几种常见形式斜拉桥的特点浅析及设计计算
- 格式:doc
- 大小:121.50 KB
- 文档页数:5
斜拉桥设计规范斜拉桥是一种具有特殊结构形式和设计理论的大型桥梁,其特点是主体斜拉索、悬臂桥面板和斜拉塔等部分构件协同工作,形成了独特的桥体形态和力学性能。
斜拉桥的设计规范对于确保其安全性和可靠性至关重要,下面将从桥梁设计和材料选用两方面对斜拉桥设计规范进行详细说明。
一、桥梁设计(一)结构形式设计:1. 桥面板宽度设计应满足通行安全需求,结构形式应符合规范要求,并考虑特殊气候和地质条件对桥梁的影响。
2. 悬臂长度和主跨设计应合理,力学性能稳定可靠,满足承载能力和服务性能的要求。
3. 斜拉索的布置形式和角度应按照设计规范来确定,斜拉塔的高度应满足结构性能和美观要求。
(二)斜拉索设计:1. 斜拉索应选用高强度、耐腐蚀的材料,满足桥梁设计寿命要求。
2. 斜拉索的预应力应按照规范要求进行计算和施工,确保其稳定可靠。
3. 斜拉索的锚固端和张拉端应设置合理的补偿装置,以确保索力的持久稳定和桥面板的上下变形满足规范要求。
(三)桥梁静力学和动力学分析:1. 桥梁结构应进行全面的静力学和动力学计算,满足设计要求,并考虑抗风、抗震和抗冰等特殊荷载条件。
2. 斜拉桥应进行稳定性分析,确保其在各种工况下不发生失稳或翻转的现象。
3. 桥梁应进行设计寿命内的疲劳分析和振动分析,确保其安全可靠。
二、材料选用(一)混凝土材料:1. 桥面板和斜拉塔的混凝土应选用符合设计要求的高强度混凝土,抗压强度和抗冻性能要满足规范要求。
2. 混凝土材料应具备耐久性,抗化学腐蚀和抗温度变化的性能。
(二)钢材料:1. 斜拉索应采用高强度钢材,抗拉强度和耐腐蚀性能要满足规范要求。
2. 桥梁结构中的钢构件应选用符合设计要求的优质钢材,抗压、抗剪和抗扭强度要满足规范要求。
(三)其他材料:1. 锚固装置和张拉装置应选用高强度、耐久性好的材料,确保其稳定可靠。
2. 防腐涂料和防水材料应选用符合设计要求的环境保护型产品,确保桥梁耐久性和美观性。
综上所述,斜拉桥设计规范涉及到斜拉桥的结构形式、斜拉索设计、桥梁静力学和动力学分析以及材料选用等多个方面,规范的制定和遵守对于斜拉桥的安全性和可靠性至关重要。
斜拉桥结构设计及问题简析摘要:斜拉桥是一种组合受力体系的桥梁,其主体结构由斜拉索、索塔、主梁组成。
本文通过分析斜拉桥的结构特点,论述了斜拉桥在结构、布置、选材和审美方面的设计要求及注意事项,并简单介绍了斜拉桥在结构设计和施工建设方面遇到的难题及采取措施。
关键词:斜拉桥;布置形式;结构设计;斜拉桥审美Abstract: The cable-stayed bridge is a bridge combined stress system, its main structure is composed of cables, towers, girders. In this paper, through the analysis of the structural characteristics of cable-stayed bridge, the cable-stayed bridge in the structure, layout, material selection and design aesthetic requirements and matters needing attention, and briefly introduces the problems encountered in the design and construction of cable-stayed bridge and measures.Keywords: cable-stayed bridge;layout;structure design;cable-stayed bridge aesthetics自1979年建成的第一座斜拉桥——主跨只有76米云阳桥以来,经过30多年的飞速发展,现今我国斜拉桥无论是在规模和跨度方面,还是在结构设计和施工技术都取得了巨大的成就。
目前我国已经是世界上斜拉桥数量最多、跨度最大的国家。
单桥侧独斜塔斜拉弯桥设计与计算分析摘要:斜拉弯桥是斜拉桥与弯桥的组合,同时具有斜拉桥和弯桥的力学特性,其结构受力非常复杂。
本文结合天津海河赤峰桥的设计情况,从桥梁结构的受力特点和计算分析出发,浅析斜拉弯桥的桥型特点、受力特性及设计要点,为工程技术人员在设计该类桥型时提供一些参考。
关键词:单桥侧独斜塔斜拉弯桥结构特点稀索体系1斜拉弯桥概况斜拉桥的主要特点是利用斜拉索作为梁跨的弹性中间支承,借以降低梁跨的截面弯矩、减轻梁重、提高梁的跨越能力。
弯桥在城市桥梁所占的比重越来越多,然而,弯桥存在着较大的扭矩和扭转角变形,梁和外梁受力不均等问题需要解决。
赤峰桥作为一座斜塔双索面斜拉弯桥,桥梁造型独特,是由“斜拉桥”、“弯桥”和“斜塔”组合而创新而成的一种桥梁结构形式。
2工程概述2.1总体布置新建赤峰桥的方案设计因地制宜,选择弯河弯桥斜塔的“海河之舟”方案。
主桥主跨为134米,跨越海河;边跨50+41米,跨越海河东路;总长225米,设有辅助墩和边墩。
桥面总宽度为39米,车行道布置为双向六车道。
2.2桥面钢梁主桥为单箱多室正交异性板钢箱梁,顶底板均设置U型肋。
桥梁中心线处梁高为2.0m,底面无横坡,顶面向两侧以1.5%坡度渐变。
主梁为曲率半径156.5米的弯梁。
钢箱梁标准段宽度为39米。
2.3主塔结构主塔是主桥的主要承重结构,主梁恒载、活载的大部分作用均通过桥面拉索传递到主塔,由主塔底部基础直接承受。
本桥主塔布置于弯梁的内弧一侧,采用斜塔形式,塔垂直高度约60米,塔身轴线与大地平面垂直交角为63°,主塔为回形变截面。
2.4拉索结合整体建筑美学要求,该桥拉索适宜布置为稀索体系,主跨布置有5对桥面拉索,拉索索间距为23米,横桥向索间距为26米~28米,为尽量平衡主跨的水平力,边跨布置有4对桥面拉索,主塔后面布置有4根后背索,引桥箱梁压在主桥边墩梁端,并在钢箱内浇混凝土增加压重。
该桥斜塔、弯梁和拉索形成一个稳定的空间结构。
斜拉桥结构体系及特点斜拉桥亦称矮塔斜拉桥, 其构造特点是在连续梁中支点处设置矮索塔, 其塔高只有斜拉桥索塔高度的一半左右, 斜拉索通过矮索塔上设置的鞍座对主梁产生竖向支反力和水平压力。
部分斜拉桥主梁自身刚度较大, 能够承担大部分荷载效应, 斜拉索对主梁只起到一定程度的帮扶作用。
斜拉桥是介于斜拉桥和连续梁桥之间的一种新桥型, 兼具斜拉桥和连续梁桥的双重结构特征。
斜拉桥是由上部结构索、塔、梁三种基本构件和下部结构墩台、基础组成的结构体系, 影响部分斜拉桥结构各部分荷载效应最根本的因素是梁、塔、墩之间的结合方式, 不同的结合方式产生不同的结构体系。
根据部分斜拉桥结构自身的特点和梁、塔、索、墩的结合方式, 可将部分斜拉桥结构体系划分为三种型式: (1) 塔梁固结体系; (2) 支承体系; (3) 刚构体系, 见图1 所示。
(4)半漂浮体系,见图2所示。
(1)塔梁固结体系及特点塔梁固结、塔墩分离、梁底设支座支承在桥墩上, 斜拉索为弹性支承, 这是一种完全的主梁具有弹性支承的连续梁结构。
这种体系必须有一个固定支座, 一般是一个塔柱处梁底支座固定, 而其他支座可纵向活动。
这种体系的主要优点是取消了承受很大弯矩的梁下塔柱部分, 代之以一般桥墩, 中央段的轴向拉力较小, 梁身受力也很均匀, 整体温度变化对这种体系影响较小, 几乎可以略去。
这种体系结构整体刚度小, 当中跨满载时, 由于主梁在墩顶处的转角位移导致塔柱倾斜, 使塔顶产生较大的水平位移, 因而显著增大了主梁的跨中挠度。
上部结构重力和活载反力需经支座传递到桥墩, 因此需设置大吨位支座。
我国的漳州战备桥、小西湖黄河大桥、离石高架桥; 日本的蟹泽桥、士狩大桥、木曾川桥、揖斐川桥、新唐柜大桥均采用这种体系。
已建部分斜拉桥采用这种结构体系较多, 与连梁体系相同, 符合部分斜拉桥的概念含义。
塔梁固结体系的特点:塔、墩内力最小,温变内力也小,主梁边跨负弯矩较大。
(2)支承体系及特点塔墩固结、塔梁分离, 主梁在塔墩上设置竖向支承, 支座均为活动支座, 这种体系接近主梁具有弹性支承的连续梁结构。
斜拉桥的设计斜拉桥是一种结构体系独特的桥梁,是斜拉索(索梁组合)和桥塔(梁体组合)共同组成的一个整体。
它是由索塔、主梁和斜拉索组成的一种三跨或多跨连续体系。
斜拉桥的主要特点是桥塔高、跨径大、主梁自重轻、受力明确、刚度大,在交通量大的地方和对抗震要求较高的地方都能使用,并且具有良好的景观效果。
斜拉桥具有以下特点:1.具有良好的景观效果;2.桥塔可以承受较大的水平推力;3.桥塔处梁端负弯矩小,结构刚度大;4.拉索锚固在塔上,可以承受很大的水平力;5.主梁恒载弯矩和扭矩均很小。
斜拉桥具有明显的优点,但其设计也是一项复杂而又困难的工作,因此,要做到技术上可靠、经济上合理,并具有良好的外观效果。
设计概述该工程位于某城市,为一座主跨为150m的预应力混凝土斜拉桥,由北桥台、南跨、东跨及南引桥组成。
北桥台位于主跨150m的跨径上,桥台后接既有引桥。
南跨和东跨分别为70m和25m。
南主梁采用预应力混凝土箱形结构,北主梁采用钢结构。
北桥台位于主跨150m的跨径上,桥台后接既有引桥,北主梁采用预应力混凝土箱形结构,南引桥桩位于北主梁边跨的中心附近,桥桩与主梁的锚固均为单根悬臂。
全桥共设置4道横梁,其中主梁上的2道横梁均设于边墩上,边跨设1道横梁与中墩横梁连接;北引桥桩的上、中、下各设1道横梁,其中下横梁设于主梁的腹板处。
南引桥的上、中、下各设1道横梁。
引桥的边、中、中塔柱之间均设横隔板。
引桥桥墩均采用实心墩,基础均为重力式桥墩。
边、中墩均采用双柱式墩,边墩两侧各设2道横隔板。
计算分析斜拉桥计算分析的主要内容包括:1.静力分析;2.动力分析;3.结构稳定性分析。
静力分析是计算结构在各种荷载作用下的内力与变形,并通过相应的安全系数进行校核;动力分析是在静力分析结果的基础上,进行结构动力特性研究,并对结构体系及其动力性能做出评价;结构稳定性分析是计算结构在各种荷载作用下的稳定安全系数,以评定其是否满足规范要求。
在设计中,由于斜拉桥主梁多采用悬索式体系,故需要对斜拉索的内力分布、索力及拉索与主梁之间的关系进行计算;同时由于斜拉索的受力复杂,一般要采用通用有限元程序对斜拉桥进行分析计算;最后,在静力、动力和稳定性计算结果的基础上对结构进行稳定性评价。
大跨度桥梁结构形式与特点分析大跨度桥梁是现代城市化进程中不可或缺的重要交通基础设施。
随着城市化进程的快速推进,大跨度桥梁的需求也日益增加。
因此,对大跨度桥梁结构形式与特点的分析成为了建筑工程行业中一项重要的课题。
本文将对大跨度桥梁的结构形式与特点进行全面深入的探讨,旨在为相关从业人员提供参考与借鉴。
首先,大跨度桥梁的结构形式多种多样。
具体而言,可以分为悬索桥、斜拉桥、钢箱梁桥和拱桥等几种常见形式。
每种形式都有其独特的结构特点和适用范围。
悬索桥是一种采用大直径钢缆来支撑桥面荷载的桥梁结构。
其主要特点是悬挂在主塔上的大跨距钢缆,以及由钢缆支撑的桥面梁。
悬索桥具有结构简单、稳定可靠的优点,适用于大跨度的桥梁建设。
著名的悬索桥如赛珍珠大桥和金门大桥等。
斜拉桥是一种采用斜拉索来支撑桥面的桥梁结构。
其主要特点是通过斜拉索将桥面梁的重力荷载传导到主塔上。
斜拉桥具有结构轻巧、自重小的优点,适用于大跨度、大高度的桥梁建设。
杭州湾大桥和临江大桥等都是典型的斜拉桥。
钢箱梁桥是一种采用钢结构制成的箱型梁来作为桥面的桥梁结构。
其主要特点是梁体采用钢材,具有良好的抗弯和抗剪能力。
钢箱梁桥广泛应用于中小跨度的桥梁建设。
例如,上海南浦大桥就是典型的钢箱梁桥。
拱桥是一种采用拱形结构来支撑桥面的桥梁结构。
其主要特点是通过拱形结构使桥面承受的荷载传递到桥墩上。
拱桥具有结构稳定、造型美观的优点。
西雅图伊万斯湖大桥和罗马石桥是著名的拱桥。
其次,大跨度桥梁的特点需要重点关注。
首先,大跨度桥梁相对于小跨度桥梁来说,荷载更大、施工难度更高,对设计和施工的要求也更高。
其次,大跨度桥梁的自重较大,需要采取合适的结构形式和材料选择来保证其稳定性。
此外,大跨度桥梁还要考虑风荷载、地震作用等外部力的影响。
针对以上特点,建筑工程行业从业人员在大跨度桥梁的设计和建设中需要注意几个方面。
首先,要合理选择桥梁形式,根据具体情况选择最适合的结构形式。
其次,要充分考虑荷载和外部力的影响,进行细致的设计计算。
梁式桥、拱式桥、悬索桥与斜拉桥的对比分析总结引言桥梁工程作为连接不同地域、促进经济发展的重要基础设施,在现代交通网络中扮演着至关重要的角色。
梁式桥、拱式桥、悬索桥和斜拉桥作为四种常见的桥梁类型,各有其独特的结构特点和适用场景。
本文旨在对这四种桥梁类型进行对比分析,总结各自的优势与局限性。
桥梁类型概述梁式桥梁式桥是一种以梁作为主要承重结构的桥梁,其特点是结构简单、施工方便,适用于跨度较小的桥梁工程。
拱式桥拱式桥通过拱形结构将荷载传递到桥台或桥墩上,其特点是造型美观、结构稳定,适用于中等跨度的桥梁工程。
悬索桥悬索桥以悬索为主要承重结构,通过主塔将荷载传递到锚碇上,其特点是跨度大、结构轻盈,适用于跨越宽阔水域或峡谷的桥梁工程。
斜拉桥斜拉桥通过斜拉索将荷载传递到主塔上,其特点是结构合理、跨度大,适用于跨越大江大河的桥梁工程。
结构特点对比梁式桥结构简单:梁式桥由简支梁或连续梁组成,结构简单,易于施工。
适用性:适用于小至中等跨度,地形条件简单的桥梁工程。
拱式桥结构稳定:拱形结构具有良好的稳定性,能够承受较大的荷载。
美观性:拱式桥具有优美的曲线,是桥梁美学的代表。
悬索桥跨度大:悬索桥可以实现非常大的跨度,是世界上跨度最大的桥梁类型之一。
结构轻盈:悬索桥结构轻盈,材料用量相对较少。
斜拉桥跨度大:斜拉桥同样可以实现较大的跨度,适应性强。
结构合理:斜拉桥通过斜拉索与主塔的合理配合,实现结构的平衡。
施工技术对比梁式桥施工简便:梁式桥施工技术成熟,施工过程相对简单。
成本控制:由于结构简单,梁式桥的建设成本相对较低。
拱式桥施工难度:拱式桥的施工技术要求较高,特别是拱圈的搭建。
成本考量:拱式桥的建设成本受材料和施工技术的影响较大。
悬索桥技术要求:悬索桥的施工技术要求极高,特别是主塔和锚碇的建设。
成本投入:悬索桥的建设成本较高,但随着技术的进步,成本有所降低。
斜拉桥施工复杂:斜拉桥的施工过程较为复杂,需要精确控制斜拉索的张力。
梁桥、刚构桥、拱桥、斜拉桥、悬索桥概念,特点,施工概论总结。
梁桥、刚构桥、拱桥、斜拉桥、悬索桥是常见的五种主要桥梁类型,它们各有特点和适用场景。
以下是它们的概念、特点和施工总论的简要总结:
1. 梁桥:梁桥是由若干跨度的梁组成的,梁和支座之间没有任何联系。
梁的截面可以是矩形、圆形、T形等形状,施工简单、造价较低、适用于中小跨径的道路和铁路。
2. 刚构桥:刚构桥是由若干刚性构件组成的,构件之间没有任何可动部分。
它具有刚性好、稳定性高、适用跨度范围广等特点,但施工难度较大,造价也比较高,适用于大跨度公路和铁路桥。
3. 拱桥:拱桥是一种弯曲的结构,其内力状态完全由桥墩和拱构成的刚性骨架承担。
拱桥具有结构美观、抗震能力强、适用于大跨度的水上交通桥等优点,但是施工难度高、造价昂贵。
4. 斜拉桥:斜拉桥是一种以主缆为主要受力构件,通过斜拉索将桥墩与主缆连接在一起的结构形式。
具有结构简洁、美观大方、适用于中等跨度的公路和铁路桥等特点,但是施工难度较大。
5. 悬索桥:悬索桥是一种以悬挂在主缆上的纵向受拉索为主要承载构件的桥梁。
具有塔身少、跨度大、结构美观等特点,但是建设难度大、施工周期长、成本较高。
总的来说,不同类型的桥梁都有其独特的特点和适用场景,施工难度和造价也各有差异,需要根据实际情况进行选择。
在桥梁的设计、施工和维护过程中,需要关注材料的选用、加固与维护等问题,以确
保桥梁的安全可靠性。
幼儿斜拉桥知识点总结简单斜拉桥是一种横跨河流或峡谷的桥梁,其特点是拥有斜拉索来支撑桥面结构。
本文将从斜拉桥的定义、结构特点、建设过程和安全知识等方面进行详细介绍,旨在帮助幼儿了解斜拉桥的基本知识。
一、斜拉桥的定义斜拉桥是一种由桥面梁和斜拉索组成的特殊桥梁,是梁式桥的一种。
它的主要特点是在桥面梁下方加装了一定数量的斜拉索,通过拉索的张力来支撑桥面梁,使桥梁得到有效的支撑和稳定。
斜拉桥广泛应用于大跨度的桥梁建设中,具有承重能力强、结构简洁、美观大方等特点。
二、斜拉桥的结构特点1. 主梁结构:斜拉桥的主梁一般为钢箱梁或钢桁梁,这些结构能有效地承受桥面上的荷载,并能够进行自重和交通荷载的传递。
2. 斜拉索结构:斜拉桥的斜拉索一般由高强度的钢材制成,通过对角拉索将桥梁的重量和荷载传递到桥墩上,使得桥梁获得充分的支撑和稳定。
3. 桥塔结构:斜拉桥的桥塔通常位于桥梁两端或中部,是斜拉索的支撑点。
桥塔的高度和形状会影响到斜拉桥的视觉效果和稳定性。
4. 基础结构:斜拉桥的基础一般是深埋的桩基或桩基础,用以支撑桥塔和传递桥梁的重力和荷载。
三、斜拉桥的建设过程1. 桥梁设计:在斜拉桥建设之前,需要进行详细的桥梁设计工作,包括荷载计算、结构分析、地质勘察等工作,确保桥梁的安全和稳定。
2. 施工准备:斜拉桥的施工准备主要包括场地准备、材料采购、设备调配等工作。
3. 桥墩建设:斜拉桥的桥墩一般是在水中或者河岸上进行施工,需要先建立桥墩的支撑结构,然后浇筑混凝土,最后进行调试和加固。
4. 主梁吊装:斜拉桥的主梁是通过吊装设备进行安装的,需要精确的计算和调试,确保主梁的安全和稳定。
5. 斜拉索张拉:斜拉桥的斜拉索一般在主梁安装完成之后进行张拉,通过张拉设备进行张拉,使得斜拉索产生一定的张力,确保桥梁的稳定和安全。
6. 最后调试:斜拉桥安装完成之后,需要进行最后的调试和检验工作,确保桥梁的安全通行。
四、斜拉桥的安全知识1. 桥梁的使用:在使用斜拉桥时,需要严格遵守交通规则,确保行车安全,不得在桥面上超速或者停车。
桥梁工程大作业:斜拉桥形式与设计xxxxxxxxxxxxxxx(xxxxxx学院土木工程专业)1斜拉桥形式1.1双塔三跨式双塔三跨式是一种最常见的斜拉桥孔跨布置形式。
双塔三跨式斜拉桥通常布置成两个边跨的跨度相等的对称形式,也可以布置成两个边跨的跨度不等的非对称形式。
边跨的跨度L1与主跨的跨度L2的比例关系通常取0.4左右。
根据已建斜拉桥的资料统计,一般跨度比L1/L2=0.35-0.5 。
另外,还可以根据需要在边跨内设置辅助墩,以提高结构体系的刚度,辅助墩的数量不宜过多,一般设置1-2个,数量过多,效果不显著。
由于双塔三跨式斜拉桥的主孔跨度较大,一般可适用于跨度较大的河流、河口和海峡。
1.2独塔双跨式独塔双跨式斜拉桥也是一种常见的孔跨布置方式。
独塔双跨式斜拉桥可以布置成两跨不对称的形式,即分为主跨与边跨;也可以布置成两跨对称,即等跨形式。
其中以两跨不对称的形式居多,也比较合理。
独塔双跨式斜拉桥的边跨的跨度L1与主跨的跨度L2的比例,通常介于0.6与0.7之间,由于他的主孔跨径一般笔双塔三跨式的主孔跨径小,故特别适用于跨越中小河流、河谷地及交通道路;当然,也可以用于跨越较大河流的主航道部分。
图1-1独塔双跨式斜拉桥图1-2双塔三跨式斜拉桥【上述参考书籍文献:桥梁工程/刘夏平主编•-北京:科学出版社,2005年第一版】 1.3斜塔单跨式斜塔单跨式斜拉桥又分塔后斜索采用地锚固定和无背斜塔两种类型,同时梁体由斜索水平合力引起的水平轴力必须由相应的下部结构来承受。
(1)地貌固定式地貌固定式斜拉桥受力特点是:①斜塔背后的斜索锚固定于岸边具有良好地质条件的地锚上,并与主塔共同承担主塔的索力。
②借助在地锚与索塔基础之间设置的压撑来平衡主跨斜拉索对主梁产生的水平轴向力。
(2)无备索斜塔式与地锚固定式相比,完全取消了斜塔背索,也省掉了地锚、压撑等构筑物和增添了桥型的景观。
其受力特点是:①全部结构自重及外荷重在外部上由塔基和边墩基础来承担。
斜拉桥的受力性能与设计方法引言斜拉桥是一种通过斜拉索来分担桥梁荷载的桥梁结构。
相比于其他桥梁结构,斜拉桥具有受力均衡、结构轻巧、造型美观等优点,因此在现代桥梁工程中被广泛应用。
本文将探讨斜拉桥的受力性能及其设计方法。
1. 斜拉桥的受力性能1.1 斜拉索的受力特点斜拉桥通过斜拉索将桥梁主体悬挑于桥墩之上。
斜拉索与桥梁主体之间形成一种张拉受力状态,具有以下特点:•拉力均衡:斜拉索受力形态中拉力均衡,使得桥梁主体能够稳定悬挑于桥墩之上。
•受力传递:斜拉索通过节点将受力传递到桥墩上,使得桥墩能够承受来自桥梁主体的荷载。
•受力集中:斜拉索与桥梁主体交汇处的节点处受力集中,需要特殊的设计和加固。
1.2 桥梁主体的受力特点斜拉桥的桥梁主体通常采用刚性结构,具有以下受力特点:•受压力:桥梁主体受到来自斜拉索的压力,需要能够承受压强的设计和材料选择。
•受弯矩:桥梁主体在荷载作用下会产生弯矩,需要进行结构计算和加固,以确保桥梁的稳定性。
1.3 斜拉桥的受力平衡斜拉桥的受力平衡是保证桥梁结构稳定的关键因素。
斜拉桥的受力平衡包括以下几个方面:•斜拉索张力平衡:保证斜拉索受力均衡,要求斜拉索的长度、材料和角度等因素能够满足力学平衡方程。
•桥梁主体力平衡:保证桥梁主体受到的压力和弯矩均衡分布,要求桥梁主体的设计满足结构力学的基本原理。
•节点强度:保证斜拉索与桥梁主体交汇处的节点具有足够的强度和刚度,能够承受受力集中的荷载。
2. 斜拉桥的设计方法2.1 斜拉索设计斜拉索的设计需要考虑以下因素:•受力平衡:根据桥梁主体的荷载情况和几何形状,计算斜拉索的长度、角度和张力分布。
•材料选择:选择合适的材料,使得斜拉索能够承受荷载并保持稳定。
•附着装置:设计合适的附着装置,使得斜拉索能够与桥梁主体牢固连接,保证受力传递的可靠性。
2.2 桥梁主体设计桥梁主体的设计需要考虑以下因素:•荷载分析:根据交通荷载和自重荷载等因素,进行荷载分析,确定桥梁主体所受力的类型和大小。
斜拉桥设计与施工要点斜拉桥是一种现代化的桥梁结构,具有美观、结构优化、跨度大等特点,被广泛应用于城市交通建设中。
在设计与施工过程中,需要注意一些关键要点,以确保斜拉桥的安全性、稳定性和持久性。
本文将从设计和施工两个方面,介绍斜拉桥的关键要点。
一、设计要点1. 地质勘察:在设计斜拉桥之前,必须进行详细的地质勘察,了解桥址地质情况,包括地基承载力、地下水位、地震烈度等信息,以便合理选择桥梁的类型和布置。
2. 结构形式:斜拉桥的结构形式有多种,如单塔单跨、单塔双跨、双塔双跨等,设计时应根据实际情况选择最合适的结构形式,确保结构稳定。
3. 斜拉索布设:斜拉桥的主要特点是斜拉索的应用,设计时需合理确定斜拉索的布设方案,考虑索力分配均匀、受力合理等因素,确保桥梁整体性能。
4. 风荷载计算:由于斜拉桥的结构特殊,风荷载对其影响较大,设计时需进行详细的风荷载计算,确保桥梁在风灾情况下的安全性。
5. 跨径设计:斜拉桥的跨径通常较大,设计时需合理确定跨径大小,考虑桥梁的承载能力、变形控制等因素,确保桥梁结构稳定。
二、施工要点1. 施工工艺:斜拉桥的施工工艺较为复杂,包括塔柱施工、斜拉索张拉、桥面铺设等环节,施工前需制定详细的施工方案,确保施工顺利进行。
2. 质量控制:斜拉桥的质量直接关系到桥梁的安全性,施工过程中需严格控制材料的质量、工艺的规范,确保施工质量符合设计要求。
3. 安全防护:斜拉桥的施工高度较大,存在一定的安全风险,施工现场需设置合理的安全防护措施,保障施工人员的安全。
4. 施工监理:斜拉桥的施工过程需要专业的监理人员进行监督,确保施工符合设计要求,及时发现并解决施工中的问题。
5. 环境保护:斜拉桥的施工可能对周边环境造成一定影响,施工过程中需采取有效的环保措施,减少对周边环境的影响。
综上所述,斜拉桥的设计与施工是一个复杂而细致的过程,需要设计人员和施工人员共同努力,严格按照要点进行设计和施工,确保斜拉桥的安全性和稳定性。
斜拉桥的总体布置与结构体系总体布置主要有跨径布置、拉索及主梁的布置、索塔高度与布置。
一、跨径布置主要有下面三种类型(1)双塔三跨式。
为目前应用最广泛的跨径布置方式。
下面是立面图与其荷载作用不同位置时发生的索塔与主梁的形变。
(2)独塔双跨式。
这也是应用较为广泛的一种跨径布置,但由于它的主孔跨径一般比双塔三跨式的小,故特别适用于跨越中小河流、谷地及作为跨线桥,或用于跨越较大河流的主航道部分,也可用主跨跨越河流,索塔及边跨布置在河流一岸的方式。
独塔双跨式斜拉桥立面图(3)多塔多跨式。
多塔多跨式斜拉桥适用于需要多个大通航孔的大江大河、宽阔湖泊或海峡上,但这种结构一般采用较少,主要原因是中间塔顶没有端锚索来有效地限制它的变位,使结构柔性及变形增大,整体刚度差。
多塔多跨式斜拉桥示意图二、拉索的布置,拉索的布置分为空间上的布置与索面内的布置。
(1)拉索索面在空间可布置成单索面和双索面,而双索面又可分为竖直双索面和倾斜双索面.单索面斜拉桥(临海大桥)竖直双索面斜拉桥倾斜双索面斜拉桥(2)拉索在索面内的布置形式主要有以下三种:辐射形、竖琴形及扇形.辐射形:拉索与水平面的平均交角较大,拉索的垂直分力较大,故拉索的用量最省。
由于在拉索的水平分力在塔顶基本平衡,故索塔的弯矩较小,索塔高度也较小,但由于拉索都固定在塔顶,所以塔顶的结构复杂,集中应力现象突出,给施工和养护带来困难。
竖琴形:所有拉索的倾角完全相同,且拉索与索塔的锚固点分散布置,使拉索与索塔、拉索与主梁的连接构造简单,易于处理.竖琴形布置拉索加强了索塔的顺桥向刚度,对减少索塔的弯矩和提高索塔的稳定性都有利。
但是其拉索的倾角与水平方向的交角较小故所需的拉索数量大,布置密集,一般都用于中小跨径的斜拉桥中。
扇形:扇形兼有辐射形和竖琴形索的特点,又可灵活布置,与索塔的各种构造形式相配合.扇形是采用最多的一种索型.三、索塔与主梁的布置(1)索塔的布置主要在于高度的确定,矮塔斜拉桥为桥塔高度与主跨长度的比值在1/8~1/13之间的斜拉桥。
几种常见形式斜拉桥的特点浅析及设计计算
姓名:XX 学号:X0X0X0XX
摘要:斜拉桥的主要形式有以下几种: 1)双塔三跨式;2)独塔双跨式;3)斜塔但跨式;4)三塔四跨式;5)多塔多跨式等。
这些斜拉桥形式有各自的适用范围,应按工程具体情况选用适当的形式运用。
关键词:斜拉桥;跨径;适用条件;跨径设计;分孔尺寸
1 引言
斜拉桥是一种用斜拉索悬吊桥面的桥梁。
最早的这种桥梁,其承重索是用藤罗或竹材编制而成。
它们可以说是现代斜拉桥的雏形。
斜拉桥的发展,有着一段十分曲折而漫长的历程。
18世纪下半叶,在西方的法国、德国、英国等国家都曾修建过一些用铁链或钢拉杆建成的斜拉桥。
可是由于当时对桥梁结构的力学理论缺乏认识,拉索材料的强度不足,致使塌桥事故时有发生。
如德国萨尔河桥(1824)在建成第二年,就在一次有246人举行的火炬游行人群聚集桥上时,桥突然坍塌而酿成50 人丧生的严重惨剧。
因此在相当长的一段时间内,斜拉桥这一桥型就销声匿迹了。
直至第二次世界大战后,在重建欧洲的年月中,为了寻求既经济又建造便捷的桥型,使几乎被遗忘的斜拉桥重新被重视起来。
世界上第一座现代公路斜拉桥是1955年在瑞典建成的,主跨为182.6m的斯特罗姆海峡钢斜拉桥。
近年来斜拉桥在国内外得到了迅速发展,目前已建成跨度最大的是中国苏通长江公路大桥(1088m)。
[1]
2 各形式斜拉桥的特点分析
斜拉桥的孔径布置主要可以分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。
在特殊情况下,斜拉桥也可以布置成独塔单跨式或者混合式。
下面就这几种形式的特点进行简要的分析。
双塔三跨式(图一)是一种最常见的斜拉桥孔径布置形式。
双塔三跨式斜拉桥通常布置
两个边跨的跨度相等的对称形式,亦可以布置成两个边跨跨度不等的不对称形式。
边跨的跨度L1与主跨的跨度L2的比例关系通常取0.4左右。
根据已建斜拉桥的资料统计,一般跨度比L1/ L2=0.35~0.5。
另外,还可以根据需要在边跨内设置辅助墩,以提高结构体系的刚度。
辅助墩数不宜过多,一般设置1~2个,数量过多效果并不明显。
由于双塔三跨式斜拉桥的主孔跨度较大,一般可适用于跨度较大的河流、河口和海峡。
图一双塔三跨式斜拉桥
独塔双跨式斜拉桥(图二)也是一种常见的孔径布置方式。
独塔双跨式斜拉桥可以布置成两跨不对称的形式,即分为主跨与边跨;也可布置成两跨对称,即等跨形式。
其中以两跨不对称的形式居多,也比较合理。
独塔双跨式斜拉桥的边跨的跨度L1与主跨的跨度L2的比例,通常介于0.6~0.7之间。
由于它的主孔跨径一般比双塔三跨式的主孔跨径小,故特别适用于跨越中小河流、谷地及交通道路;也可用于跨越较大河流的主航道部分。
[2][3]
图二独塔双跨式斜拉桥
在跨越宽阔水面时,由于桥梁长度大,必要时也可采用三塔斜拉桥,如湖南洞庭湖大桥(图三,主跨2×348m)。
由于中间桥塔没有端锚索来有效地限制其变形,三塔斜拉桥的结
构柔性会有所增大。
图三洞庭湖大桥(三塔四跨式斜拉桥)
在适宜的地形条件下,有时也可采用独塔单跨式斜拉桥,此时边跨跨度很小,甚至没有边跨。
图四为Marian Bridge (the Czech Republic) ,主跨123.3m。
图四Marian Bridge(the Czech Republic)
多塔多跨式斜拉桥应用较少,这是由于多塔多跨式斜拉桥的中间塔顶没有端锚索来有效地限制它的变位,结构刚度较低。
增加主梁的刚度可以在一定程度上提高多塔斜拉桥整体高度,但这样做必然会增加桥梁自重。
在必须采用多塔多跨式斜拉桥时,可将中间塔做成刚性
索塔,此时索塔和基础的工程量会增加很多,或者用斜拉索对中间塔顶加劲,但这种场所柔度较大,且会影响桥梁的美观。
3 斜拉桥设计计算
下面通过一个实际例子来说明如何进行斜拉桥形式的选择与结构计算。
例:设一跨江桥梁总跨径500m,采用斜拉桥。
试采用2种形式,设计其跨径和分孔,要求拟定分孔尺寸并分析受力、变形等特点。
方案一:可采用边跨对称的双塔三跨式。
由于边跨的跨度L1与主跨的跨度L2的比例关系通常取0.4左右,不妨取L1/ L2=0.39,则计算可得,主跨跨度L2=280m,两个边跨跨度L1=110m。
主孔跨径由主跨跨度决定,而两个边跨各设置一个辅助墩,位置在距桥头50m处,由此,两边孔孔径也可确定。
借助ANYSY软件,输入已知数据并添加荷载后,可对桥梁的受力特性及变形进行单元分析。
方案二:可采用独塔双跨不对称式。
此时边跨的跨度L1与主跨的跨度L2的比例关系通常位于0.6~0.7之间,可取L1/ L2=0.61,,可得主跨跨度L2=310m,边跨跨度L1=190m。
可在主跨近岸处设置2个辅助墩,辅助墩之间间距为50m,近岸端辅助墩距桥头40m。
[4][5][6] 同样可用ANSYS软件分析该设计桥型的受力特性和变形。
由于跨径500m属于中小型河流,通过软件分析可知,双塔三跨式不太适合该跨径桥梁选用;而独塔双跨式斜拉桥的主跨径较小,故更适合用于跨越中小河流、谷地及交通道路,由以上分析可知,此斜拉桥宜采用第二种方案。
4 结语
本文通过对各形式斜拉桥的特点及适用范围进行了系统分析,并对其中两种形式做了一些基础的设计计算,包括跨径和分孔尺寸,受力特性等。
由于知识储备不足和时间所限,未能进行深入而具体的探讨,诚请老师见谅。
参考文献
[1]佚名. 斜拉桥. 百度文库,2010
[2]刘夏平. 桥梁工程. 北京:科学出版社,2005
[3]中国土木建筑百科辞典. 桥梁工程[M]. 中国建筑工业出版社,1999
[4]邵旭东等. 桥梁设计与计算. 电子讲稿
[5]重庆交通科研设计院. 偏公路斜拉桥设计细则(JTG/TD65-1). 人民交通出版社,2007
[6]交通部. 公路桥涵设计通用规范(JTGD60-2004). 北京:人民交通出版社,2008。