飞行力学第1-6章弹性..
- 格式:ppt
- 大小:1.08 MB
- 文档页数:14
第一章 教学参考资料(一)本章的学习要求及重点1.弹性力学的研究内容,及其研究对象和研究方法,认清他们与材料力学的区别。
2.弹性力学的几个主要物理量的定义、量纲、正负方向及符号规定等,及其与材料力学相比的不同之处。
3.弹性力学的几个基本假定,及其在建立弹性力学基本方程时的应用。
(二)本章内容提要1.弹性力学的内容─弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2.弹性力学中的几个基本物理量:体力—— 分布在物体体积内的力、记号为,,,x y z f f f 。
量纲为L -2MT -2,以坐标正向为正。
面力—— 分布在物体表面上的力,记号为,,,x y z f f f 。
量纲为L -2MT -2 ,以坐标正向为正。
应力—— 单位截面面积上的内力,记号x xy στ⋯⋯,量纲为L -2MT -2,以正面正向为正,负面负向为正;反之为负。
形变—— 用线应变, x y εε和切应变xy γ表示,量纲为1,线应变以伸长为正,切应变以直角减小为正。
位移—— 一点位置的移动,记号为,,u v w ,量纲为L ,以坐标正向为正。
3.弹性力学中的基本假定理想弹性体假定—连续性,完全弹性,均匀性,各向同性。
小变形假定。
4.弹性力学问题的研究方法已知:物体的边界形状,材料性质,体力,边界上的面力或约束。
求解:应力、形变和位移。
解法:在弹性体区域V 内,根据微分体上力的平衡条件,建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件,建立物理方程。
在弹性体边界S 上,根据面力条件,建立应力边界条件,根据约束条件,建立位移边界条件。
然后在边界条件下,求解区域内的微分方程,得出应力、形变和位移。
(三)弹性力学的发展简史与其他任何学科一样,从这门力学的发展史中,我们可以看出人们认识自然的不断深化的过程:从简单到复杂,从粗糙到精确,从错误到正确的演变历史。
弹性力学网络课程第一章绪论内容介绍知识点弹性力学的特点弹性力学的基本假设弹性力学的发展弹性力学的任务弹性力学的研究方法内容介绍:一. 内容介绍本章作为弹性力学课程的引言,主要介绍课程的研究对象、基本分析方法和特点;课程分析的基本假设和课程学习的意义以及历史和发展。
弹性力学的研究对象是完全弹性体,因此分析从微分单元体入手,基本方程为偏微分方程。
偏微分方程边值问题在数学上求解困难,使得弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
本章介绍弹性力学分析的基本假设。
弹性力学分析中,必须根据已知物理量,例如外力、结构几何形状和约束条件等,通过静力平衡、几何变形和本构关系等,推导和确定基本未知量,位移、应变和应力等与已知物理量的关系。
由于工程实际问题的复杂性是由多方面因素构成的,如果不分主次地考虑所有因素,问题是十分复杂的,数学推导将困难重重,以至于不可能求解。
课程分析中使用张量符号描述物理量和基本方程。
目前,有关弹性力学的文献和工程资料都是使用张量符号的。
如果你没有学习过张量概念,请进入附录一学习,或者查阅参考资料。
二. 重点1.课程的研究对象;2.基本分析方法和特点;3.弹性力学的基本假设;4.课程的学习意义;5.弹性力学的发展。
特点:弹性力学,又称弹性理论。
作为固体力学学科的一个分支,弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
构件承载能力分析是固体力学的基本任务,但是对于不同的学科分支,研究对象和方法是不同的。
弹性力学的研究对象是完全弹性体,包括构件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛。
弹性是变形固体的基本属性,而“完全弹性”是对弹性体变形的抽象。
第一章飞机和大气的一般介绍1、机翼的剖面参数:翼弦:翼型前沿到后沿的连线。
厚度:上翼面到下翼面的距离;最大厚度;最大厚度位置:最大厚度到翼型前沿的距离与弦长的比值,用百分比表示;相对厚度:(厚弦比)翼型最大厚度与弦长的比值,用百分比表示。
中弧线:与翼型上下表面相切的一系列元的圆心的连线(中弧线到上下翼面的距离相等),对称翼面中弧线与翼弦重合。
弧高:中弧线与翼弦的垂直距离;相对弯度:最大弧高与翼弦的比值,用百分比表示。
2、机翼的平面形状参数:平直机翼有极好的低速特性,便于制造;椭圆形机翼的阻力最小,但是难以制造,成本高;梯形机翼结合律矩形机翼和椭圆机翼的优缺点,具有适中的升阻特性和较好的低速性能,制造成本也较低;后掠翼和三角翼有很好的高速性能,主要用于高亚音速飞机和超音速飞机,低速性能较差翼展:机翼翼尖之间的距离;展弦比:机翼翼展与平均弦长的比值(表示机翼平面形状长短和宽窄的程度);梢根比:机翼翼尖弦长玉机翼翼根弦长的比值(表示翼尖道翼根的收缩度);后掠角:机翼1/4弦线玉机身纵轴垂直线之间的夹角(表示机翼的平面形状向后倾斜的程度)第二节大气的一般介绍空气密度减小对飞行的影响:真空速不断增大、发动机效率降低空气压力降低的线性变化规律:高度上升8.25(27ft)米气压降低1hPa;高度上升1000ft 气压降低1inHg;高度上升11米气压降低1mmHg空气温度降低的线性变化规律:高度上升1000米温度下降6.5°高度上升1000ft温度降低2°湿度越大,空气的密度越小(水蒸气是干空气重量的62%);相对湿度,露点(反映空气中水汽含量的多少,假如空气中水汽含量多,温度降低很少—相对较高的温度就可以达到饱和,露点就高),气温露点差:就是实际气温与露点的差值,反映空气的潮湿程度中低空高度每升高1000米真空速比表速约大5%;气温升高5°速度增大1%第二章低速空气动力学第一节低速空气动力学基础1、飞机的相对气流:相对于飞机运动的空气流,方向与飞行速度方向相反。