建筑力学第三章 平面力系的平衡方程
- 格式:pptx
- 大小:752.56 KB
- 文档页数:3
第3章 平面力系的平衡条件3.1平面汇交力系的合成与平衡条件力系中各力的作用线都在同一平面内且汇交于一点,这样的力系称为平面汇交力系。
3.1.1 平面汇交力系合成的解析法设作用于O 点的平面汇交力系(F 1,F 2,…,F n ),其合力矢量为R F (图3-2)。
按合力投影定理求合力R F 在x , y 轴上的投影∑∑====ni yiRy ni xiRx F F F F 11y图3-2R F = cos RxRF F α=(3-1) cos Ry RF F β=式中α,β------合力矢量F R 与x 和y 轴的正向夹角。
3.1.2 平面汇交力系的平衡方程平面汇交力系平衡的必要与充分条件是力系的合力F R 等于零。
10nRx xi i F F ===∑10nRy yii F F===∑ (3-2)于是,平面汇交力系平衡的必要与充分条件可解析地表达为:力系中所有各力在两个坐标轴上投影的代数和分别为零。
式(3-2)称为平面汇交力系的平衡方程。
3.2平面力偶系的合成与平衡条件3.2.1 平面力偶系的合成应用力偶的等效条件,可将n 个力偶合成为一合力偶,合力偶矩记为M 。
∑==ni i M M 1(3-3)3.2.2 平面力偶系的平衡条件平面力偶系平衡的必要与充分条件:力偶系中所有各力偶的力偶矩的代数和等于零,即 10nii M M===∑ (3-4)3.3平面任意力系的合成与平衡条件3.3.1工程中的平面任意力系问题力系中各力的作用线在同一平面内,且任意地分布,这样的力系称为平面任意力系。
3.3.2 平面任意力系向一点的简化 主矢和主矩如图3-7(a )所示。
在力系作用面内任选一点O ,将力系向O 点简化,并称O 点为简化中心。
i ′图3-7由力12,,,n F F F '''L 所组成的平面汇交力系,可简化为作用于简化中心O 的一个力RF ',该力矢量∑==ni i RF F 1'(3-5)R F '称作平面任意力系的主矢。