级数学下
第二章平行线和相交线。
《相交线与平行线》全章复习与巩固(基础)知识讲解【学习目标】1.熟练掌握对顶角,余角,补角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2. 区别平行线的判定与性质,并能灵活运用;3. 了解尺规作图的概念,熟练掌握用尺规作角或线段的方法.【知识网络】【要点梳理】要点一、两条直线的位置关系1.同一平面内两条直线的位置关系:相交与平行要点诠释:(1)只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.(2)在同一平面内不相交的两条直线叫做平行线.平行用符号“∥”表示.2.对顶角、补角、余角(1)定义:①由两条直线相交构成的四个角中,有公共顶点且两边互为反向延长线的两个角叫做对顶角.②如果两个角的和是180°,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.类似地,如果两个角的和是90°,那么这两个角互为余角.简称互余,其中一个角叫做另一个角的余角.(2)性质:同角或等角的余角相等.同角或等角的补角相等.对顶角相等.3.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、用尺规作线段和角1.用尺规作线段(1)用尺规作一条线段等于已知线段.(2)用尺规作一条线段等于已知线段的倍数.(3)用尺规作一条线段等于已知线段的和.(4)用尺规作一条线段等于已知线段的差.2.用尺规作角(1)用尺规作一个角等于已知角.(2)用尺规作一个角等于已知角的倍数.(3)用尺规作一个角等于已知角的和.(4)用尺规作一个角等于已知角的差.【典型例题】类型一、两条直线的位置关系1.如图,直线AB、CD、EF相交于点O,那么互为对顶角(平角除外)的角共有对,它们分别是,共有对邻补角.【思路点拨】根据邻补角定义和对顶角定义,每一个顶点处有四个角,可以组成四对邻补角和两对对顶角,而本题图形中,三个顶点重叠在一起,所以再乘以3即可.【答案】6,∠AOC与∠BOD,∠AOF与∠BOE,∠COF与∠DOE, ∠BOC与∠AOD,∠BOF与∠AOE, ∠DOF与∠COE ,12.【解析】找对顶角或邻补角,先从某一个角开始,顺时针或逆时针旋转,这样做,既不漏也不重.【总结升华】两条直线相交得到的四个角中,共有2对对顶角,4对邻补角.举一反三:【变式】如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.【答案】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角.因为∠AOD+∠BOD=180º(平角定义),∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.而∠BOC的邻补角只有一个∠AOC,且∠BOC没有对顶角.2.已知:如图,直线a、b、c两两相交,且a⊥b,∠1=2∠3,,求∠4的度数.【答案与解析】解:∵a⊥b,∴∠2=∠1=90°.又∵∠1=2∠3,∴90°=2∠3,∴∠3=45°,又∠3与∠4互为邻补角,所以∠3+∠4=180°即45°+∠4=180°.所以∠4=135°.【总结升华】涉及到角的运算时,充分利用已知条件和隐含条件(平角、余角、补角、对顶角等)是解题的关键.类型二、平行线的性质与判定3.如图,EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整:因为EF∥AD,所以∠2= ()又因为∠1=∠2,所以∠1=∠3所以AB∥()所以∠BA C+ =180°()因为∠BAC=70°,所以∠AGD= .【答案】∠3,两直线平行,同位角相等;DG,内错角相等,两直线平行;∠AGD,两直线平行,同旁内角互补;110°.【解析】首先由已知EF∥AD根据两直线平行同位角相等可得∠2=∠3,再由∠1=∠2,利用等量代换可得∠1=∠3,根据内错角相等,两直线平行可得AB∥DG,再根据两直线平行同旁内角互补可得∠BAC+∠AGD=180°,进而得到答案.【总结升华】本题主要考查的是平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.此外注意证明题规范的书写格式.举一反三:【变式】如图,已知∠ADE=∠B,∠1=∠2,那么CD∥FG吗?并说明理由.【答案】解:平行,理由如下:因为∠ADE=∠B,所以DE∥BC(同位角相等,两直线平行),所以∠1=∠BCD(两直线平行,内错角相等).又因为∠1=∠2(已知),所以∠BCD=∠2.所以CD∥FG(同位角相等,两直线平行).4.(2015春•杭州期末)如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.【答案与解析】解:(1)∵BC∥EG,∴∠E=∠1=50°.∵AF∥DE,∴∠AFG=∠E=50°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠AFM=∠AFG=50°.∵AM∥BC,∴∠QAM=∠Q=15°,∴∠FA Q=∠AFM+∠FAQ=65°.∵AQ平分∠FAC,∴∠QAC=∠FA Q=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM∥BC,∴∠ACB=∠MAC=80°.【总结升华】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.类型三、用尺规作线段和角5. 在如图中,补充作图:(1)在AD的右侧作∠DCP=∠DAB(尺规作图,不写作法,保留作图痕迹);(2)CP与AB会平行吗?为什么?【思路点拨】(1)根据作一个角等于已知角的方法即可作出;(2)根据平行线的判定方法即可判断.【答案与解析】解:(1)作图如下:(2)会平行.用同位角相等,两直线平行.【总结升华】本题考查了基本作图:作一个角等于已知角,以及平行线的判定定理,正确掌握基本作图是关键.举一反三:【变式】(2014秋•娄底期中)尺规作图的画图工具是()A.刻度尺、量角器 B.三角板、量角器C.直尺、量角器 D.没有刻度的直尺和圆规【答案】D提示:尺规作图的画图工具是没有刻度的直尺和圆规.类型四、实际应用6.如图,107国道a上有一个出口M,想在附近公路b旁建一个加油站,欲使通道最短,应沿怎样的线路施工?【答案与解析】解:如图,过点M作MN⊥b,垂足为N,欲使通道最短,应沿线路MN施工.【总结升华】灵活运用垂线段最短的性质是解答此类问题的关键.《相交线与平行线》全章复习与巩固(基础)巩固练习【巩固练习】一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.下列说法正确的是().A.相等的角是对顶角.B.两条直线被第三条直线所截,内错角相等.C.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.D.若两个角的和为180°,则这两个角互为余角.4.(2015•宜昌)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50° C.40° D.30°5.用尺规作图,已知三边作三角形,用到的基本作图是().A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如图,∠1和∠2互补,∠3=130°,那么∠4的度数是( ).A. 50°B. 60°C.70°D.80°二、填空题9. 如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.如图所示,已知BC∥DE,则∠ACB+∠AOE=.11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (广东湛江)如图所示,请写出能判断CE∥AB的一个条件,这个条件是:①:________ ②:________ ③:________13.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.14.如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD= ,∠AOC=,∠BOC=.15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.Array 16.(2015秋•丰台区期末)阅读下面材料:在数学课上,老师提出如下问题:小聪、小明、小敏三位同学在黑板上分别画出了设计方案:根据以上信息,你认为同学的方案最节省材料,理由是.三、解答题17.如图所示,直线AB、CD、EF相交于点O,若∠1+∠2=90°,∠3=40°,求∠1的度数,并说明理由.18.(2015春•监利县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.19. 如图所示,已知∠1=50°,∠2=130°,∠4=50°,∠6=130°,试说明a∥b,b∥c,d∥e,a∥c.20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗? 为什么?【答案与解析】一、选择题1. 【答案】A;【解析】只有第三个图中的∠1与∠2是对顶角.2. 【答案】B;【解析】同位角的特征:在截线同旁,在两条被截直线同一方向上.3. 【答案】C;【解析】一个角的平分线分得两个角相等,但不是对顶角,A错误;内错角相等的前提必须是两条直线平行,B错误;若两个角的和为180°,这两个角互为补角,D错误;C是平行公理的推论,正确.4. 【答案】C;【解析】∵FE⊥DB,∴∠DEF=90°.∵∠1=50°,∴∠D=90°﹣50°=40°.∵AB∥CD,∴∠2=∠D=40°.故选C.5. 【答案】C;【解析】根据三边做三角形用到的基本作图是:作一条线段等于已知线段.故选C.6. 【答案】C;【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.7.【答案】C;【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q 点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C正确.8.【答案】A;【解析】平行线的判定与性质综合应用.二、填空题9.【答案】50°;【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB =∠AGF,故∠EGB=50°.10.【答案】180°;【解析】由BC∥DE可知∠ACB=∠EOC,又因为∠AOE+∠EOC=180°,故可得解.11.【答案】向西,750米;【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度. 12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B 或∠A+∠ACE=180°.13.【答案】90°;【解析】∠BAC+∠ACD=180°,11BAC+ ACD22∠∠=90°,即∠1+∠2=90°.14.【答案】115°,115°,65°;【解析】邻补角或对顶角的性质进行求解.15.【答案】48°;【解析】内错角相等,两直线平行.16.【答案】小聪;两点之间线段最短;点到直线垂线段最短;【解析】小明与小聪的方案比较:在小明的方案中∵AD+BD>AB,∴小聪的方案比小明的节省材料;小聪与小敏的方案比较:小聪方案中AC<小敏的方案中AC∴小聪同学的方案最节省材料,理由:两点之间线段最短;点到直线垂线段最短.三、解答题17.【解析】解:因为∠2=∠3(对顶角相等),∠3=40°(已知),所以∠2=40°(等量代换).又因为∠1+∠2=90°(已知),所以∠1=90°-∠2=50°.18.【解析】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.19.【解析】解:因为∠1=50°,∠2=130°(已知),所以∠1+∠2=180°.所以a∥b(同旁内角互补,两直线平行).所以∠3=∠1=50°(两直线平行,同位角相等).又因为∠4=50°(已知),所以∠3=∠4(等量代换).所以d∥e(同位角相等,两直线平行).因为∠5+∠6=180°(平角定义),∠6=130°(已知),所以∠5=50°(等式的性质).所以∠4=∠5(等量代换).所以b∥c(内错角相等,两直线平行).因为a∥b,b∥c(已知),所以a∥c(平行于同一直线的两直线平行).20.【解析】解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF =∠B(等量代换).。