非相干光处理
- 格式:ppt
- 大小:2.25 MB
- 文档页数:78
光学中的干涉与光纤原理在光学领域中,干涉和光纤原理是两个非常重要且引人注目的主题。
干涉作为一种光学现象,揭示了光的波动性质,而光纤原理则为光的传输提供了一种高效和便捷的方法。
一、干涉的基本原理干涉是指两束或多束光波相互叠加时所产生的干涉现象。
干涉可以分为构成干涉的两种基本类型:相干光干涉和非相干光干涉。
1. 相干光干涉相干光干涉是指两束或多束具有相同频率、相同相位关系、相同偏振方向且光程相差在一定范围内的光波相互叠加所产生的干涉。
干涉现象的出现是由于光的波动性质决定的。
当两束相干光波相遇时,它们的电场矢量叠加形成了新的合成波,出现干涉条纹。
这种干涉形式常见的有杨氏双缝干涉、薄膜干涉等。
2. 非相干光干涉非相干光干涉是指两束或多束不满足相干条件的光波相互叠加所产生的干涉。
这种干涉主要来自于自发辐射或来自不同光源的光波。
非相干光干涉不同于相干光干涉,其干涉条纹通常不稳定,在时间上会发生明暗交替现象。
二、光纤的基本原理光纤是一种由一种或多种光学材料制成的细长柔性光导波结构。
光纤由芯层、包层和外壳层组成。
光通过芯层的全反射现象实现传输。
1. 全反射与光传输光纤中光的传输是基于全反射原理。
当光从芯层传入包层时,若光线入射角小于临界角,则光线会被全反射,并沿着光纤传播。
由于光纤的芯层和包层折射率不同,使得在光纤中的光线无法透过外壳层而损失,从而实现了光的传输。
2. 光纤的工作原理光纤的工作原理是基于光信号的折射传输。
当光信号通过一端的发光源输入到光纤中时,由于全反射的作用,光信号被束缚在光纤中,并沿着光纤传输。
光信号在传输过程中可以保持较低的衰减和干扰,从而实现远程的高速数据传输。
三、干涉与光纤的应用干涉和光纤原理在现代科学和技术中有着广泛的应用。
1. 干涉的应用干涉在成像领域中被广泛应用,例如光学显微镜、干涉测量仪器等。
此外,干涉也在光谱学、激光技术、光学存储等各个领域中发挥着重要的作用。
例如,Michelson干涉仪可用于测量光的波长和干涉条纹的位移,准确测量实验中所需要的长度或物理量。
相干光与非相干光在光学成像中的比较与优化光学成像是一种常见的图像获取技术,广泛应用于医学、生物学、材料科学等领域。
在光学成像中,相干光和非相干光是两种常见的光源。
它们在成像质量、分辨率以及应用范围上存在一些差异。
本文将对相干光和非相干光在光学成像中的比较与优化进行探讨。
首先,我们来了解一下相干光和非相干光的特点。
相干光是指光波的振动方向、频率和相位都保持一致的光源。
相干光的特点是波前的干涉和衍射现象明显,可以实现高分辨率的成像。
非相干光则是指光波的振动方向、频率和相位都是随机的,没有明显的干涉和衍射现象。
非相干光的特点是亮度均匀,适合用于照明和全息成像。
在光学成像中,相干光和非相干光的选择取决于具体的应用需求。
相干光成像适用于需要高分辨率的情况,如显微镜观察细胞结构、纳米材料表征等。
相干光成像的原理是利用光的干涉和衍射现象,通过重构波前信息来获取高分辨率的图像。
相干光成像技术包括干涉显微镜、全息显微镜等。
这些技术可以实现纳米级别的分辨率,对于细胞和材料的研究具有重要意义。
然而,相干光成像也存在一些限制。
由于相干光的干涉和衍射现象,它对样品的透明度和形貌要求较高。
对于不透明或表面粗糙的样品,相干光成像的效果会受到限制。
此外,相干光成像还受到散射和折射等因素的影响,可能导致成像的模糊和畸变。
因此,在实际应用中,需要根据具体样品的特点来选择相干光成像技术,并进行优化和改进。
与相干光相比,非相干光成像更加简单和实用。
非相干光成像不受样品的透明度和形貌的限制,适用于各种材料和样品的成像。
非相干光成像技术包括传统的光学显微镜、X射线成像、CT扫描等。
这些技术具有广泛的应用范围,可以用于生物医学、材料科学、工业检测等领域。
非相干光成像的优势在于成像速度快、成本低廉,并且可以实现大范围的样品扫描。
然而,非相干光成像也存在一些局限性。
由于非相干光的特点是亮度均匀,它的分辨率相对较低。
对于需要高分辨率的应用,非相干光成像可能无法满足要求。
第十章 非相干光学处理一、 相干光处理与非相干光处理的比较1.相干光系统输入为()y x u i ,,输出为()y x u ,,则:()(),,i iu x y u x y =∑即:输出的合成复振幅()y x u ,满足复振幅叠加原则。
而光强为:()()()22,,,∑==i y x u y x u y x I()()()2*,,,i i j ii ju x y u x y u x y ≠=+∑∑()()*,,i i j ii jI u x y u x y ≠=+∑∑在相干处理系统中,输出光强除了是输入光强i I 的叠加外,还存在相干项*j i u u ⋅的影响。
2.非相干光系统对于非相干光系统,由于输入图像各点的光互不相干,所以上式中的互相关项(第二项)的平均值为零。
即()()∑=ii i i y x I y x I ,,即:非相干光处理系统是强度的线性系统,满足强度叠加原理。
3.比较:相干——振幅叠加——可正可负——可完成加、减、乘、除、微分、卷积等运算 非相干——光强叠加——实函数—— 无上述运算4.相干光处理系统存在的不足 1) 噪声太大相干噪声:由光路中的尘埃,指纹,擦痕,元件的缺陷,气泡等引起得干涉。
散班噪声:由漫射物体表面的起伏粗糙而引起的无规干涉。
2)只能处理透明图片(复振幅分布)而不能利用光强接收器得到的信号做为输入信号,(如CRT 、LED 、CCD )3)只能处理单色图象,对彩色图象则无能为力。
4)而非相干系统正好可弥补相干系统的上述不足,即不存在上述不足。
问题:能不能找到一个系统:即能象相干系统一样,存在一个频谱面,可进行各种处理,又能象非相干系统一样,去掉讨厌的噪声干扰-----部分相干系统----白光处理系统二、 白光光学信息处理技术白光光学处理采用宽谱带白光光源,但采用微小的光源尺寸以提高空间相干性。
另一方面在输入平面上引入光栅来提高时间相干性。
这样即不存在相干噪声,又在某种程度上保留了相干光学处理系统对复振幅进行运算的能力,运算灵活性好。
1.常用的非初等函数:矩形函数、Sinc函数、三角形函数、符号函数、阶跃函数、圆柱函数。
2.δ函数的定义:a.类似普通函数定义b.序列极限形式定义c.广义函数形式定义δ函数的性质:a.筛选性质 b.坐标缩放性质 c.可分离变量性d.与普通函数乘积性质4.卷积,性质:线性性质、交换律、平移不变性、结合律、坐标缩放性质5.互相关,两个函数f(x,y)和g(x,y)的互相关定义为含参变量的无穷积分6.惠更斯-菲涅尔原理:光场中任意给定曲面上的诸面元可以看作是子波源,如果这些子波源是相干的,则在波继续传播的空间上任意一点处的光振动都可看作是子波源各自发出的子波在该点相干叠加的结果。
7.基尔霍夫理论:在空域中光的传播,把孔径平面上的光场看作点源的集合,观察平面上的场分布则等于他们所发出的带有不同权重的因子的球面子波的相干叠加。
8.角谱理论:孔径平面和观察平面上的光场分布都可以分别看成是许多不同方向传播的单色平面波分量的线性组合。
9.点扩散函数:面元的光振动为单位脉冲即δ函数时,这个像场分布函数叫做~。
10.菲涅尔衍射成立的充分条件:传递函数:11.泰伯效应:当用单色平面波垂直照明一个具有周期性透过率函数的图片时,发现在该透明片后的某些距离上出现该周期函数的现象,这种不用透镜就可以对周期物体成像的现象称为~。
12.夫琅禾费衍射:13.衍射受限系统:不考虑系统的几何像差,仅仅考虑系统的衍射限制。
14.单色信号的复表示:去掉实信号的负频成分,加倍实信号的正频成分。
多色信号的复表示:16.如果两点处的光扰动相同,两点间的互相干函数将变成自相干函数。
18.光学全息:利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,做记录的干涉条纹图样被称为“全息图”,当用光波照射全息图时,由于衍射原理能能重现出原始物光波,从而形成与原物体逼真的三维像,这个波前记录和重现的过程成为~19.+1级波(虚像),-1级波(实像),±1级波(赝像)20.从物光与参考光的位置是否同轴考虑:同轴全息、离轴全息。