算法部分作业答案要点
- 格式:doc
- 大小:185.50 KB
- 文档页数:15
算法练习题及答案算法练习题及答案随着计算机科学的发展,算法成为了计算机科学的核心内容之一。
算法是一种解决问题的方法和步骤,它可以将复杂的问题简化为一系列简单的操作。
为了提高算法设计和分析的能力,许多学生和程序员经常进行算法练习。
在这篇文章中,我将给出一些常见的算法练习题及其答案,希望能对读者有所帮助。
1. 反转字符串题目:给定一个字符串,将其反转并返回。
解答:可以使用两个指针,一个指向字符串的开头,一个指向字符串的末尾。
然后交换两个指针指向的字符,然后分别向中间靠拢,直到两个指针相遇。
2. 判断回文数题目:给定一个整数,判断它是否是回文数。
回文数是指正序和倒序读都一样的整数。
解答:可以将整数转换为字符串,然后使用反转字符串的方法判断是否相等。
另一种方法是将整数反转后与原来的整数进行比较。
3. 寻找两个有序数组的中位数题目:给定两个有序数组,找出这两个数组合并后的中位数。
要求时间复杂度为O(log(m+n))。
解答:可以使用二分查找的思想。
首先将两个数组合并成一个有序数组,然后找到中位数的位置。
如果数组长度为奇数,中位数就是中间的元素;如果数组长度为偶数,中位数就是中间两个元素的平均值。
4. 搜索旋转排序数组题目:给定一个按照升序排列的整数数组,经过旋转后的数组,搜索一个给定的目标值。
如果目标值存在于数组中,则返回它的索引,否则返回-1。
解答:可以使用二分查找的思想。
首先找到数组的中间元素,然后判断中间元素与目标值的关系。
如果中间元素等于目标值,直接返回索引;如果中间元素小于目标值,说明目标值在右半部分,继续在右半部分进行二分查找;如果中间元素大于目标值,说明目标值在左半部分,继续在左半部分进行二分查找。
5. 最长公共前缀题目:给定一个字符串数组,找到这些字符串的最长公共前缀。
解答:可以将第一个字符串作为初始的最长公共前缀,然后逐个比较后面的字符串与最长公共前缀的相同部分。
如果相同部分为空,则返回空;如果相同部分不为空,则更新最长公共前缀。
《算法分析与设计》作业( 一)本课程作业由两部分组成。
第一部分为”客观题部分”, 由15个选择题组成, 每题1分, 共15分。
第二部分为”主观题部分”,由简答题和论述题组成, 共15分。
作业总分30分, 将作为平时成绩记入课程总成绩。
客观题部分:一、选择题( 每题1分, 共15题)1、递归算法: ( C )A、直接调用自身B、间接调用自身C、直接或间接调用自身 D、不调用自身2、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的字问题, 这些子问题: ( D )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同3、备忘录方法的递归方式是:( C )A、自顶向下B、自底向上C、和动态规划算法相同D、非递归的4、回溯法的求解目标是找出解空间中满足约束条件的:( A )A、所有解B、一些解C、极大解D、极小解5、贪心算法和动态规划算法共有特点是: ( A )A、最优子结构B、重叠子问题C、贪心选择D、形函数6、哈夫曼编码是: ( B)A、定长编码B、变长编码C、随机编码D、定长或变长编码7、多机调度的贪心策略是: ( A)A、最长处理时间作业优先B、最短处理时间作业优先C、随机调度D、最优调度8、程序能够不满足如下性质: ( D )A、零个或多个外部输入B、至少一个输出C、指令的确定性D、指令的有限性9、用分治法设计出的程序一般是: ( A )A、递归算法B、动态规划算法C、贪心算法D、回溯法10、采用动态规划算法分解得到的子问题:( C )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同11、回溯法搜索解空间的方法是: ( A )A、深度优先B、广度优先C、最小耗费优先D、随机搜索12、拉斯维加斯算法的一个显著特征是它所做的随机选性决策有可能导致算法: ( C )A、所需时间变化B、一定找到解C、找不到所需的解D、性能变差13、贪心算法能得到: ( C )A、全局最优解B、 0-1背包问题的解C、背包问题的解 D、无解14、能求解单源最短路径问题的算法是: ( A )A、分支限界法B、动态规划C、线形规划D、蒙特卡罗算法15、快速排序算法和线性时间选择算法的随机化版本是:( A )A、舍伍德算法B、蒙特卡罗算法C、拉斯维加斯算法D、数值随机化算法主观题部分:二、写出下列程序的答案( 每题2.5分, 共2题)1、请写出批处理作业调度的回溯算法。
作业一学号:_____ 姓名:_____说明:1、正文用宋体小四号,1.5倍行距。
2、报告中的图片、表格中的文字均用宋体五号,单倍行距。
3、图片、表格均需要有图片编号和标题,均用宋体五号加粗。
4、参考文献用宋体、五号、单倍行距,请参照参考文献格式国家标准(GB/T 7714-2005)。
5、公式请使用公式编辑器。
P144.用伪代码写一个算法来求方程ax2+bx+c=0的实根,a,b,c 是任意实系数。
(可以假设sqrt(x)是求平方根的函数。
)算法:Equate(a,b,c)//实现二元一次方程求解实数根//输入:任意系数a,b,c//输出:方程的实数根x1,x2或无解If a≠0p←b2−4acIf p>0x1←−b+sqrt(p)2ax2←−b−sqrt(p)2areturn x1,x2else if p=0return −b2aelsereturn “no real roots”elseif b≠0return −cbelseif c≠0return “no real numbers”elsereturn “no real roots”5.写出将十进制正整数转换为二进制整数的标准算法。
a.用文字描述。
b.用伪代码描述。
a.解:输入:一个正整数n输出:正整数n相应的二进制数第一步:用n 除以2,余数赋给K[i](i=0,1,2...),商赋给n第二步:如果n=0 ,则到第三步,否则重复第一步第三步:将K[i]按照i从高到低的顺序输出b.解:算法:DecToBin(n)//实现正整数十进制转二进制//输入:一个正整数n//输出:正整数n对应的二进制数组K[0..i]i ←1while n≠0 doK[i]←n%2n←(int)n/2i ++while i≠0doprint K[i]i - -p462.请用O,Ω 和θ的非正式定义来判断下列断言是真还是假。
a. n(n+1)/2∈O(n3)b. n(n+1)/2∈O(n2)c. n(n+1)/2∈θ(n3)d. n(n+1)/2∈Ω(n)解:断言为真:a,b,d断言为假:cP535.考虑下面的算法。
算法分类题库及答案详解1. 算法按其设计方法可以分为哪几类?A. 暴力解法B. 贪心算法C. 分治算法D. 动态规划E. 所有以上答案:E2. 以下哪个算法不属于贪心算法?A. 活动选择问题B. 最小生成树C. 快速排序D. 霍夫曼编码答案:C3. 分治算法的基本思想是什么?A. 将问题分解成更小的子问题B. 直接求解问题C. 选择最优子问题D. 迭代求解答案:A4. 动态规划与分治算法的主要区别是什么?A. 动态规划需要存储中间结果B. 分治算法需要存储中间结果C. 动态规划不需要分解问题D. 分治算法不需要分解问题答案:A5. 暴力解法通常用于什么问题?A. 问题规模较小B. 问题规模较大C. 需要最优解D. 需要近似解答案:A6. 以下哪个算法是使用贪心算法解决的?A. 汉诺塔问题B. 旅行商问题C. 背包问题D. 八皇后问题答案:C7. 快速排序算法属于哪种算法类别?A. 暴力解法B. 贪心算法C. 分治算法D. 动态规划答案:C8. 动态规划通常用于解决什么问题?A. 线性问题B. 组合问题C. 排序问题D. 查找问题答案:B9. 以下哪个问题可以通过贪心算法得到最优解?A. 旅行商问题B. 背包问题C. 0/1背包问题D. 所有以上答案:B10. 汉诺塔问题通常使用什么算法解决?A. 暴力解法B. 贪心算法C. 分治算法D. 动态规划答案:C11. 以下哪个算法是动态规划算法的典型应用?A. 斐波那契数列B. 最长公共子序列C. 最短路径问题D. 所有以上答案:D12. 贪心算法在哪些情况下可能无法得到最优解?A. 问题具有最优子结构B. 问题不具有最优子结构C. 问题具有重叠子问题D. 问题不具有重叠子问题答案:B13. 动态规划算法的一般步骤是什么?A. 确定状态B. 确定状态转移方程C. 确定边界条件D. 所有以上答案:D14. 分治算法的一般步骤包括哪些?A. 分解问题B. 解决子问题C. 合并子问题的解D. 所有以上答案:D15. 以下哪个算法不是排序算法?A. 冒泡排序B. 选择排序C. 快速排序D. 霍夫曼编码答案:D16. 快速排序算法的时间复杂度在最坏情况下是多少?A. O(n log n)B. O(n^2)C. O(n)D. O(1)答案:B17. 动态规划算法在解决什么问题时会使用记忆化搜索?A. 线性问题B. 组合问题C. 排序问题D. 查找问题答案:B18. 贪心算法在选择策略时通常遵循什么原则?A. 选择当前最优B. 选择全局最优C. 选择随机D. 选择平均最优答案:A19. 以下哪个问题不适合使用贪心算法?A. 单源最短路径问题B. 旅行商问题C. 背包问题D. 霍夫曼编码答案:B20. 分治算法在解决哪些问题时特别有效?A. 线性问题B. 组合问题C. 排序问题D. 查找问题答案:B。
分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
算法测试题及答案一、选择题1. 以下哪个选项不是排序算法?A. 冒泡排序B. 选择排序C. 快速排序D. 深度优先搜索答案:D2. 在二叉树中,深度为5的节点最多有多少个?A. 16B. 32C. 64D. 31答案:D二、填空题1. 递归算法的基本思想是 _ ,即把问题分解成相同但规模更小的问题。
答案:分而治之2. 动态规划与分治法的不同之处在于动态规划会 _ ,而分治法则不会。
答案:存储子问题的解三、简答题1. 请简述什么是贪心算法,并给出一个例子。
答案:贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。
例如,活动选择问题,给定一系列活动,每个活动都有一个开始时间和结束时间,贪心算法会按照结束时间的早晚来选择活动,从而最大化参与活动的数量。
2. 描述快速排序算法的基本思想。
答案:快速排序算法是一种分治策略,基本思想是选择一个元素作为“基准”(pivot),然后将数组分为两个子数组,一个包含所有小于基准的元素,另一个包含所有大于基准的元素。
这个过程称为分区(partitioning)。
之后,递归地将分区过程应用到两个子数组上,直到每个子数组只有一个元素或为空。
四、计算题1. 给定一个数组 [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5],请使用快速排序算法对其进行排序,并给出排序后的数组。
答案:使用快速排序算法对给定数组进行排序后,得到的数组为 [1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 9]。
2. 假设有一个二叉搜索树,其根节点的值为10,现在要删除值为5的节点,请描述删除过程。
答案:删除二叉搜索树中的节点分为三种情况:- 情况1:要删除的节点没有子节点,直接删除该节点。
- 情况2:要删除的节点只有一个子节点,用其子节点替换该节点。
- 情况3:要删除的节点有两个子节点,找到该节点的直接前驱或直接后继,用其值替换要删除的节点,然后删除直接前驱或直接后继。
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。
2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。
3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。
参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。
在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。
在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。
平均情况下,时间复杂度也为 O(n^2)。
空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。
应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。
例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。
2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。
算法导论参考答案算法导论参考答案算法导论是计算机科学领域中一本经典的教材,被广泛应用于计算机科学和工程的教学和研究中。
它涵盖了算法设计和分析的基本概念,以及各种常见算法的实现和应用。
本文将为读者提供一些算法导论中常见问题的参考答案,以帮助读者更好地理解和掌握这门课程。
1. 什么是算法?算法是一系列解决问题的步骤和规则。
它描述了如何将输入转换为输出,并在有限的时间内完成。
算法应具备正确性、可读性、健壮性和高效性等特点。
2. 如何分析算法的效率?算法的效率可以通过时间复杂度和空间复杂度来衡量。
时间复杂度表示算法执行所需的时间量级,常用的时间复杂度有O(1)、O(n)、O(logn)、O(nlogn)和O(n^2)等。
空间复杂度表示算法执行所需的额外空间量级,通常以字节为单位。
3. 什么是渐进符号?渐进符号用于表示算法的时间复杂度或空间复杂度的增长趋势。
常见的渐进符号有大O符号、Ω符号和Θ符号。
大O符号表示算法的上界,Ω符号表示算法的下界,Θ符号表示算法的平均情况。
4. 什么是分治法?分治法是一种算法设计策略,将问题分解为若干个子问题,并对子问题进行独立求解,最后将子问题的解合并得到原问题的解。
典型的分治算法有归并排序和快速排序。
5. 什么是动态规划?动态规划是一种通过将问题分解为相互重叠的子问题来求解的方法。
它通常用于求解具有重叠子问题和最优子结构性质的问题。
典型的动态规划算法有背包问题和最短路径问题。
6. 什么是贪心算法?贪心算法是一种通过每一步选择局部最优解来求解整体最优解的方法。
贪心算法通常不能保证得到全局最优解,但在某些问题上能够得到近似最优解。
典型的贪心算法有霍夫曼编码和最小生成树算法。
7. 什么是图算法?图算法是一类用于解决图结构相关问题的算法。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
图算法包括图的遍历、最短路径、最小生成树和网络流等问题的求解。
8. 什么是NP完全问题?NP完全问题是一类在多项式时间内无法求解的问题。
第四章作业 部分参考答案1. 设有n 个顾客同时等待一项服务。
顾客i 需要的服务时间为n i t i ≤≤1,。
应该如何安排n 个顾客的服务次序才能使总的等待时间达到最小?总的等待时间是各顾客等待服务的时间的总和。
试给出你的做法的理由(证明)。
策略:对 1i t i n ≤≤进行排序,,21n i i i t t t ≤≤≤ 然后按照递增顺序依次服务12,,...,ni i i 即可。
解析:设得到服务的顾客的顺序为12,,...,n j j j ,则总等待时间为,2)1(121n n j j j j t t t n nt T +++-+=- 则在总等待时间T 中1j t 的权重最大,jn t 的权重最小。
故让所需时间少的顾客先得到服务可以减少总等待时间。
证明:设,21n i i i t t t ≤≤≤ ,下证明当按照不减顺序依次服务时,为最优策略。
记按照n i i i 21次序服务时,等待时间为T ,下证明任意互换两者的次序,T都不减。
即假设互换j i ,)(j i <两位顾客的次序,互换后等待总时间为T ~,则有.~T T ≥由于,))(())(()2)(2()1)(1(21n j i i i i i i t j t j n i t i n t n t n T +--++--++--+--=,))(())(()2)(2()1)(1(~21n i j i i i i i t j t j n i t i n t n t n T +--++--++--+--=则有.0))((~≥--=-i j i i t t i j T T同理可证其它次序,都可以由n i i i 21经过有限次两两调换顺序后得到,而每次交换,总时间不减,从而n i i i 21为最优策略。
2. 字符h a ~出现的频率分布恰好是前8个Fibonacci 数,它们的Huffman 编码是什么?将结果推广到n 个字符的频率分布恰好是前n 个Fibonacci 数的情形。
algorithms 习题答案算法是计算机科学中的重要概念,它是一种解决问题的方法和步骤的有序集合。
在学习算法的过程中,习题是不可或缺的一部分。
通过解答习题,我们可以加深对算法的理解,提高我们的编程能力。
在本文中,我将为大家提供一些常见算法习题的答案。
一、排序算法1. 冒泡排序冒泡排序是一种简单但效率较低的排序算法。
它的基本思想是通过相邻元素的比较和交换,将最大的元素逐渐“冒泡”到数组的末尾。
以下是冒泡排序的实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```2. 快速排序快速排序是一种常用的排序算法,它的基本思想是通过选择一个基准元素,将数组分为两部分,一部分小于基准元素,一部分大于基准元素,然后对这两部分分别进行递归排序。
以下是快速排序的实现代码:```pythondef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[0]left = [x for x in arr[1:] if x <= pivot]right = [x for x in arr[1:] if x > pivot]return quick_sort(left) + [pivot] + quick_sort(right)```二、查找算法1. 二分查找二分查找是一种高效的查找算法,它的基本思想是将有序数组分为两部分,通过与目标值的比较,确定目标值在哪一部分中,然后再在该部分中进行查找。
以下是二分查找的实现代码:```pythondef binary_search(arr, target):left, right = 0, len(arr) - 1while left <= right:mid = (left + right) // 2if arr[mid] == target:return midelif arr[mid] < target:left = mid + 1else:right = mid - 1return -1```2. 哈希查找哈希查找是一种基于哈希表的查找算法,它的基本思想是通过将关键字映射到哈希表中的位置,从而快速定位到目标值。